
Monte Carlo Algorithms

Some simple numerical examples for performing grid and grid-free Monte Carlo
algorithms will now be considered.

Let the operator L in the equation (86) be the Laplacian:

L = ∆.

Using a regular discretisation with a step–size h equation (86) is approximated
by the following difference equation

∆
(d)
h u = −fh. (111)

Assume that (111) is solved for the ith point i = (i1, . . . , id):

ui = Lhu+
h2

2d
fi,
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where ∆
(d)
h is the Laplace difference operator, and Lh is an averaging operator.

For example, the operator Lh in IR2 is

Lhu =
1

4
[ui−1,j + ui+1,j + ui,j−1 + ui,j+1] =

1

4
Λ1(i, j)

and then (111) becomes

uij =
1

4
Λ1(i, j) +

h2

4
fi,j. (112)

The matrix form of equation (112) has only 2d non-zero elements in each row
and they all are equal to 1

2d.

The grid Monte Carlo algorithm for solving (112) consists in simulating a
Markov chain with initial density p0 which is permissible to the vector h. The
probability pαβ for the transition from the point α to the next point β in our case
is equal to 1

2d if the point is inside of the domain, that is ((x(1))α, (x(2))β) ∈ Ωh,
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and pαβ = 0 for boundary points (the boundary is an absorbing barrier for the
process). Then the random variable whose mathematical expectation coincides
with the solution of the problem is:

θ =
h2

2d

i∗−1∑

i=1

fi + ϕi∗,

where fi are values of the function f in the points of the Markov chain, and i∗

is the point where Markov chain reaches the boundary ∂Ωh

The well known grid algorithm ( can be described in pseudo-code notation (see
Figure ??):
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Algorithm 4.Start at the grid point (x10, x20), i.e. (x(1), x(2)) := (x10, x20)
While (x(1), x(2)) is not at the boundary
Move to a neighboring point (x′

(1), x
′
(2)) ∈ {(x(1) − h, x(2)),

(x(1) + h, x(2)), (x(1), x(2) − h), (x(1), x(2) + h)}
(i.e. (x(1), x(2)) := (x′

(1), x
′
(2)))

such that each neighboring is selected with
the same probability p = 1/4

Let (x∗
(1), x

∗
(2)) be the final point at the boundary. Then, the searched random

variable is:
θ := u(x∗

(1), x
∗
(2)).

In order to compute Eθ, we start N Markov processes of the above kind,
delivering N realizations θ1, . . . , θN of the random variable θ and approximate
the solution by their mean as described above.

Now consider the grid-free Monte Carlo algorithm based on the local integral
representation of the problem.

First, let us describe the selection algorithm (due to John von Neumann)
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in general case. This approach is also commonly called the acceptance-
rejection method or accept-reject algorithm. Suppose v1(x) and v2(x) are
given functions, 0 ≤ v1(x) ≤ v2(x) and

∫

Ω

v1(x)dx = V1 < ∞,

∫

Ω

v2(x)dx = V2 < ∞,

where Ω ⊂ IR3.

Consider an algorithm for simulation of the random variable with density
function v2(x)/V2 and simulate other random variable with the density function
v1(x)/V1. It is necessary to give a realization ξ of the random variable
with density v2(x)/V2 and an independent realization γ of the random variable
uniformly distributed in (0, 1), as well as to check the inequality γv2(x) ≤ v1(x).
If the last inequality holds, ξ is the needed realization. Otherwise, the process
have to be repeated. This means that, with enough replicates, the algorithm
generates a sample from the desired distribution v2(x)/V2. There are a number
of extensions to this algorithm, such as theMetropolis (or Metropolis-Hastings)
algorithm. The efficiency of the selection algorithm is measured by E = V1/V2.
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A local integral representation (110) for the boundary value problem (93, 94)
is obtained. Comparing (95) with (110) one can get

k(x, y) =

{
M∗

yLp(y, x), when x ∈ Ω \ ∂Ω,
0, when x ∈ ∂Ω,

and

f(x) =

{ ∫
B(x)

Lp(y, x)φ(y)dy when x ∈ Ω \ ∂Ω,
ψ(x), when x ∈ ∂Ω.

