
III. Iterative Monte Carlo Methods
for Linear Equations

In general, Monte Carlo numerical algorithms may be divided into two classes
– direct algorithms and iterative algorithms. The direct algorithms provide
an estimate of the solution of the equation in a finite number of steps, and
contain only a stochastic error. For example, direct Monte Carlo algorithms
are the algorithms for evaluating integrals. Iterative Monte Carlo algorithms
deal with an approximate solution obtaining an improved solution with each
step of the algorithm. In principle, they require an infinite number of steps to
obtain the exact solution, but usually one is happy with an approximation to
say k significant figures. In this latter case there are two errors - systematic
and stochastic. The systematic error depends both on the number of iterations
performed and the characteristic values of the iteration operator, while the
stochastic errors depend on the probabilistic nature of the algorithm.

Iterative algorithms are preferred for solving integral equations and large sparse
systems of algebraic equations (such as those arising from approximations
of partial differential equations). Such algorithms are good for diagonally

Sofia, Bulgarian Academy of Sciences, February, 2012



dominant systems in which convergence is rapid; they are not so useful for
problems involving dense matrices.

Define an iteration of degree j as

u(k+1) = Fk(A, b, u(k), u(k−1), . . . , u(k−j+1)),

where u(k) is obtained from the kth iteration. It is desired that

u(k) → u = A−1b as k → ∞.

Usually the degree of j is kept small because of storage requirements.

The iteration is called stationary if Fk = F for all k, that is, Fk is independent
of k.

The iterative Monte Carlo process is said to be linear if Fk is a linear function
of uk, . . . , u(k−j+1) .

We shall consider iterative stationary linear Monte Carlo algorithms and
will analyse both systematic and stochastic errors. Sometimes the iterative
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stationary linear Monte Carlo algorithms are called Power Monte Carlo
algorithms. The reason is that these algorithms find an approximation of a
functional of powers of linear operators. In literature this class of algorithms
is also known as Markov chain Monte Carlo since the statistical estimates can
be considered as weights of Markov chains. We consider how such weights can
be defined. We are focusing on two kind of linear operators: integral operators
and matrices.
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Iterative Monte Carlo Algorithms

Consider a general description of the iterative Monte Carlo algorithms. Let
X be a Banach space of real-valued functions. Let f = f(x) ∈ X and
uk = u(xk) ∈ X be defined in IRd and L = L(u) be a linear operator defined
on X.

Consider the sequence u1, u2, ..., defined by the recursion formula

uk = L(uk−1) + f, k = 1, 2, . . . (39)

The formal solution of (39) is the truncated Neumann series

uk = f + L(f) + · · ·+ Lk−1(f) + Lk(u0), k > 0, (40)

where Lk means the kth iterate of L.

As an example consider the integral iterations.
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Let u(x) ∈ X , x ∈ Ω ⊂ IRd and l(x, x′) be a function defined for x ∈ Ω, x′ ∈ Ω.
The integral transformation

Lu(x) =

∫

Ω

l(x, x′)u(x′)dx′

maps the function u(x) into the function Lu(x), and is called an iteration
of u(x) by the integral transformation kernel l(x, x′). The second integral
iteration of u(x) is denoted by

LLu(x) = L2u(x).

Obviously,

L2u(x) =

∫

Ω

∫

Ω

l(x, x′)l(x′, x′′)dx′dx′′.

In this way L3u(x), . . . , Liu(x), . . . can be defined.
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When the infinite series converges, the sum is an element u from the space X
which satisfies the equation

u = L(u) + f. (41)

The truncation error of (40) is

uk − u = Lk(u0 − u).

Let J(uk) be a linear functional that is to be calculated. Consider the spaces

Ti+1 = IRd × IRd × · · · × IRd︸ ︷︷ ︸
i times

, i = 1, 2, . . . , k, (42)

where ”×” denotes the Cartesian product of spaces.

Random variables θi, i = 0, 1, . . . , k are defined on the respective product
spaces Ti+1 and have conditional mathematical expectations:

Eθ0 = J(u0), E(θ1/θ0) = J(u1), . . . , E(θk/θ0) = J(uk),
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where J(u) is a linear functional of u.

The computational problem then becomes one of calculating repeated
realizations of θk and combining them into an appropriate statistical estimator
of J(uk).

As an approximate value of the linear functional J(uk) is set up

J(uk) ≈ 1

N

N∑
s=1

{θk}s, (43)

where {θk}s is the sth realization of the random variable θk.

The probable error rN of (43) is then

rN = c σ(θk)N
−1

2,

where c ≈ 0.6745 and σ(θk) is the standard deviation of the random variable
θk.
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There are two approaches which correspond to two special cases of the operator
L :

• (i) L is a matrix and u and f are vectors;

• (ii) L is an ordinary integral transform

L(u) =

∫

Ω

l(x, y)u(y)dy

and u(x) and f(x) are functions.

First consider the second case. Equation (41) becomes

u(x) =

∫

Ω

l(x, y)u(y)dy + f(x) or u = Lu+ f. (44)

Monte Carlo algorithms frequently involve the evaluation of linear functionals
of the solution of the following type
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J(u) =

∫

Ω

h(x)u(x)dx = (u, h). (45)

In fact, equation (45) defines an inner product of a given function h(x) ∈ X
with the solution of the integral equation (41).

Sometimes, the adjoint equation

v = L∗v + h (46)

will be used.

In (46) v, h ∈ X∗, L∗ ∈ [X∗ → X∗], where X∗ is the dual functional space to
X and L∗ is an adjoint operator.

For some important applications X = L1 and
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‖ f ‖L1=

∫

Ω

| f(x) | dx;

‖ L ‖L1≤ sup
x

∫

Ω

| l(x, x′) | dx′. (47)

In this case h(x) ∈ L∞, hence L1
∗ ≡ L∞ and

‖ h ‖L∞= sup |h(x)| x ∈ Ω.

For many applications X = X∗ = L2. Note also, that if h(x), u(x) ∈ L2 then
the inner product (45) is finite. In fact,

∣∣∣∣
∫

Ω

h(x)u(x)dx

∣∣∣∣ ≤
∫

Ω

|h(x)u(x)|dx ≤
{∫

Ω

h2dx

∫

Ω

u2dx

}1/2

< ∞.

Sofia, Bulgarian Academy of Sciences, February, 2012



One can also see, that if u(x) ∈ L2 and l(x, x′) ∈ L2(Ω×Ω) then Lu(x) ∈ L2:

|Lu(x)|2 ≤
{∫

Ω

|lu|dx′
}2

≤
∫

Ω

l2(x, x′)dx′
∫

Ω

u2(x′)dx′.

Let us integrate the last inequality with respect to x:

∫

Ω

|Lu|2dx ≤
∫

Ω

∫

Ω

l2(x, x′)dx′dx
∫

Ω

u2(x′)dx′ < ∞.

From the last inequality it follows that L2u(x), . . . , Liu(x), . . . also belong to
L2(Ω).

Obviously, if u ∈ L1 and h ∈ L∞ the inner product (45) will be bounded.

If it is assumed that ‖ Lm ‖< 1, where m is any natural number, then the
Neumann series

u =
∞∑

i=0

Lif
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converges.

The condition ‖ Lm ‖< 1 is not very strong, since, as it was shown by K.
Sabelfeld, it is possible to consider a Monte Carlo algorithm for which the
Neumann series does not converge. Analytically extending the resolvent by
a change of the spectral parameter gives a possibility to obtain a convergent
algorithm when the Neumann series for the original problem does not converge
or to accelerate the convergence when it converges slowly.

It is easy to show that
J = (h, u) = (f, v).

In fact, let us multiply (44) by v and (46) by u and integrate. We obtain

(v, u) = (v, Lu) + (v, f) and (v, u) = (L∗v, u) + (h, u).

Since

(L∗v, u) =
∫

Ω

L∗v(x)u(x)dx =

∫

Ω

∫

Ω

l∗(x, x′)v(x′)u(x)dxdx′
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=

∫

Ω

∫

Ω

l(x′, x)u(x)v(x′)dxdx′ =
∫

Ω

Lu(x′)v(x′)dx′ = (v, Lu),

we have
(L∗v, u) = (v, Lu).

Thus, (h, u) = (f, v). Usually, the kernel l(x′, x) is called transposed kernel.

Consider the Monte Carlo algorithm for evaluating the functional (45). It
can be seen that when l(x, x′) ≡ 0 evaluation of the integrals can pose a
problem. Consider a random point ξ ∈ Ω with a density p(x) and let there be
N realizations of the random point ξi (i = 1, 2, . . . , N). Let a random variable
θ(ξ) be defined in Ω, such that

Eθ(ξ) = J.

Then the computational problem becomes one of calculating repeated
realizations of θ and of combining them into an appropriate statistical estimator
of J . Note that the nature of the every process realization of θ is a Markov
process. We will consider only discrete Markov processes with a finite set of

Sofia, Bulgarian Academy of Sciences, February, 2012



states, the so called Markov chains (see, Definition ?? given in Introduction).
Markov chain Monte Carlo is also known as the Metropolis or the Metropolis-
Hastings method. Here this method is considered as a special class of iterative
stochastic methods, since such a consideration helps to obtain some error
analysis results.

An approximate value of the linear functional J , defined by (45), is

J ≈ 1

N

N∑
s=1

(θ)s = θ̂N ,

where (θ)s is the s-th realization of the random variable θ.

