Monte Carlo Investigations of Electron Decoherence due to Phonons

- P. Schwaha
- M. Nedjalkov
- S. Selberherr
 - I. Dimov

States of quantum computation

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 $|\alpha|^2 + |\beta|^2 = 1$

Classically: in either in state 0 or in state 1 Quantum setting: in all of the states at the same time

States chosen as one-dimensional Gaußian wave-packets

$$|0\rangle, |1\rangle = e^{\frac{-(x\pm a)^2}{2\sigma^2}}e^{ibx}$$

Corresponding phase space Wigner function

$$e^{-(k_{x}-b)^{2}\sigma^{2}}\left[e^{-\frac{(x-a)^{2}}{\sigma^{2}}} + e^{-\frac{(x+a)^{2}}{\sigma^{2}}} + e^{-\frac{x^{2}}{\sigma^{2}}}\cos\left((k_{x}-b)^{2}a\right)\right]$$

An Image from Phase Space

Oscillations of the Wigner function are indications of quantum nature

Phase breaking evolution of Wigner-Boltzmann type equation

$$\left(\frac{\partial}{\partial t} + \frac{\hbar k_{\rm x}}{m}\frac{\partial}{\partial x}\right)f_{\rm w}(x,\mathbf{k},t) = \int d\mathbf{k}' f_{\rm w}(x,\mathbf{k}',t)S(\mathbf{k}',\mathbf{k}) - f_{\rm w}(x,\mathbf{k},t)\lambda(\mathbf{k})$$

This evolution pushes towards thermal equilibrium

Classic Configuration due to Scattering

Quantum information dissipates to thermal equilibrium

A single grid is used for estimators as well as particle generation Each particle carries a weight corresponding to the initial configuration Each generated particle is evolved through all of the desired time steps

Memory requirements:

 $sizeof(estimator) \times (\#time \ steps) + sizeof(particle \ state)$

Algorithm A

A single grid is used for estimators as well as particle generation Each particle carries a weight corresponding to the initial configuration Particles are evolved as an ensemble

Memory requirements:

 $sizeof(particle state) \times (\# particles) + sizeof(estimator)$

Algorithm B

A grid is used for the estimators A cell structure is used to store particle weights Particles are randomly generated from each of the cells Estimates are recorded against the estimator grid

Memory requirements:

 $(\#cells) \times sizeof(weight) + sizeof(particle state) + sizeof(estimator)$

Algorithm C

Estimator grid of 4000×3000 points Algorithms A and B give matching results Algorithm C applied with different cell sizes 100 time steps

Algorithm	Memory Requirement
А	8.84 GiB
В	139.14 MiB
C (fine)	183.11 MiB
C (coarse)	92.47 MiB

Phase space distribution after 900 fs of coherent evolution

The quantum characteristics are preserved

Reconstruction of densities after a single time step

Momentum distribution after $10 \mathrm{fs}$

Momentum distribution after $700 \mathrm{fs}$

Phase Breaking Evolution

Phase space distribution after $900 \mathrm{fs}$ of phase breaking evolution

The quantum characteristics are destroyed

Phase Breaking Evolution – First Moments

Momentum distribution after $10 \mathrm{fs}$

Phase Breaking Evolution

Momentum distribution after $300 \mathrm{fs}$

Conclusion

Three different algorithm for the evolution of a coherent state Algorithms A and B give agreeing results

Cell based algorithm can produce agreement

Sensitivity to cell size

Sensitivity to cell and estimator placement

Phase breaking effects dominate numerical effects

Conclusion

Three different algorithm for the evolution of a coherent state Algorithms A and B give agreeing results Cell based algorithm can produce agreement

Sensitivity to cell size

Sensitivity to cell and estimator placement

Phase breaking effects dominate numerical effects

Thank you for your attention

Something Completely Different

Something Completely Different

The Larch