The Monte Carlo procedure for solving this problem can be defined as a ball
process. To ensure the convergence of the process, we introduce the ε-strip of
the boundary, i.e.

∂Ωε = {x ∈ Ω : B(x) = Bε(x)}, where Bε(x) = {y : r =| y − x |≤ ε}.

Consider a transition density function

p(x, y) = k(x, y) = M∗
yLp(y, x) ≥ 0. (113)
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This transition density function defines a Markov chain ξ1, ξ2, . . . , ξi such that
every point ξj, j = 1, . . . , i − 1 is chosen on the maximal ball B(xj−1), lying
in Ω in accordance with the density (113). The Markov chain stops when it
reaches ∂Ωε. So, ξi ∈ ∂Ωε.

Let us consider the random variable

θ[ξ0] =

i∑

j=0

Qj

∫

B(ξj)

Lp(y, ξj)f(y)dy + ϕ(ξi),

where

Q0 = 1 (114)

Qj = Qj−1M
∗
yLp(ξj, ξj−1)/p(ξj−1, ξj), j = 1, 2, . . . , i, (115)

ϕ(ξi) is the value of the boundary function at the last point of the Markov
chain ξi.
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It is easy to see that the solution of the problem at the point ξ0 can be presented
as

u(ξ0) = Eθ[ξ0]. (116)

To ensure the convergence of the process we consider the next estimate:

∫ ∫
k(x, y)k(y, z)dydz <

∫
δ(y − z)

∫
δ(z − y)dzdy

=
∫
δ(y − x)dy < 1− ε2

4R2
m
,

where k(x, y) ≥ 0 is defined by (113) and Rm is the supremum of all radii of
the spheres lying in Ω.

The above estimate ensures the convergence of the Neumann series and,
therefore of the process (115) as well.

Obviously, all non-zero values of Qj are equal to 1 and the problem consists
in simulating a Markov chain with a transition density function p(x, y) in the
form (113). Thus, the problem of calculating u(ξ0) is reduced to estimating
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the expectation (116). As the approximate value of u(ξ0) is set up

θN = 1/N
N∑
s=1

{θ[ξ0]}s,

where {θ[ξ0]}s is the sth realization of the random variable θ[ξ0] on a Markov
chain with initial point ξ0 and transition density function (113).

As it was shown in Section ??, the probable error for this type of random
processes is rN = cσ(θ[ξ0])N

−1/2, where c ≈ 0.6745 and σ(θ[ξ0]) is the
standard deviation.

The direct simulation of a random variable with the stationary density function
p(x, y) is unsuitable since the complexity of the expression for M∗

yL(y, x) would
sharply increase the algorithm’s computational complexity. In this case it is
advisable to use the rejection sampling algorithm.

Denote by p0(x, y) the transition density function of the Markov chain M∗
yLp

with c(x) ≡ 0.
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It is easy to see, that
p(x, y) ≤ p0(x, y).

The function p0(x, y) satisfies the condition for a transition density function of
the Markov chain.

∫

B(x)

p0(x, y)dy = 1. (117)

Indeed,

∫

B(x)

p0(x, y)dy =

∫

B(x)

M∗
yLp(y, x)

∣∣∣∣∣
c(y)≡0

dy

=

∫

B(x)

3∑

i=1

∂2Lp(y, x)

∂y2(i)
dy −

∫

B(x)

3∑

i=1

(
bi(y)

∂Lp(y, x)

∂y(i)

)
dy.
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Apply Green’s formula (98) to the second integral:

∫

B(x)

3∑

i=1

(
bi(y)

∂Lp(y, x)

∂y(i)

)
dy

=

∫

∂B(x)

3∑

i=1

nibi(y)Lp(y, x)dyS −
∫

B(x)

Lp(y, x)div b(y)dy = 0,

because div b(y) = 0 and Lp(y, x)|y∈∂B(x) = 0, where n ≡ (n1, n2, n3) is the

exterior normal to the boundary ∂B(x).