The random variable whose mathematical expectation is equal to J(u) is given
by the following expression

θ[h] =
h(ξ0)

p(ξ0)

∞∑

j=0

Wjf(ξj),
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where W0 = 1; Wj = Wj−1
l(ξj−1, ξj)

p(ξj−1, ξj)
, j = 1, 2, . . . , and ξ0, ξ1, . . . is a Markov

chain in Ω with initial density function p(x) and transition density function
p(x, y).

For the first case, when the linear operator L is a matrix, the equation (40) can
be written in the following form:

uk = Lku0 + Lk−1f + · · ·+ Lf + f = (I − Lk)(I − L)−1f + Lku0, (48)

where I is the unit (identity) matrix; L = (lij)
n
i,j=1; u0 = (u0

1, . . . , u
0
n)

T and
matrix I − L is supposed to be non-singular.

It is well known that if all eigenvalues of the matrix L lie within the unit circle
of the complex plane then there exists a vector u such that

u = lim
k→∞

uk ,

which satisfies the equation
u = Lu+ f. (49)
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Now consider the problem of evaluating the inner product

J(u) = (h, u) =
n∑

i=1

hiui , (50)

where h ∈ IRn×1 is a given vector-column.

To define a random variable whose mathematical expectation coincides with the
functional (50) for the system (52) first consider the integral equation (44) for
which Ω = [0, n) is an one-dimensional interval divided into equal subintervals
Ωi = [i− 1, i), i = 1, 2, . . . n such that

{
l(x, y) = lij , x ∈ Ωi, y ∈ Ωj

f(x) = fi , x ∈ Ωi

Then the integral equation (44) becomes

ui =
∑

j

∫

Ωj

liju(y)dy + fi
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for ui ∈ Ωi. Denote

uj =

∫

Ωj

u(y)dy (51)

so that one obtains, for u(x) ∈ Ωi,

u(x) =
n∑

j=1

lijuj + fi.

From the last equation it follows that u(x) = ui and so,

ui =
n∑

j=1

lijuj + fi ,

or in a matrix form

u = Lu+ f , (52)

where L = {lij}ni,j=1.
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The above presentation permits the consideration of the following random
variable

θ[h] =
hα0

p0

∞∑
ν=0

Wνfαν , (53)

where

W0 = 1; Wν = Wν−1

lαν−1,αν

pαν−1,αν

, ν = 1, 2, . . . (54)

and α0, α1, . . . is a Markov chain on elements of the matrix L created by using
an initial probability p0 and a transition probability pαν−1,αν for choosing the
element lαν−1,αν of the matrix L.
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Solving Linear Systems and Matrix Inversion

Consider a matrix L:
L = {lij}ni,j=1, L ∈ IRn×n

and a vector

f = (f1, . . . , fn)
T ∈ IRn×1

The matrix L can be considered as a linear operator L[IRn → IRn], so that the
linear transformation

Lf ∈ IRn×1 (55)

defines a new vector in IRn×1.

Since iterative Monte Carlo algorithms using the transformation (55) will be
considered, the linear transformation (55) will be called an iteration. The
algebraic transformation (55) plays a fundamental role in iterative Monte Carlo
algorithms.
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Now consider the following two problems Pi (i=1,2) for the matrix L:

Problem P1. Evaluating the inner product

J(u) = (h, u) =
n∑

i=1

hiui

of the solution u ∈ IRn×1 of the linear algebraic system

Au = b,

where A = {aij}ni,j=1 ∈ IRn×n is a given matrix; b = (b1, . . . , bn)
T ∈ IRn×1

and h = (h1, . . . , hn)
T ∈ IRn×1 are given vectors.

It is possible to choose a non-singular matrixM ∈ IRn×n such thatMA = I−L,
where I ∈ IRn×n is the identity matrix and Mb = f , f ∈ IRn×1.

Then
u = Lu+ f.
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It will be assumed that

(i)

{
1. The matrices M and L are both non-singular;
2. |λ(L)| < 1 for all eigenvalues λ(L) of L,

that is, all values λ(L) for which

Lu = λ(L)u

is satisfied. If the conditions (i) are fulfilled, then (53), (54) become a
stationary linear iterative Monte Carlo algorithm.

As a result the convergence of the Monte Carlo algorithm depends on truncation
error of (48).

Problem P2. Inverting of matrices, i.e. evaluating of matrix

C = A−1,
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where A ∈ IRn×n is a given real matrix. The matrix inversion is not often used
in practical computations since this operation is computationally expensive.
Nevertheless, for some problem (like approximate finding of good matrix
preconditioners) algorithms for matrix inversion with relatively low accuracy
could be very important as a part of some numerical solvers.

Assume that the following conditions are fulfilled:

(ii)

{
1. The matrix A is non-singular;
2. ||λ(A)| − 1| < 1 for all eigenvalues λ(A) of A.

Obviously, if the condition (i) is fulfilled, the solution of the problem P1 can
be obtained using the iterations (48).

For problem P2 the following iterative matrix:

L = I −A

can be considered.
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Since it is assumed that the conditions (ii) are fulfilled, the inverse matrix
C = A−1 can be presented as

C =

∞∑

i=0

Li.

For the problems Pi (i = 1, 2) one can create a stochastic process using the
matrix L and vectors f and h.

Consider an initial density vector p = {pi}ni=1 ∈ IRn, such that pi ≥ 0, i =
1, . . . , n and

∑n
i=1 pi = 1.

Consider also a transition density matrix P = {pij}ni,j=1 ∈ IRn×n, such that
pij ≥ 0, i, j = 1, . . . , n and

∑n
j=1 pij = 1, for any i = 1, . . . , n.

Define sets of permissible densities Ph and PL.

Definition 4. The initial density vector p = {pi}ni=1 is called permissible to
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the vector h = {hi}ni=1 ∈ IRn, i.e. p ∈ Ph, if

pi > 0, when hi 6= 0 and pi = 0, when hi = 0 for i = 1, . . . , n.

The transition density matrix P = {pij}ni,j=1 is called permissible to the matrix
L = {lij}ni,j=1, i.e. P ∈ PL, if

pij > 0,when lij 6= 0 and pij = 0, when lij = 0 for i, j = 1, . . . ,m.

Note that the set of permissible densities is a subset of tolerant densities,
defined with respect to density functions.

Consider the following Markov chain:

Ti = α0 → α1 → . . . → αi, (56)

where αj = 1, 2, . . . , i for j = 1, . . . , i are natural random numbers.
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The rules for defining the chain (56) are:

Pr(α0 = α) = pα, P r(αj = β|αj−1 = α) = pαβ. (57)

Assume that

p = {pα}nα=1 ∈ Ph, P = {pαβ}nα,β=1 ∈ PL.

Now define the random variables Wν using the formula (54). One can see,
that the random variables Wν, where ν = 1, . . . , i, can also be considered as
weights on the Markov chain (57).

From all possible permissible densities we choose the following

p = {pα}nα=1 ∈ Ph, pα =
|hα|∑n
α=1 |hα|; (58)
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P = {pαβ}nα,β=1 ∈ PL, pαβ =
|lαβ|∑n
β=1 |lαβ|

, α = 1, . . . , n. (59)

Such a choice of the initial density vector and the transition density matrix
leads to an Almost Optimal Monte Carlo (MAO) algorithm. The initial density
vector p = {pα}nα=1 is called almost optimal initial density vector and the
transition density matrix P = {pαβ}nα,β=1 is called almost optimal density
matrix (Dimov). Such density distributions lead to almost optimal algorithms
in the sense that for a class of matrices A and vectors h such a choice coincides
with optimal weighted algorithms. The reason to use MAO instead of Uniform
Monte Carlo is that MAO normally gives much smaller variances. On the other
hand, the truly optimal weighted algorithms are very time consuming, since to
define the optimal densities one needs to solve an additional integral equation
with a quadratic kernel. This procedure makes the optimal algorithms very
expensive.

Let us consider Monte Carlo algorithms with absorbing states: instead of the
finite random trajectory Ti in our algorithms we consider an infinite trajectory

Sofia, Bulgarian Academy of Sciences, February, 2012



with a state coordinate δq(q = 1, 2, . . . ). Assume δq = 0 if the trajectory is
broken (absorbed) and δq = 1 in other cases. Let

∆q = δ0 × δ1 × · · · × δq.

So, ∆q = 1 up to the first break of the trajectory and ∆q = 0 after that.

It is easy to show, that under the conditions (i) and (ii), the following equalities
are fulfilled:

E {Wifαi
} = (h,Lif), i = 1, 2, . . . ;

E

{
n∑

i=0

Wifαi

}
= (h, u), (P1),

E{
∑

i|αi=r′
Wi} = crr′, (P2),
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where (i|αi = r′) means a summation of only the weights Wi for which αi = r′

and C = {crr′}nr,r′=1.
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Convergence and Mapping

We consider Monte Carlo algorithms for solving linear systems of equations and
matrix inversion in the case when the corresponding Neumann series does not
converge, or converges slowly.

To analyse the convergence of Monte Carlo algorithms consider the following
functional equation

u− λLu = f, (60)

where λ is some parameter. Note that the matrices can be considered as linear
operators. Define resolvent operator (matrix) Rλ by the equation

I + λRλ = (I − λL)−1,

where I is the identity operator.

Let λ1, λ2, . . . be the eigenvalues of (60), where it is supposed that

|λ1| ≥ |λ2| ≥ . . .
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Monte Carlo algorithms are based on the representation

u = (I − λL)−1f = f + λRλf,

where
Rλ = L+ λL2 + . . . , (61)

The systematic error of (61), when m terms are used, is

rs = O[(|λ|/|λ1|)m+1mρ−1], (62)

where ρ is the multiplicity of the root λ1.

From (62) is follows that when λ is approximately equal to λ1 the sequence
(61) and the corresponding Monte Carlo algorithm converges slowly. When
λ ≥ λ1 the algorithm does not converge.

Obviously, the representation (61) can be used for λ : |λ| < |λ1| to achieve
convergence.
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Thus, there are two problems to consider.

Problem 1. How can the convergence of the Monte Carlo algorithm be
accelerated when the corresponding Neumann series converges slowly,

and

Problem 2. How can a Monte Carlo algorithm be defined when the
sequence (61) does not converge.

To answer these questions we apply a mapping of the spectral parameter λ in
(60).

The algorithm under consideration follows an approach which is similar
to the resolvent analytical continuation method used in functional analysis
(Kantorovich, Akilov) and in integral equations.

To extend these results it is necessary to show that the mapping approach can
be applied for any linear operators (including matrices). Consider the problem
of constructing the solution of (60) for λ ∈ Ω and λ 6= λk, k = 1, 2, . . . , where
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the domain Ω is a domain lying inside the definition domain of the Rλf , such
that all eigenvalues are outside of the domain Ω. In the neighborhood of the
point λ = 0 (λ = 0 ∈ Ω) the resolvent can be expressed by the series

Rλf =
∞∑

k=0

ckλ
k,

where
ck = Lk+1f.

Consider the variable α in the unit circle on the complex plane ∆(|α| < 1).

The function
λ = ψ(α) = a1α+ a2α

2 + . . . ,

maps the domain ∆ into Ω. Now it is possible to use the following resolvent

Rψ(α)f =
∞∑

j=0

bjα
j , (63)
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where bj =
∑j

k=1 d
(j)
k ck and d

(j)
k = 1

j!

[
∂j

∂αj [ψ(α)]
k
]
α=0

.

It is clear, that the domain Ω can be chosen so that it will be possible to map
the value λ = λ∗ into point α = α∗ = ψ−1(λ∗) for which the sequence (63)
converges; hence the solution of the functional equation (60) can be presented
in the following form:

u = f + λ∗Rψ(α∗)f,

where the corresponding sequence for Rψ(α)f converges absolutely and
uniformly in the domain ∆.

This approach is also helpful when the sequence (61) converges slowly.

To apply this approach one needs some information about the spectrum of the
linear operator (respectively, the matrix. Let us assume, for example, that all
eigenvalues λk are real and λk ∈ (−∞,−a], where a > 0 . Consider a mapping
for the case of interest (λ = λ∗ = 1):

λ = ψ(α) =
4aα

(1− α)2
. (64)
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The sequence Rψ(α)f for the mapping (64) converges absolutely and uniformly
(Kantorovich, Akilov).

In Monte Carlo calculations we cut the sequence in (63) after m terms

Rλ∗f ≈
m∑

k=1

bkα
k
k =

m∑

k=1

αk
∗

k∑

i=1

d
(k)
i ci =

m∑

k=1

g
(m)
k ck, (65)

where

g
(m)
k =

m∑

j=k

d
(j)
k αj

∗. (66)

The coefficients
d
(j)
k = (4a)kqk,j

and g
(m)
k can be calculated in advance.

The coefficients d
(j)
k for the mapping (65) are calculated and presented in Table

5 (for k, j ≤ 9) .
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Table 5: Table of the coefficients qk,j = (4a)−kd
(j)
k for k, j ≤ 9.

k/j 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 1 4 10 20 35 42 84 120
3 1 6 21 56 126 252 462
4 1 8 36 120 330 792
5 1 10 55 220 715
6 1 12 78 364
7 1 14 105
8 1 16
9 1

It is easy to see that the coefficients qk,j are the following binomial coefficients

qk,j = C2k−1
k+j−1.

In order to calculate the iterations ck = Lk+1f a Monte Carlo algorithm has to
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be used.

The mapping (64) creates the following Monte Carlo iteration process

u0 = f,

u1 = 4aLu0,

u2 = 4aLu1 + 2u1, (67)

u3 = 4aLu2 + 2u2 − u1,

uj = 4aLuj−1 + 2uj−1 − uj−2, j ≥ 3.

and from (67) we have

u(k) = 4aαLu(k−1) + 2αu(k−1) − α2u(k−2) + f(1− α2), k ≥ 3.
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A Highly Convergent Algorithm for Systems of Linear
Algebraic Equations

Suppose we have a Markov chain with i states. The random trajectory (chain)
Ti, of length i, starting in the state α0 was defined as follows

Ti = α0 → α1 → · · · → αj → · · · → αi,

where αj means the number of the state chosen, for j = 1, 2, . . . , i.

Assume that

P (α0 = α) = pα, P (αj = β|αj−1 = α) = pαβ,

where pα is the probability that the chain starts in state α and pαβ is the
transition probability to state β after being in state α. Probabilities pαβ define
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a transition matrix P ∈ IRn×n. We require that

n∑
α=1

pα = 1,
n∑

β=1

pαβ = 1, for any α = 1, 2, . . . , n.

Suppose the distributions created from the density probabilities pα and pαβ are
permissible, i.e. p ∈ Ph and P ∈ PL.

Now consider the problem of evaluating the inner product (50) J(u) = (h, u) =∑n
α=1 hαuα of a given vector h with the vector solution of the system (52).

Define the random variable θ∗m[h]

θ∗m[h] =
hα0

p0

m∑
ν=0

g(m)
ν Wνfαν , (68)
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where W0 = 1, g
(m)
0 = 1 and

Wν = Wν−1

lαν−1,αν

pαν−1,αν

, ν = 1, 2, . . . ,

(α0, α1, α2, . . . is a Markov chain with initial density function pα0 and transition

density function pαν−1,αν) and coefficients g
(m)
j are defined by (66) for j ≥ 1.

The following theorem holds:

Theorem 13. Consider matrix L, whose Neumann series (61) does not
necessarily converge. Let (64) be the required mapping, so that the presentation
(65) exists. Then

E

{
lim

m→∞
hα0

p0

m∑
ν=0

g(m)
ν Wνfαν

}
= (h, u).

Proof 8. First consider the density of the Markov chain α0 → α1 → . . . → αi
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as a point in m(i+ 1)-dimensional Euclidian space Ti+1 = IRn × . . .× IRn︸ ︷︷ ︸
i+1

:

P{α0 = t0, α1 = t1, . . . , αi = ti} = p0pt0t1pt1t2 . . . pti−1ti.

Now calculate the mathematical expectation of the random variable

hα0

p0
g(m)
ν Wνfαν .

From the definition of the mathematical expectation it follows that:

E

{
hα0

p0
g(m)
ν Wνfkν

}
=

m∑
t0,...,tν=1

ht0

p0
g(m)
ν Wνftνp0pt0t1 . . . ptν−1tν

=
m∑

t0,...,tν=1

ht0lt0t1lt1t2 . . . ltν−1tνftν = (h,Lνf).

Sofia, Bulgarian Academy of Sciences, February, 2012



The existence and convergence of the sequence (66) ensures the following
representations:

m∑
ν=0

E

∣∣∣∣
hα0

p0
g(m)
ν Wνfkν

∣∣∣∣ =
m∑

ν=0

(|h|, |L|ν|f |) =
(
|h|,

m∑
ν=0

|L|ν|f |
)
,

E

{
lim

m→∞
hα0

p0

m∑
ν=0

g(m)
ν Wνfαν

}

=
∞∑
ν=0

E

{
hα0

p0
g(m)
ν Wνfαν

}
=

∞∑
ν=0

(h,Lνf) = (h, u).

This theorem permits the use of the random variable θ∗m[h] for calculating the
inner product (50).

For calculating one component of the solution, for example the “rth” component
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of u, we must choose

h = e(r) = (0, . . . , 0, 1, 0, . . . , 0)T ,

where the one is in the “rth” position and “T” means transposition. It follows
that

(h, u) =
n∑
α

eα(r)uα = ur

and the corresponding Monte Carlo algorithm is given by

ur ≈ 1

N

N∑
s=1

θ∗m[e(r)]s,

where N is the number of chains and

θ∗m[e(r)]s =
m∑

ν=0

g(m)
ν Wνfαν ;

Sofia, Bulgarian Academy of Sciences, February, 2012



Wν =
lrα1lα1α2 . . . lαν−1αν

prα1pα1α2 . . . pαν−1pν

.

To find the inverse C = {crr′}nr,r′=1 of some matrix A we must first compute
the elements of the matrix

L = I −A, (69)

where I is the identity matrix. Clearly the inverse matrix is given by C =∑∞
i=0L

i, which converges if ‖L‖ < 1. If the last condition is not fulfilled or
if the corresponding Neumann series converges slowly we can use the same
technique for accelerating the convergence of the algorithm.

Estimate the element crr′ of the inverse matrix C

Let the vector f given by (60) be the following unit vector

fr′ = e(r′).

Theorem 14. Consider matrix L, whose Neumann series (61) does not
necessarily converge. Let (64) be the required mapping, so that representation
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(65) exists. Then

E

{
lim

m→∞

m∑
ν=0

g(m)
ν

lrα1lα1α2 . . . lαν−1αν

prα1pα1α2 . . . pαν−1pν

fr′

}
= crr′.

Proof 9. The proof is similar to the proof of Theorem 13, but in this case
we need to consider an unit vector e(r) instead of vector h and vector e(r′)
instead of fkν:

E

{
e(r)

1
g(m)
ν Wνfαν

}
= (e(r), Lνf) = (Lνf)r .