Calculate the first integral using spherical coordinates:
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∫

B(x)

3∑

i=1

∂2Lp(y, x)

∂y2(i)
dy

=

∫ R

0

∫ π

0

∫ 2π

0

r2 sin θ

4πqp(R)

1

r2
∂

∂r
r2

∂

∂r

(∫ R

r

(1/r − 1/ρ)p(ρ)dρ

)
drdθdϕ

=
1

qp(R)

∫ R

0

∂

∂r
r2

∂

∂r

(∫ R

r

(1/r − 1/ρ)p(ρ)dρ

)
dr

=
1

qp(R)

(
r2

∂

∂r

∫ R

r

(1/r − 1/ρ)p(ρ)dρ

)∣∣∣∣∣

r=R

r=0

=
1

qp(R)
(−1)

∫ R

r

p(ρ)dρ

∣∣∣∣∣

r=R

r=0

=
qp(R)

qp(R)
= 1.

Thus, we proved (117).
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The function p0(x, y) can be expressed in Cartesian coordinates as

p0(x, y) =
µp(R)

r2

[
p(r) +

3∑

i=1

bi(y)
y(i) − x(i)

r

]∫ R

r

p(ρ)dρ.

Taking into consideration that

dy1dy2dy3 = r2 sin θdrdθdϕ and y(i) − x(i) = rwi, i = 1, 2, 3

one can write:

p0(r,w) = µp(R) sin θ

[
p(r) +

3∑

i=1

bi(x+ rw)wi

]∫ R

r

p(ρ)dρ,

or

p0(r,w) =
sin θ

4πqp(R)

[
p(r) +

3∑

i=1

bi(x+ rw)wi

]∫ R

r

p(ρ)dρ.
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Here w≡ (w1, w2, w3) is an unique isotropic vector in IR3, where w1 =
sin θ cosϕ, w2 = sin θ sinϕ and w3 = cos θ.

Now one can write p0(r,w) in the following form:

p0(r,w) = p0(r)p0(w/r),

where

p0(r) =
p(r)

qp(R)
=

ke−kr

1− e−kR

is a density function and

p0(w/r) =
sin θ

4π

[
1 +

| b(x+ rw) | cos(b,w)
p(r)

∫ R

r

p(ρ)dρ

]

is a conditional density function.
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In Ermakov, Nekrutkin, Sipin, 1992 it is proved that E ≥ 1
2 for the same density

function and for the boundary value problem in IRd(d ≥ 2).

A majorant function hr(w) for p0(w/r) was found and the following theoretical
result for the algorithm efficiency of the rejection sampling grid-free Monte
Carlo algorithm was proved:

E ≥ 1 + α

2 + α
, (118)

where

α =
maxx∈Ω | c(x) | R
maxx∈Ω | b(x) | ,

and R is the radius of the maximal sphere lying inside Ω.

The following result holds:

Theorem 15. For the efficiency of the rejection sampling grid-free Monte
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Carlo algorithm the inequality:

E ≥ 1 + α

2 + α− εR
, 0 < εR =

1

ekR
< 1,

holds, when the majorant function

hr(w) =
sin θ

4π

[
1 +

maxx∈Ω | b(x) |
p(r)

∫ R

r

p(ρ)dρ

]

is used.

Proof 12. Estimate the conditional density function p0(w/r):
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p0(w/r) =
sin θ

4π

[
1 +

| b(x+ rw) | cos(b,w)
p(r)

∫ R

r

p(ρ)dρ

]

≤ sin θ

4π

[
1 +

B

p(r)

∫ R

r

p(ρ)dρ

]
= hr(w)

where B = maxx∈Ω | b(x) |.