So, in this case the “rth” component of the solution is estimated:

ur =
n∑

i=1

crifi
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When fr′ = e(r′), one can get:

ur = crr′,

that is:

E

{
lim

m→∞

m∑
ν=0

g(m)
ν

lrα1lα1α2 . . . lαν−1αν

prα1pα1α2 . . . pαν−1αν

e(r′)

}

= lim
m→∞

∞∑
ν=0

E

{
g(m)
ν

lrα1lα1α2 . . . lαν−1αν

prα1pα1α2 . . . pαν−1αν

e(r′)
}

=
∞∑
ν=0

(e(r), Lνe(r′))

=

(
e(r),

∞∑
ν=0

Lνe(r′)

)
=

n∑

i=1

crie(r
′) = crr′.

Theorem 14 permits the use of the following Monte Carlo algorithm for
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calculating elements of the inverse matrix C:

crr′ ≈
1

N

N∑
s=1




m∑

(ν|αν=r′)

g(m)
ν

lrα1lα1α2 . . . lαν−1αν

prα1pα1α2 . . . pαν−1pν



s

,

where (ν|αν = r′) means that only the variables

W (m)
ν = g(m)

ν

lrα1lα1α2 . . . lαν−1αν

prα1pα1α2 . . . pαν−1pν

for which αν = r′ are included in the sum (69).

Observe that since W
(m)
ν is only contained in the corresponding sum for

r′ = 1, 2, . . . , n then the same set of N chains can be used to compute a single
row of the inverse matrix, an important saving in computation which we exploit
later.
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Balancing of errors

There are two errors in Monte Carlo algorithms: systematic and stochastic. It is
clear that in order to obtain good results the stochastic error rN (the probable
error) must be approximately equal to the systematic one rs, that is

rN = O(rs).

The problem of balancing the error is closely connected with the problem of
obtaining an optimal ratio between the number of realizations N of the random
variable and the mean value T of the number of steps in each random trajectory
m, i.e., T = E(m).

Let us consider the case when the algorithm is applied to Problem 1. Using
the mapping procedure and a random variable, defined by (68), we accelerate
the convergence of the algorithm proposed in Curtiss, J.H. This means that for
a fixed number of steps m

rs(m) < r(C)
s (m), (70)
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where r
(C)
s (m) is the systematic error of the Curtiss algorithm and rs(m) is

the systematic error of the algorithm under consideration. A similar inequality

holds for the probable errors. Since g
(m)
k it follows that

σ(θ∗) < σ(θ) (71)

and thus
rN(σ(θ∗)) < r

(C)
N (σ(θ)), (72)

where r
(C)
N is the probable error for the Curtiss algorithm.

Next consider the general error

R = rN(σ) + rs(m)

for matrix inversion by our Monte Carlo approach. Let R be fixed. Obviously
from (70) and (71) it follows that there exist constants cs > 1 and cN > 1,
such that

r(C)
s (m) = csrs,
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r
(C)
N (σ) = cNrN .

Since we are considering the problem of matrix inversion for a fixed general
error R, we have

R = R(C) = r
(C)
N (σ) + r(C)

s (m) = cNrN(σ) + csrs(m).

This expression shows that both parameters N and T = E(m) or one of them,
say N , can be reduced. In fact

cσ(θ)

N
1/2
c

+ r(C)
s (m) =

ccNσ(θ∗)

N
1/2
c

+ csrs(m)

=
cσ(θ∗)
N1/2

+ rs(m),

or
cσ(θ∗)
N1/2

=
ccNσ(θ∗)

N
1/2
c

+ (cs − 1)rs(m)
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and
1

N1/2
=

cN

N
1/2
c

+
(cs − 1)rs(m)

cσ(θ∗)
, (73)

where Nc is the number of realizations of the random variable for Curtiss’
algorithm.

Denote by b the following strictly positive variable

b =
(cs − 1)rs(m)

cσ(θ∗)
> 0. (74)

From (73) and (74) we obtain:

N =
Nc(

cN + bN
1/2
c

)2. (75)

The result (75) is an exact result, but from practical point of view it may be
difficult to estimate rs(m) exactly. However, it is possible using (74) to obtain
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the following estimate for N

N <
Nc

c2N
.

This last result shows that for the algorithm under consideration the number
of realizations of the Markov chain N can be at least c2N times less than the
number of realizations Nc of the existing algorithm. Thus it is seen that there
are a number of ways in which we can control the parameters of the Monte
Carlo iterative process.
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Estimators

Some estimates of N and the mathematical expectation for the length of the
Markov chains T for Monte Carlo matrix inversion will now be outlined.

Using an almost optimal frequency function and according to the principle of
collinearity of norms (Dimov, I., 1991) pαβ is chosen proportional to the |lαβ|
(see, (59)). Depending on estimates of the convergence of the Neumann series
one of the following stopping rules can be selected to terminate Markov chains:

• (i) when |W (m)
ν | < δ;

• (ii) when a chain enters an absorbing state.

In the case of a Monte Carlo algorithm without any absorbing states (fαj
= δαjβ

if αβth entry of inverse matrix can be computed) the bounds of T and Dθ∗ are

T ≤ | log δ|
| log ‖L‖|
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and

Dθ∗ ≤ 1

(1− ‖L‖)2,

where the matrix norm ‖L‖ is defined as ‖L‖ = ‖L‖1 = maxj
∑n

i=1 |lij|.
Consider the Monte Carlo algorithms with absorbing states where θ̂[h] denotes
a random variable θ̂T [h] (T is the length of the chain when absorption takes
place) taken over an infinitely long Markov chain.

The bounds on T and Dθ̂[h] if the chain starts in state r = α and pαβ = |lαβ|,
for α, β = 1, 2, ..., n are

E(T |r = α) ≤ 1

(1− ‖L‖),

and

Dθ̂[h] ≤ 1

(1− ‖L‖)2.
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According to the error estimation

N ≥ 0.67452

ε2
Dθ̂[h]

for a given error ε. Thus

N ≥ 0.67452

ε2
1

(1− ‖L‖)2

is a lower bound on N .

If low precision solutions (e.g. 10−2 < ε < 1) are accepted it is clear that
N >> n as N 7→ ∞. Consider N and T as functions of

1

(1− ‖L‖).

Thus, in both algorithms T is bounded by O(
√
N), since in the Monte Carlo

Sofia, Bulgarian Academy of Sciences, February, 2012



algorithm without any absorbing states

T <
√
N
ε| log δ|
0.6745

and in the Monte Carlo algorithm with absorbing states

T ≤
√
N

ε

0.6745
.

Results in (Dimov, I., 1993) show that T ≈ √
N , for sufficiently large N .
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A Refined Iterative Monte Carlo Approach for Linear Systems
and Matrix Inversion Problem

In this part of the course a refined approach of the iterative Monte Carlo
algorithms for the well known matrix inversion problem will be presented. The
algorithms are based on special techniques of iteration parameter choice (refined
stop-criteria), which permits control of the convergence of the algorithm for
any row (column) of the matrix using a fine iterative parameter. The choice
of this parameter is controlled by a posteriori criteria for every Monte Carlo
iteration. The algorithms under consideration are also well parallelized.

Formulation of the Problem

Here we deal again with Monte Carlo algorithms for calculating the inverse
matrix A−1 of a square matrix A, i.e.

AA−1 = A−1A = I,

where I is the identity matrix.
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Consider the following system of linear equations:

Au = b, (76)

where
A ∈ IRn×n; b, u ∈ IRn×1.

The inverse matrix problem is equivalent to solving m-times the problem (76),
i.e.

Acj = bj, j = 1, . . . , n (77)

where
bj ≡ ej ≡ (0, . . . , 0, 1, 0, . . . , 0)

and
cj ≡ (cj1, cj2, . . . , cjn)

T

is the jth column of the inverse matrix C = A−1.

Here we deal with the matrix L = {lij}nij=1, such that

L = I −DA, (78)
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where D is a diagonal matrix D = diag(d1, . . . , dn) and

di =
γ

aii
, γ ∈ (0, 1] i = 1, . . . , n.

The system (76) can be presented in the following form:

u = Lu+ f, (79)

where
f = Db.

Let us suppose that the matrix A has diagonally dominant property. In fact,
this condition is too strong and the presented algorithms work for more general
matrices, as it will be shown later. Obviously, if A is a diagonally dominant
matrix, then the elements of the matrix L must satisfy the following condition:

n∑

j=1

|lij| ≤ 1 i = 1, . . . , n. (80)
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Refined Iterative Monte Carlo Algorithms

Here refined iterative Monte Carlo algorithms are considered. The first algorithm
evaluates every component of the solution u of the following linear algebraic
system (76).

Algorithm 1. 1. Input initial data: the matrix A, the vector b, the constants
ε , γ and N .

2. Preliminary calculations (preprocessing):

2.1. Compute the matrix L using the parameter γ ∈ (0, 1]:

{lij}ni,j=1 =

{
1− γ when i = j
−γ

aij
aii

when i 6= j .

2.2. Compute the vector lsum:

lsum(i) =
n∑

j=1

|lij| for i = 1, 2, . . . , n.
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2.3. Compute the transition probability matrix P = {pij}ni,j=1, where

pij =
|lij|

lsum(i)
, i = 1, 2, . . . , n j = 1, 2, . . . , n .