On the other hand
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hr(w) =
sin θ

4π

[
1 +

B

p(r)

∫ R

r

p(ρ)dρ

]
=

sin θ

4π

[
1 +

B

k

(
1− e−k(R−r)

)]

=
sin θ

4π

[
1 +

B

k

(
1− ekr

ekR

)]

≤ sin θ

4π

[
1 +

B

k

(
1− 1

ekR

)]
= H(w). (119)

The functions hr(w) andH(w) are majorants for the p0(w/r). For the efficiency
of the rejection sampling Monte Carlo algorithm in the case when c(y) ≡ 0 one
can obtain:
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E =

∫ 2π

0

∫ π

0
p0(w/r)dθdϕ∫ 2π

0

∫ π

0
H(w)dθdϕ

=
1

1 + B
k

(
1− 1

ekR

)

=
k

k +B(1− 1
ekR

)
=

B +Rmaxx∈Ω | c(x) |
2B +Rmaxx∈Ω | c(x) | − B

ekR

=
1 + α

2 + α− εR
,

where
k = B +Rmax

x∈Ω
| c(x) |, (see (103)),

α =
maxx∈Ω | c(x) | R

B
and εR =

1

ekR
.

Taking into consideration (119), one can get

E ≥ 1 + α

2 + α− εR
, (120)
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when the majorant function hr(w) is used. This completes the proof.

It is clear that if εR → 0 then the result (118) follows.

Denote by p̄(x, y) the following function:

p̄(x, y) =
p(x, y)

V
, where

∫

B(x)

p(x, y)dy = V < 1,

This is a density function in the case when c(y) 6= 0.

The function p(x, y) can be expressed in spherical coordinates as:
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p(r,w) =
sin θ

4πqp(R)

×
[
p(r) +

(
3∑

i=1

bi(x+ rw)wi + c(x+ rw)r

)

×
∫ R

r

p(ρ)dρ− c(x+ rw)r2
∫ R

r

p(ρ)

ρ
dρ

]
.

The following inequalities hold:

p(r,w) ≤ p0(r,w) ≤ p(r)

qp(R)
hr(w) (121)

=
sin θ p(r)

4πqp(R)

[
1 +

maxx∈Ω | b(x) |
p(r)

∫ R

r

p(ρ)dρ

]
≡ h(r,w).
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It is easy to prove that in case when h(r,w) is a majorant of the function
p(r,w) the efficiency of the rejection sampling algorithm is

E ≥ V
1 + α

2 + α− εR
.

This estimation follows from Theorem 15 and (121). Clearly, the efficiency E
depends on the norm of the kernel k(x, y), because p(x, y) = k(x, y).

In the rejection sampling algorithm it is necessary to simulate a random variable
η with a density

p̄r(w) = 1 +

[| b(x+ rw) | cos(b,w) + c(x+ rw)r

p(r)

]
×

×
∫ R

r

p(ρ)dρ− c(x+ rw)r2

p(r)

∫ R

r

p(ρ)

ρ
dρ.
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Since

p̄r(w) ≤ 1 +
B

p(r)

∫ R

r

p(ρ)dρ = h(r)

the function h(r) is a majorant for the rejection sampling algorithm.

Here a Monte Carlo algorithm for the selection algorithm is described:

Consider a point x ∈ Ω with the initial density p(x). Suppose that p(x) is
tolerant to g(x).

Algorithm 5. Grid-free Monte Carlo Algorithm

1. Calculate the radius R(x) of the maximal sphere lying inside Ω and having
center x.

2. Calculate a realization r of the random variable τ with the density

p(r)

qp(R)
=

ke−kr

1− e−kR
. (122)
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3. Calculate the function

h(r) = 1 +
B

p(r)

∫ R

r

p(ρ)dρ = 1 +
B

k

(
1− e−k(R−r)

)
.

4. Simulate independent realizations wj of a unique isotropic vector in IR3.

5. Simulate independent realizations γj of a uniformly distributed random
variable in the interval [0, 1].

6. Calculate the parameter j0, given by

j0 = min{j : h(r)γj ≤ p̄r(wj)},

and stop the execution of the steps 4 and 5. The random vector wj0 has the
density p̄r(w).
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7. Calculate the random point y, with a density p̄r(w), using the following
formula:

y = x+ rwj0.

The value r =| y − x | is the radius of the sphere lying inside Ω and having
center at x.

8. Stop the random trajectory when the random process reaches the ε-strip
∂Ωε, i.e. y ∈ ∂Ωε. The random variable is calculated. If y∈̄∂Ωε then the
algorithm has to be repeated for x = y.

9. Perform N random trajectories repeating steps 2 to 8.

An illustration of the considered grid-free algorithm is given on Figure ??.

It is clear that the algorithmic efficiency depends on the expectation of the
position of the point y. The location of y depends of the random variable τ
with a density (122). When the random point is near to the boundary of the
ball, the process goes to the boundary of the domain ∂Ωε quickly. So, it will
be important to have an estimate of the mathematical expectation of τ .
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One can calculate the value of Eτ :

Eτ =

∫ R

0

r
p(r)

qp(R)
dr =

∫ R

0

rke−kr

1− e−kR
dr =

1

k
+

R

1− ekR
.

Obviously, the sequential algorithmic efficiency depends of the product (kR)
(where R is the radius of the maximal ball, lying inside of the domain Ω for
the starting point of the random process). Therefore, the computational results
given in the next section are performed for different values of the product (kR).
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Parallel Implementation of the Grid-Free Algorithm and
Numerical Results

It is well known that Monte Carlo algorithms are well suited for parallel
architectures. In fact, if we consider the calculation of a trajectory as a single
computational process, it is straightforward to regard the Monte Carlo algorithm
as a collection of asynchronous processes evolving in parallel. Clearly, MIMD
(multiple instruction, multiple data) - machines are the natural hardware
platform for implementing such algorithms; it seems to be interesting to
investigate the feasibility of a parallel implementation on such type of machines.
There are two main reasons:

• Monte Carlo algorithms are frequently used, within or in conjunction with
more complex and large existing codes (usually written in FORTRAN or C),
the easiness in programming makes the use of these machines very attractive;

• the peak performance of each processor of these machines is usually not very
high, but when a large number of processors is efficiently used a high general
computational performance can be reached.
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The MIMD computer used for our tests is a IBM SP1 with 32 processors. The
aim of our implementation was to demonstrate a high efficiency of a MIMD
system in which each processing element is relatively slow. The algorithm has a
very good scalability so that it can be easily implemented on modern and future
MIMD systems. The environment for parallel programming is ATHAPASCAN
which is developed by the research group on Parallel algorithms in LMC/IMAG,
Grenoble. ATHAPASCAN environment is developed using C-language and a
special library for message passing which is similar to well-known MPI-Message
Passing Interface and PVM-Parallel Virtual Machine. ATHAPASCAN allows
to distribute the computational problem on different type of processors or/and
computers. This environment provides use of dynamic distribution of common
resources and has a high level of parallel efficiency if the numerical algorithm is
well parallelized.

In the previous section a general description of the Monte Carlo algorithm
for the selection algorithm has been provided. Note that, in the case of an
implementation on a sequential computer, all the steps of the algorithm and
all the trajectories are executed iteratively, whereas on a parallel computer the
trajectories can be carried concurrently.
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Example. A numerical example is considered. The example deals with the
following problem

3∑

i=1

(
∂2u

∂x2
(i)

+ bi(x)
∂u

∂x(i)

)
+ c(x)u = 0, in Ω = E3 ≡ [0, 1]3.

Note that the cube E3 does not belong to the A(1,λ), but this restriction is not
important for our algorithm since an ε-strip of the domain Ω is considered. In
fact now we consider another domain Ωε which belongs to the class A(1,λ).

The boundary conditions for the example are:

u(x(1), x(2), x(3)) = ea1x(1)+a2x(2)+a3x(3) , (x(1), x(2), x(3)) ∈ ∂Ω.

In our tests

b1(x) = a2a3(x(2)−x(3)), b2(x) = a3a1(x(3)−x(1)), b3(x) = a(1)a2(x(1)−x(2))
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(thus, the condition div b(x) = 0 is valid) and

c(x) = −(a21 + a22 + a23),

where a1, a2, a3 are parameters.