3. For i0 := 1 to n do step 4 and step 5.

4. While (W < ε) do the trajectory

4.1. Set initial values X := 0 , W := 1 ;
4.2. Calculate X := X +Wfi0 ;
4.3. Generate an uniformly distributed random number r ∈ (0, 1);
4.4. Set j := 1;
4.5. If (r <

∑j
k=1 pi0k) then

4.5.1. Calculate W := Wsign(li0j)× lsum(i0) ;
4.5.2. Calculate X := X +Wfj (one move in trajectory);
4.5.3. Update the index i0 := j and go to step 4.3.

else
4.5.4. Update j := j + 1 and go to step 4.5.
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5. Calculate the mean value based on N independent trajectories:

5.1. Do “N”-times step 4;
5.2. Calculate XN and ui0 := XN .

6. End of Algorithm 1.

Algorithm 1 describes the evaluation of every component of the solution of
the problem (76), which is, in fact, linear algebraic system. Algorithm 1 is
considered separately, since it (or some of its steps) will be used in algorithms.
For finding the corresponding “i”th component of the solution the following
functional is used

J(u) = (v, u),

where v = ei = (0, , . . . , 0 1︸︷︷︸
i

, 0, . . . , 0).

We consider the general description of the algorithm - the iteration parameter
γ is inside the interval (0, 1].

The second algorithm computes the approximation Ĉ to the inverse matrix
C = A−1. The algorithm is based on special techniques of iteration parameter
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choice. The choice of the iteration parameter γ can be controlled by a
posteriori criteria for every column of the approximate inverse matrix Ĉ. The
every column of this matrix is computed independently using Algorithm 1.

Algorithm 2. 1. Input initial data: the matrix A, the constant ε , N and
the vector γ = (γ1, γ2, . . . , γl) ∈ (0, 1]l.

2. For j0 := 1 to n do

Calculate the elements of jth0 column of the approximate matrix Ĉ:

2.1. While (k ≤ l) do
2.2. Apply Algorithm 1 for γ = γk, N and the right-hand side
vector bj0 = (0, . . . , 0, 1︸︷︷︸

j0

, 0, . . . , 0) to obtain the column - vector

ĉαj0 = (ck1j0, . . . , c
k
nj0

).
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2.3. Compute the l2-norm of the column - vector ĉkj0:

rkj0 =
n∑

j=1

{
n∑

i=1

ajic
k
ij0

− δjj0

}2

.

2.4. If (rαj0 < r) then

ĉj0 := ckj0;

r := rkj0.

3. End of Algorithm 2.

Algorithm 2 is based on Algorithm 1 finding different columns of the matrix Ĉ
by using corresponding values of the iteration parameter γ = γi, i = 1, 2, . . . , l.
The values of γi are chosen such that to minimize the l2-norm of the following
vectors:

Ej = AĈj − ITj , j = 1, 2, . . . , n, (81)

Sofia, Bulgarian Academy of Sciences, February, 2012



where Ij = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0).

The use of the criteria of minimization of the l2-norm of the vector Ej permits
to find better approximation of the error matrix

E = AĈ − I.

This procedure allows to minimize the norm (for example, the Frobenius norm)
of E. In practice, the parameter γ runs a finite numbers of values in the interval
(0, 1].

The evaluation of different columns can be realized in parallel and independently.

The algorithm presented above uses a deterministic approach, which is
independent of the statistical nature of the algorithm.

Algorithm 3. 1. Input initial data: the matrix A, the constant N and
the vectors γ = (γ1, γ2, . . . , γl) ∈ (0, 1]l, ε = (ε1, ε2, . . . , εn) and r =
(r1, r2, . . . , rN).
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2. While (k ≤ l) do

2.1. Step 2 of Algorithm 1 for γ := γk.
2.2. While (i0 ≤ n) and (j0 ≤ n) do step 4 and step 5 of Algorithm 1 to
compute the elements ĉαi0j0 for γ = γk , ε := εi0 and the right-hand side
vector bj0 := (0, . . . , 0, 1︸︷︷︸

j0

, 0, . . . , 0) .

2.3. For i0 := 1 to n do
2.3.1. Calculate

rαi0 = max
i∈{1,2,...,n}

∣∣∣∣∣∣

n∑

j=1

ci0jaji − δi0i

∣∣∣∣∣∣
.

2.3.2. If (rαi0 < ri0) then

ĉi0 := cki0;

ri0 := rki0.

3. End of Algorithm 3.
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The difference between the last two algorithms is that Algorithm 3 can not
be applied in traditional (non-stochastic) iterative algorithms. The traditional
algorithms allow one to evaluate the columns of the inverse matrix in parallel,
but they do not allow one to obtain their elements independently from each
other. The advantage of the Monte Carlo algorithms consists in possibilities
to evaluate every element of the inverse matrix in an independent way. This
property allows one to apply different iteration approaches for finding the matrix
Ĉ using a priori information for the rows of the given matrix A (for example,
the ratio of the sum of the modulus of the non-diagonal entrances to the value
of the diagonal element).

One has to mention that the computational complexity of Algorithm 3 also
depends on “how ill-conditioned” is the given row of the matrix A. The given
row Ai of the matrix A is “ill-conditioned”, when the condition

|aii| <
i−1∑

j=1

|aij|+
n∑

j=i+1

|aij|

of diagonally dominating is not fulfilled (but all the eigenvalues lay inside the
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unit circle).

Algorithm 3 presented above is very convenient for such matrices since it
chooses the value of the iterative parameter γ for every row of the matrix A. As
a measure of the ill-conditioning of a given row we use the following parameter:

bi =
i−1∑

j=1

|aij|+
n∑

j=i+1

|aij| − |aii|.

The possibility to treat non-diagonally dominant matrices increases the set
of the problems treated using Monte Carlo algorithms. For finding different
rows of the approximation of the inverse matrix Ĉ different number of moves
(iterations) can be used. The number of moves are controlled by a parameter
ε. For a posteriori criteria we use the minimization of the C-norm of the
following row-vector

Ei = ĈiA− Ii, i = 1, . . . , n,
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where Ĉi = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0).

The use of the criteria of minimization of the C-norm of the vector Ei permits
finding better approximation of the error matrix

E = ĈA− I. (82)

The above mentioned procedure allows the minimization of the norm (for
example, the Frobenius norm) of the matrix E.

One can also control the number of moves in the Markov chain (that is the
number of iterations) to have a good balance between the stochastic and
systematic error (i.e., the truncation error). The problem of balancing of the
systematic and stochastic errors is very important when Monte Carlo algorithms
are used. It is clear that in order to obtain good results the stochastic error
(the probable error) rN must be approximately equal to the systematic one rs,
that is

rN = O(rs).
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The problem of balancing the errors is closely connected with the problem of
obtaining an optimal ratio between the number of realizations N of the random
variable and the mean value T of the number of steps in each random trajectory.
The balancing allows an increase in the accuracy of the algorithm for a fixed
computational complexity, because in this case one can control the parameter
E(Y ) by choosing different lengths of the realizations of the Markov chain. In
practice, we choose the absorbing state of the random trajectory using the well
known criteria

|W | < ε.

Such a criteria is widely used in iterative algorithms, but obviously it is not
the best way to define the absorbing states of the random trajectory. It is so,
because for different rows of the matrix A the convergence of the corresponding
iterative process (and, thus, the truncation error) may be different. If the rate of
convergence is higher it is possible to use a higher value for the parameter ε and
to cut the random trajectory earlier than in the case of lower convergence. Our
approach permits use of different stop-criteria for different random trajectories,
which allows the optimization of the algorithm in the sense of balancing errors.
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Discussion of the numerical results

As an example we consider matrices arising after applying the mixed finite
element algorithm for the following boundary value problem

∣∣∣∣
−div(a(x)∇p) = f(x), in Ω
p = 0, on ∂Ω,

(83)

where ∇w denotes the gradient of a scalar function w, div v denotes the
divergence of the vector function v and a(x) is a diagonal matrix whose
elements satisfy the requirements ai(x) ≥ a0 > 0, i = 1, 2.

We set
u ≡ (u1, u2) = a(x)∇p, αi(x) = ai(x)

−1, i = 1, 2.

Let us consider the spaces V and W defined by

V = H(div; Ω) = {v ∈ L2(Ω)2 : div v ∈ L2(Ω)},
W = L2(Ω)
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provided with the norms

‖v‖V ≡ ‖v‖H(div;Ω) = ( ‖v‖20,Ω + ‖div v‖20,Ω)1/2 and

‖w‖W = ‖w‖L2(Ω) = ‖w‖0,Ω

respectively.

Then the mixed variational formulation of the problem (83) is given by
characterizing the pair (u, p), as the solution of

∣∣∣∣
a(u, v) + b(v, p) = 0, ∀v ∈ V ;
b(u,w) = − (f, w), ∀w ∈ W,

(84)

where
a(u, v) = (αu1, v1) + (αu2, v2), b(u,w) = (divu,w)

and (·, ·) indicated the inner product in L2(Ω).

The mixed finite element approximation of the problem (84) in the Raviart-
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Thomas spaces leads to the following linear algebraic system:

Ku =




A1 0 B1

0 A2 B2

BT
1 BT

2 0







u1

u2

p


 =




0
0
−f


 , (85)

where Ai are n × n matrices, Bi are n × n1 matrices (n1 < n), ui ∈ IRn and
p, f ∈ IRn1, i = 1, 2.

If A−1
i (i = 1, 2) is obtained then the system (85) becomes

Bp = f,

where
B = BT

1 A
−1
1 B1 +BT

2 A
−1
2 B2

Thus we reduce the {2m + m1}-dimensional linear algebraic system to the
m1-dimensional system.
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Table 6: Connection between ε and the parameter γ. Here m = 16 , n = 24.
column l1 norm C norm
number ε = 0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001

1 1 0.9 0.6 0.2 0.5 0.1 1 1
2 0.4 0.8 0.9 0.8 0.5 0.9 0.6 1
3 1 0.8 0.8 0.9 0.5 1 0.3 0.1
4 0.5 1 0.7 0.7 0.3 0.3 1 0.9
5 0.9 0.5 0.9 0.9 1 1 0.9 0.8
6 0.8 0.1 0.6 0.6 1 0.8 0.9 0.8
7 0.5 0.1 0.9 0.9 0.8 0.4 0.9 1
8 0.5 0.1 0.6 0.9 0.8 0.8 0.3 1
9 0.5 0.1 0.6 0.6 0.6 1 1 0.2
10 0.5 0.1 0.6 0.3 0.6 1 0.4 0.5
11 0.5 0.1 0.6 0.3 0.5 0.1 1 0.5
12 0.5 0.1 0.6 0.3 0.7 0.8 1 0.8
13 0.5 0.1 0.6 0.3 1 1 0.4 0.9
14 0.5 1 0.6 0.3 0.9 0.9 0.4 1
15 1 0.1 0.8 0.9 1 1 1 0.4
16 0.9 0.3 0.6 0.1 1 1 0.9 0.6
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As a basic test example for applying Algorithm 3 a matrix of of size 7 is
used. The size of the matrix is relatively small, because our aim was only to
demonstrate how Algorithm 3 works. Here we also have to mention that the
computational complexity of the algorithm practically does not depend of the
size of the matrix. Using the technique from (Dimov, Karaivanova 1996) it is
possible to show that the computational complexity of our algorithms depends
linearly of the mean value of the number of non-zero entrances per row. This
is very important, because it means that very large sparse matrices could be
treated efficiently using the algorithms under consideration.

During the numerical tests we control the Frobenius norm of the matrices,
defined by

‖ A ‖2F =
n∑

i=1

n∑

j=1

a2ij.

Some of the numerical results performed are shown in Figures 5 to 8, and also
provided by Table 6. In all figures the value of the Frobenius norm is denoted
by F.N., the number of realizations of the random variable (i.e., the number
of random trajectories) is denoted by N and the value of the stop-criteria is
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denoted by ε. In Algorithm 3 we use n values of ε (in our case n = 7).
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Figure 5: Frobenius norm: (a) non-balanced case; (b) balanced case.

Figure 5 presents the values of the error matrix (82) in the both cases under
consideration – coarse stop criteria (a) and fine stop criteria (b). The first set
of connected points corresponds to values of the first row of the error matrix,
the second set – to the second row of the same matrix, etc.
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Figure 6: Balancing: (a) Non-controlled balance; (b) Controlled balance.

When the coarse stop criteria is used (Figure 5 (a)) ε = 0.0001. When the
fine stop criteria is used (Figure 5 (b)) different values of ε are applied such
that the computational complexity is smaller (in comparison with the case if
the coarse stop criteria) (see, also Table 6). The values of the Frobenius norm
for both cases when the number of realizations N is equal to 400 are also
given. For such number of realizations the stochastic error is relatively large in
comparison with the systematic one. So, the results on Figure 5(a) correspond
to the non-balanced case. The similar results, but for the case of N = 1000
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and ε = 0.001 (for the coarse stop criteria) are presented on Figure 5(b). One
can see, that

• ε is 10 times large then in the previous case, but the Frobenius norm is about
two times smaller, because the number of realizations is larger.

The results presented in Figure 5(a) and Figure 5(b) show the statistical
convergence of the algorithm, i.e. the error decreases when N increases (even
in the case when the parameter ε increases).

These results show how important is to have a good balancing between
the stochastic and systematic error. The computational effort for the cases
presented in Figure 5(a) and Figure 5(b) is approximately equal, but the results
in the case of Figure 5(b), when we have a good balancing are almost 2 times
better.
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Figure 7: Use of different fine stop-criteria: (a) Coarse stop-criteria; (b) Fine
stop-criteria.
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Figure 8: Controlled balancing: (a) Coarse stop-criteria; (b) Fine stop-criteria.

Let us discuss the results presented in Figures 6(a) and 6(b). Here instead
of elements of the error matrix the maximum of the modulo element for
every row are shown. If the computational complexity for a constant ε is
denoted by Rc and and the computational complexity when different values of
ε = εi, i = 1, . . . , n is denoted by Rf we consider the case when

Rc ≥ Rf = 1.
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The results presented in Figures 6(a) and 6(b) show that apart from the smaller
computational complexity Rf of the fine stop criteria algorithm it also gives
better results than the coarse stop criteria algorithm with complexity Rc. This
fact is observed in both cases - balanced (Figure 6(a)) and non-balanced (Figure
6(b)):

• the variations of the estimations are smaller when the balancing is better;

• the Frobenius norm is smaller, when the control “row per row” is realized.

Figures 7(a) and 7(b) present test results for the modulo of every element of the
error matrix (82) when the coarse stop criteria and fine stop criteria respectively
are used in the non-balanced case.

One can see, that:

• the Frobenius norm of the estimate in the case of fine stop criteria is about
1.4 times smaller than the corresponding value for the coarse stop criteria,
and;
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• the variances of the estimate of the case of fine stop criteria are smaller.

Figures 8(a) and 8(b) show the corresponding results as in Figures 7(a) and
7(b) in the balanced case. One can make the same conclusion as in the non
balanced case, but here

• the Frobenius norm is almost 2 times smaller.

Table 7: Computational complexity
non balanced case balanced case

γ coarse s. c. fine s. c. coarse s. c. fine s. c.
0.2 1.0806 1 1.0368 1
0.4 1.0903 1 1.0351 1
0.6 1.0832 1 1.0348 1
0.8 1.0910 1 1.0360 1
1 1.0862 1 1.0342 1

generally 1.0848 1 1.0358 1
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Results presented in Table 7 show how the computational complexity depends
on the parameter γ for the balanced and non balanced cases. One can see
that the application of fine stoping criteria makes the balanced algorithm about
3.5% more efficient than the algorithm in which the course stoping criteria is
used. At the same time for the non balanced case the fine stoping criteria
algorithm is approximately 8.5% more efficient than the course stoping criteria
algorithm.
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Conclusion

An iterative Monte Carlo algorithm is presented and studied. This algorithm
can be applied for solving of inverse matrix problems.

The following conclusion can be done:

• Every element of the inverse matrix A−1 can be evaluated independently
from the other elements (this illustrates the inherent parallelism of the
algorithms under consideration);

• Parallel computations of every column of the inverse matrix A−1 with
different iterative procedures can be realized;

• It is possible to optimize the algorithm using error estimate criterion “column
by column”, as well as “row by row”;

• The balancing of errors (both systematic and stochastic) allows to increase
the accuracy of the solution if the computational effort is fixed or to reduce
the computational complexity if the error is fixed.
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The studied algorithm is easily programmable and parallelizable and can be
efficiency implemented on MIMD (Multi Instruction – Multi data)-machines.
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IV. Monte Carlo Methods for
Boundary-Value Problems (BVP)

There are essentially two approaches to numerically solving elliptic equations.
The first one is the so-called grid approach, while the second one might be
called the grid-free approach. Here we consider both approaches.

Let Ω ⊂ IRd be a bounded domain with a boundary ∂Ω.

The following notations are used:

x = (x(1), x(2), . . . , x(d)) is a point in IRd;

Dα = Dα1
1 Dα2

2 . . . D
αd
d is an |α| = α1 + α2 + · · · + αd derivative, where

Di = ∂/∂x(i), i = 1, . . . , d and Ck(Ω̄) is a space of functions u(x) continuous
on Ω̄ such that Dαu exists in Ω and admits a continuous extension on Ω̄ for
every α : |α| ≤ k.
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We consider the linear boundary value problem

Lu ≡
∑

|α|≤2m

aα(x)D
αu(x) = −f(x), x ∈ Ω (86)

u(x) = ϕ(x), x ∈ ∂Ω , (87)

where L is an arbitrary linear elliptic operator in IRd of order 2m, aα(x) ∈
C∞(IRd) and the function f(x) belongs to the Banach space X(Ω).

We use the following definition of ellipticity :

Definition 5. The equation

∑

|α|≤2m

aα(x)D
αu(x) = −f(x)

is called elliptic in a domain Ω if

∑

|α|≤2m

aα(x)ξα1ξα2 . . . ξαd
6= 0 when |ξ| 6= 0
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holds for every point x ∈ Ω. The corresponding operator
∑

|α|≤2m aα(x)D
α is

called elliptic in Ω.

Assume that f(x), ϕ(x), and the boundary ∂Ω satisfy conditions ensuring
that the solution of the problem (86, 87) exists and is unique (Jost, J., 2002;
Miranda, C., 1955).

We shall study Monte Carlo algorithms for calculating linear functionals of the
solution of the problem (86, 87)

J(u) = (h, u) =

∫

Ω

u(x)h(x)dx, (88)

where h ∈ X∗(Ω) (X∗(Ω) is the dual functional space to X(Ω)).

For many applications X = L1 and thus X∗ = L∞ , or X = L2, X
∗ = L2.