The problem is solved using selection grid-free Monte Carlo algorithm.
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 Fig.1. Monte Carlo solution in the first case 

 Exact solution=1.45499 
M.C. sol. for eps-strip=0.01
M.C. sol. for eps-strip=0.05
M.C. sol. for eps-strip=0.1
M.C. sol. for eps-strip=0.3

Figure 9: Monte Carlo solution for the first case.
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 Fig.2. Monte Carlo solution in the second case 

Exact solution=2.117
M.C. sol. for eps-strip=0.01
M.C. sol. for eps-strip=0.05
M.C. sol. for eps-strip=0.1
M.C. sol. for eps-strip=0.3

Figure 10: Monte Carlo solution for the second case.
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 Fig.3. Monte Carlo solution in the third case 

Exact solution =0.22313
M.C. sol. for eps-strip=0.01
M.C. sol. for eps-strip=0.05
M.C. sol. for eps-strip=0.1
M.C. sol. for eps-strip=0.3

Figure 11: Monte Carlo solution in the third case.

We consider three cases for the coefficients:

• the first case when

a1 = 0.25 , a2 = 0.25 , a3 = 0.25 and k ∗R = 0.101;
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• the second case when

a1 = 0.5 , a2 = 0.5 , a3 = 0.5 and k ∗R = 0.40401;

• the third case

a1 = −1 , a2 = −1 , a3 = −1 and k ∗R = 1.61603.

Four different ε-strip are used:

ε = 0.01, 0.05, 0.1, 0.3.

The results of evaluating the linear functional (45) for the above mentioned
parameters and functions are presented in Figures 9 - 11, the case when

h(x) = δ[(x(1) − 1/2), (x(2) − 1/2), (x(3) − 1/2)].
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The efficiency of the selection grid-free Monte Carlo does not depend on the
number of trajectories (see, Table 8). The result of selection efficiency confirms
our corresponding theoretical result.
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Table 8: Selection efficiency and number of the steps to the boundary domain.
The number of realizations of the random ball process is 600.
Epsilon strip k * R No of steps Selection efficiency

0.01 0.101 36 - 37 0.99
0.01 0.40401 35 - 36 0.97123
0.01 1.61603 43 - 44 0.91071
0.05 0.101 17 - 18 0.99
0.05 0.40401 17 - 18 0.9596
0.05 1.61603 20 - 21 0.85829
0.10 0.101 8 - 9 0.9887
0.10 0.40401 9 - 10 0.95371
0.10 1.61603 12 - 13 0.83596
0.30 0.101 1 - 2 0.97
0.30 0.40401 2 - 3 0.92583
0.30 1.61603 2 - 3 0.75561
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The efficiency of the presented grid-free algorithm is studied in the case when

h(x) = δ[(x(1) − 1/4), (x(2) − 1/4), (x(3) − 1/4)],

h(x) = δ[(x(1) − 1/2), (x(2) − 1/2), (x(3) − 1/2)],

respectively.

We investigate the parallel efficiency for the following values of the coefficients:

a1 = 1 , a2 = −0.5 , a3 = −0.5 and ε− strip = 0.01 , 0.05 , 0.15.

For the definition of parallel efficiency and other parallel properties we refer
to Chapter ??. The results of parallel implementation showed a very high
scalability of the algorithm with increasing the size of the computational job (by
increasing the number of random trajectories). The measured parallel efficiency
increases with increasing the number of random trajectories and is close to 1.
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Concluding Remarks

• An iterative Monte Carlo algorithm using Green’s function is presented and
studied. It is proved that the integral transformation kernel in local integral
presentation can be used as transition density function in the Markov chain.
An algorithm called ball process is presented. This algorithm is a grid-free
Monte Carlo algorithm and uses the so-called selection.

• One of the advantages of the grid-free Monte Carlo algorithm is that it has
the rate of convergence (|log rN |/r2N) (where rN is the statistical error)
which is better than the rate r−3

N of the grid algorithm. This means that
the same error can be reached with a smaller number of trajectories.

• It is preferable to use the selection algorithm when it is difficult to calculate
the realizations of the random variable directly.

• The studied algorithm has high parallel efficiency. It is easily programmable
and parallelizable.

Sofia, Bulgarian Academy of Sciences, February, 2012



• The tests performed show that Monte Carlo algorithms under consideration
can be efficiently implemented on MIMD-machines. The algorithms under
consideration are highly scalable.
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