There are two approaches for calculating (88). The first approach uses a
discretization of the problem (86, 87) on a mesh and solves the resulting linear
algebraic system, which approximates the original problem (86, 87). This

Sofia, Bulgarian Academy of Sciences, February, 2012



approach leads to the so-called grid Monte Carlo algorithm, or grid walk
algorithm. The second approach - the grid-free approach - uses an integral
representation for the problem (86, 87).
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Grid Monte Carlo Algorithm

Consider a regular mesh (lattice) with step-size h in IRd. Let Ωh be the set
of all inner mesh points (γ ∈ Ωh if and only if γ ∈ Ω); ∂Ωh be the set of all
boundary mesh points (γ ∈ ∂Ωh if there exists a neighboring mesh point γ∗

which does not belong to IRd \ Ω̄) and uh be a function defined on a set of
mesh points (a mesh function).

The differential operator L at the mesh point xi ∈ Ωh is approximated by a
difference operator Lh as follows:

(Lhuh)i =
∑

xj∈Pk(xi)

ah(xi, xj)uh(xj) , (89)

where ah(xi, xj) are coefficients; and Pk(xi) is a set of mesh points with center
in xi ∈ Ωh called scheme.

Since L is a linear differential operator, after the discretization of (89), the
following system of linear equations arises

Sofia, Bulgarian Academy of Sciences, February, 2012



Au = b, (90)

where b = (b1, . . . , bn)
T ∈ IRn×1 is an n-dimensional vector and A ∈ IRn×n is

an n× n-dimensional matrix.
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Grid-Free Monte Carlo Algorithms

Consider two approaches for constructing grid-free Monte Carlo algorithms.
The first one consists in obtaining a global integral representation both on the
boundary and on the domain.

Let us consider an example of the following linear elliptic BVP:

∆u(x)− c2u(x) = −ϕ(x), x ∈ Ω (91)

u(x) = ψ(x), x ∈ ∂Ω, (92)

where ∆ is the Laplacian and the functions ϕ(x), ψ(x) and the boundary satisfy
all conditions, which provide the existence of a unique solution of the problem
(91, 92).

From the theory of fundamental solutions it follows that the solution of the
problem (91, 92) can be represented as the integral equation (44) (see, Bitzadze,
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A.V., 1982; Ermakov, S.M., 1982), where

k(x, y) =





cd(x)

sinh[cd(x)]
δ(y − x) ,when x ∈ Ω \ ∂Ω

0 ,when x ∈ ∂Ω

f(x) =





1

4π

∫
sinh((d(x)− |y − x|)c
|y − x| sinh[cd(x)] ϕ(y)dy , when x ∈ Ω \ ∂Ω

ψ(x) , when x ∈ ∂Ω

and d = d(x) is the distance from x to the boundary ∂Ω.

It will it be necessary to calculate the functional (88), where u is the solution
of the problem (91, 92) and h is a given function.

This representation permits the use of a random variable for calculating the
functional (88). Unfortunately, this approach is not successful when one deals
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with more complicated operators for which it is impossible to find an integral
representation.

The second grid-free Monte Carlo approach is based on use of local integral
representation of the solution. In this case the Green’s function for standard
domains, lying inside the domain Ω (for example - ball, sphere, ellipsoid) is
used.

Consider the elliptic boundary value problem:

Mu = −φ(x), x ∈ Ω, Ω ⊂ IR3 (93)

u = ψ(x), x ∈ ∂Ω, (94)

where

M =
3∑

i=1

(
∂2

∂x2
(i)

+ bi(x)
∂

∂x(i)

)
+ c(x).

Define the class of domains A(k,λ):
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Definition 6. The domain Ω belongs to the class A(k,λ) if for any point
x ∈ ∂Ω (from the boundary ∂Ω) the boundary ∂Ω can be presented as a function
z3 = σ(z1, z2) in the neighborhood of x for which σ(k)(z1, z2) ∈ Hλ(α; ∂Ω),
i.e.

|σ(k)(y)− σ(k)(y′)| ≤ α|y − y′|λ,
where the vectors y ≡ (z1, z2) and y′ ≡ (z′1, z

′
2) are 2-dimensional vectors, α is

a constant and λ ∈ (0, 1].

If in the closed domain Ω̄ ∈ A(1,λ) the coefficients of the operator M satisfy
the conditions bj, c(x) ∈ Hλ(α; Ω̄), c(x) ≤ 0 and φ ∈ Hλ(α; Ω) ∩C(Ω̄),
ψ ∈ C(∂Ω), the problem (93, 94) has a unique solution u(x) in
C2(Ω) ∩ C(Ω̄). The conditions for uniqueness of a solution can be found in
(Jost, J., 2002, p. 179).

We obtain an integral representation of the solution u(x). This representation
allows for the use of the random variable for calculating the functional (88).
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Local Integral Representation

We use the grid-free Monte Carlo approach to estimate the functional (88).
This approach is based on the use of a local integral representation of the
solution u(x) in the problem (93, 94). The representation uses the Green’s
function approach for standard domains, lying inside the domain Ω. The initial
step in studying the grid-free Monte Carlo approach is to obtain an integral
representation of the solution in the form:

u(x) =

∫

B(x)

k(x, y)u(y)dy + f(x) (95)

assuming that such a representation exists.

The iterative Monte Carlo process converges when the condition

‖ K(u) ‖L1= max
x∈Ω

∫

Ω

| k(x, y) | dy ≤ q < 1 (96)

holds.
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For the existence of the integral representation, (95) might be obtained using
the result of C. Miranda, 1955, taking into consideration that the domain B(x)
belongs to the space A(1,λ) and that the operator M is of elliptic type. We
seek a representation of the integral kernel k(x, y) using Levy’s function and
the adjoint operator M∗ for the initial differential operator M . The following
Lemma holds:

Lemma 1. Let the components of the vector-function b(x) satisfy the
conditions bj(x) ∈ C(1)(Ω), (j = 1, 2, 3) and divb(x) = 0.

Then the adjoint operator M∗ applied on functions v(x), where v ∈ C2(Ω)
and

∂v(x)

∂x(i)
= v(x) = 0 for any x ∈ ∂Ω, i = 1, 2, 3

has the following form:

M∗ =
3∑

i=1

(
∂2

∂x2
(i)

− bi(x)
∂

∂x(i)

)
+ c(x).
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Proof 10. Let us show that M∗ is an adjoint operator to M , i.e. we have
to prove that

∫

Ω

v(x)Mu(x)dx =

∫

Ω

u(x)M∗v(x)dx. (97)

To prove (97) we use Green’s formulas:

∫

Ω

u(x)
3∑

i=1

∂v(x)

∂x(i)
dx = −

∫

Ω

v(x)
3∑

i=1

∂u(x)

∂x(i)
dx

+

∫

∂Ω

3∑

i=1

u(x)v(x)nidxS (98)
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and

∫

Ω

u(x)∆v(x)dx = −
∫

Ω

gradu(x)grad v(x)dx+

∫

∂Ω

u(x)
3∑

i=1

ni
∂v(x)

∂x(i)
dxS,

where

∆ =
3∑

i=1

∂2

∂x2
(i)

, divb(x) =
3∑

i=1

∂bi(x)

∂x(i)
,

gradu(x) ≡
(
∂u(x)

∂x(1)
,
∂u(x)

∂x(2)
,
∂u(x)

∂x(3)

)
,

and n ≡ (n1, n2, n3) is the exterior normal for the boundary ∂Ω.

Taking into consideration that

divb(x) = 0 and
∂v(x)

∂x(i)
= v(x) = 0 for any x ∈ ∂Ω, i = 1, 2, 3,
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we have

∫

Ω

v(x)Mu(x)dx =

∫

Ω

v(x) (∆u(x) + b(x)gradu(x) + c(x)u(x)) dx

= −
∫

Ω

grad v(x)gradu(x)dx+

∫

∂Ω

v(x)
3∑

i=1

ni
∂u(x)

∂x(i)
dxS

+

∫

Ω

v(x)b(x)gradu(x)dx+

∫

Ω

v(x)c(x)u(x)dx

= −
∫

Ω

grad v(x)gradu(x)dx+

∫

Ω

v(x)
3∑

i=1

bi(x)
∂u(x)

∂x(i)
dx+

∫

Ω

v(x)c(x)u(x)dx.
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On the other hand
∫

Ω

u(x)M∗v(x)dx =

∫

Ω

u(x) [∆v(x)− b(x)grad v(x) + c(x)v(x)] dx

= −
∫

Ω

gradu(x)grad v(x)dx+

∫

∂Ω

u(x)
3∑

i=1

ni
∂v(x)

∂x(i)
dxS

−
∫

Ω

u(x)b(x)grad v(x)dx+

∫

Ω

u(x)c(x)v(x)dx

= −
∫

Ω

gradu(x)grad v(x)dx−
∫

Ω

u(x)
3∑

i=1

bi(x)
∂v(x)

∂x(i)
dx

+

∫

Ω

u(x)c(x)v(x)dx

= −
∫

Ω

gradu(x)grad v(x)dx+

∫

Ω

v(x)
3∑

i=1

∂(u(x)bi(x))

∂x(i)
dx

−
∫

∂Ω

3∑

i=1

nibi(x)u(x)v(x)dx+

∫

Ω

v(x)c(x)u(x)dx

= −
∫

Ω

gradu(x)grad v(x)dx+

∫

Ω

v(x)
3∑

i=1

bi(x)
∂u(x)

∂x(i)
dx

+

∫

Ω

v(x)c(x)u(x)dx.
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From the last result there follows the proof of the lemma.

The Levy’s function for the problem (93, 94) is

Lp(y, x) = µp(R)

∫ R

r

(1/r − 1/ρ)p(ρ)dρ, r ≤ R, (99)

where the following notations are used:

p(ρ) is a density function;

r = |x− y| =
(

3∑

i=1

(x(i) − y(i))
2

)1/2

;

µp(R) = [4πqp(R)]
−1

;

qp(R) =

∫ R

0

p(ρ)dρ.

It is clear that the Levy’s function Lp(y, x), and the parameters qp(R) and
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µp(R) depend on the choice of the density function p(ρ). In fact, the equality
(99) defines a family of functions.

We seek a choice of p(ρ) which leads to a representation of type (95). Moreover,
the kernel of the integral transform should be a transition density function, i.e.
k(x, y) ≥ 0.

From an algorithmic point of view the domain B(x) must be chosen in such
a way that the coordinates of the boundary points y ∈ ∂B(x) can be easily
calculated.

Denote by B(x) the ball:

B(x) = BR(x) = {y : r =| y − x |≤ R(x)}, (100)

where R(x) is the radius of the ball.

For the Levy’s function Lp(y, x) the following representation holds (see,
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Miranda, C., 1955 ):

u(x) =

∫

B(x)

(
u(y)M∗

yLp(y, x) + Lp(y, x)φ(y)
)
dy

+

∫

∂B(x)

3∑

i=1

ni

[(
Lp(y, x)∂u(y)

∂y(i)
− u(y)∂Lp(y, x)

∂y(i)

)

− bi(y)u(y)Lp(y, x)] dyS, (101)

where n ≡ (n1, n2, n3) is the exterior normal to the boundary ∂T (x).

Formula (101) holds for any domain T (x) ∈ A(1,λ) contained in Ω.

Obviously, B(x) ∈ A(1,λ) and therefore for every ball lying inside the domain Ω
the representation (101) holds.

Now we express the solution u(x) by the Green’s function G(x, y). It is known,
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that the Green’s function is a solution of the problem:

M∗
yG(x, y) = −δ(x− y), y ∈ Ω \ ∂Ω \ {x},
G(x, y) = 0, y ∈ ∂Ω, x ∈ Ω \ ∂Ω.

The Green’s function is the Levy’s function, Lp(y, x), for which (93, 94) hold.

Under the condition Lp(y, x) = G(x, y) from (101) it is possible to get the
integral representation:

u(x) =

∫

B(x)

G(x, y)f(y)dy −
∫

∂B(x)

3∑

i=1

ni
∂G(x, y)

∂y(i)
u(y)dyS. (102)

Representation (102) is the basis for the Monte Carlo method.

For achieving this aim it is necessary to have a non-negative integral kernel.
Next we show that it is possible to construct the Levy’s function choosing
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the density p(ρ) such that M∗
yLp(y, x) is non-negative in B(x) and such that

Lp(y, x) and its derivatives vanish on ∂B(x), i.e.

Lp(y, x) = ∂Lp(y, x)/∂yi = 0 for y ∈ ∂B(x), i = 1, 2, 3.

Lemma 2. The conditions

M∗
yLp(y, x) ≥ 0 for any y ∈ B(x)

and

Lp(y, x) = ∂Lp(y, x)/∂y(i) = 0, for any y ∈ ∂B(x), i = 1, 2, 3

are satisfied for
p(r) = e−kr,

where
k ≥ max

x∈Ω
| b(x) | +Rmax

x∈Ω
| c(x) | (103)

and R is the radius of the maximal ball B(x) ⊂ Ω̄.
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Proof 11. The condition

Lp(y, x) = 0, for any y ∈ ∂B(x)

obviously holds. It follows from (99), (100), since if y ∈ ∂B(x), then r = R
and Lp(y, x) = 0.

The condition

∂Lp(y, x)/∂y(i) = 0, for any y ∈ ∂B(x), i = 1, 2, 3
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can be checked immediately. Indeed,

∂Lp(y, x)

∂y(i)
=

∂Lp

∂r

∂r

∂y(i)
= µp(R)

∂

∂r

(∫ R

r

(1/r − 1/ρ)p(ρ)dρ

)
∂r

∂y(i)

= µp(R)
∂

∂r

(
1

r

∫ R

r

p(ρ)dρ−
∫ R

r

1

ρ
p(ρ)dρ

)
∂r

∂y(i)

= µp(R)

[
− 1

r2

∫ R

r

p(ρ)dρ+
1

r
(−p(r))−

(
−1

r
p(r)

)]
∂r

∂y(i)

= µp(R)

(
− 1

r2

∫ R

r

p(ρ)dρ

)
∂r

∂y(i)
.
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Taking into consideration that ∂r
∂y(i)

=
−(x(i)−y(i))

r one can get

∂Lp(y, x)

∂y(i)
= µp(R)

(x(i) − y(i))

r3

∫ R

r

p(ρ)dρ. (104)

The last expression vanishes when r = R, i.e. for every boundary point
y ∈ ∂B(x). Thus we obtain

∂Lp(y, x)/∂y(i) = 0, for any y ∈ ∂B(x), i = 1, 2, 3.

Now calculate M∗
yLp(y, x). The operator M∗

y has the following form:

M∗
y =

3∑

i=1

(
∂2

∂y2(i)

)
−

3∑

i=1

(
bi(y)

∂

∂y(i)

)
+ c(y)
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and M∗
yLp(y, x) has the form:

M∗
yLp(y, x) =

3∑

i=1

(
∂2Lp(y, x)

∂y2(i)

)

−
3∑

i=1

(
bi(y)

∂Lp(y, x)

∂y(i)

)
+ c(y)Lp(y, x). (105)

The second term of (105) is calculated using (104), i.e.

3∑

i=1

bi(y)
∂Lp(y, x)

∂y(i)
= µp(R)

3∑

i=1

bi(y)
(x(i) − y(i))

r3

∫ R

r

p(ρ)dρ. (106)

Calculate the first term in (105). That can be done easily when we use spherical
coordinates:

y(1) − x(1) = r sin θ cosϕ, y(2) − x(2) = r sin θ sinϕ, y(3) − x(3) = r cos θ,
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where 0 < r < R(x), θ ∈ [0, π) and ϕ ∈ [0, 2π).

Thus the Laplacian

∆y =
3∑

i=1

(
∂2

∂y2(i)

)

written in spherical coordinates has the following form (Tikchonov, A.N., p.
282):

∆r,θ,ϕ =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r sin2 θ

∂2

∂ϕ2
.

The Levy’s function in spherical coordinates depends on the radius r, (see,
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(99)). Thus,

∆yLp(y, x) = ∆r,θ,ϕLp(r) =
1

r2
∂

∂r

(
r2
∂Lp(r)

∂r

)

= µp(R)
1

r2
∂

∂r
r2

∂

∂r

(∫ R

r

(1/r − 1/ρ)p(ρ)dρ

)

= µp(R)
1

r2
∂

∂r

(
r2

(
− 1

r2

)∫ R

r

p(ρ)dρ

)

= µp(R)

(
− 1

r2

)
∂

∂r

∫ R

r

p(ρ)dρ = µp(R)
p(r)

r2
. (107)
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Taking into consideration (105), (106) we obtain:

M∗
yLp(y, x) = µp(R)

p(r)

r2
− µp(R)c(y)

∫ R

r

p(ρ)

ρ
dρ

+
µp(R)

r2

[
c(y)r +

3∑

i=1

bi(y)
y(i) − x(i)

r

]∫ R

r

p(ρ)dρ.

Next we prove that M∗
yLp(y, x) is non-negative for every point of the ball B(x).

Write M∗
yLp(y, x) in the following form:

M∗
yLp(y, x) =

µp(R)

r2
Γp(y, x),
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where

Γp(y, x) = p(r) + c(y)r

(∫ R

r

p(ρ)dρ−
∫ R

r

p(ρ)r

ρ
dρ

)

+
3∑

i=1

bi(y)
y(i) − x(i)

r

∫ R

r

p(ρ)dρ.

It is necessary to show that for all y ∈ B(x) the function Γp(y, x) is non-
negative. From the condition c(y) ≤ 0 it follows that

Γp(y, x) = p(r)−
∣∣∣∣∣c(y)r

(∫ R

r

p(ρ)dρ−
∫ R

r

p(ρ)r

ρ
dρ

)∣∣∣∣∣

+
3∑

i=1

bi(y)
y(i) − x(i)

r

∫ R

r

p(ρ)dρ ≥ 0. (108)
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So, it is necessary to prove (108). For p(r) = e−kr we have

p(r) ≥ e−kr − e−kR = k

∫ R

r

p(ρ)dρ.

Choosing

k ≥ max
x∈Ω

| b(x) | +Rmax
x∈Ω

| c(x) |
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one can obtain

p(r) ≥
(
max
x∈Ω

| b(x) | +Rmax
x∈Ω

| c(x) |
)∫ R

r

p(ρ)dρ

≥ | c(y) | r
∫ R

r

p(ρ)dρ+ | b(y) |
∫ R

r

p(ρ)dρ

≥ | c(y) | r
(∫ R

r

p(ρ)dρ−
∫ R

r

p(ρ)r

ρ
dρ

)

+

∣∣∣∣∣
3∑

i=1

bi(y)
y(i) − x(i)

r

∣∣∣∣∣
∫ R

r

p(ρ)dρ. (109)

One can see that (108) follows from (109).
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Now the representation (95) can be written in the form:

u(x) =

∫

B(x)

M∗
yLp(y, x)u(y)dy +

∫

B(x)

Lp(y, x)φ(y)dy. (110)

The last representation enables the formulation of a unbiased estimate for the
solution of the problem under consideration.
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