Fast orthogonal transforms
and generation of Brownian paths

G. Leobacher

Summer 2011
Many financial derivatives can be priced using

\[
\text{price} = E(f(B))
\]

where \(B \) is a standard Brownian motion, \(B = (B_t)_{t \in [0,1]} \) (Black-Scholes formula) or

\[
\text{price} = E\left(f\left(\frac{B_1}{n}, \ldots, \frac{B_n}{n}\right)\right)
\]

and often the second formula is taken as an approximation for the first one.
Discrete Brownian paths
What - and why

Many financial derivatives can be priced using

$$\text{price} = E (f(B))$$

where B is a standard Brownian motion, $B = (B_t)_{t \in [0,1]}$ (Black-Scholes formula) or

$$\text{price} = E \left(f(B_{\frac{1}{n}}, \ldots, B_{\frac{n}{n}}) \right)$$

and often the second formula is taken as an approximation for the first one.
Discrete Brownian paths

What - and why

Many financial derivatives can be priced using

$$\text{price} = \mathbb{E}(f(B))$$

where B is a standard Brownian motion, $B = (B_t)_{t \in [0,1]}$ (Black-Scholes formula) or

$$\text{price} = \mathbb{E}\left(f(B_{\frac{1}{n}}, \ldots, B_{\frac{n}{n}})\right)$$

and often the second formula is taken as an approximation for the first one.
Many financial derivatives can be priced using

$$\text{price} = E(f(B))$$

where B is a standard Brownian motion, $B = (B_t)_{t \in [0,1]}$ (Black-Scholes formula) or

$$\text{price} = E \left(f\left(B_{\frac{1}{n}}, \ldots, B_{\frac{n}{n}} \right) \right)$$

and often the second formula is taken as an approximation for the first one.
Discrete Brownian paths
What - and why

We therefore want efficient ways to generate a random vector

\[B = (B_{1/n}, \ldots, B_{n}) \]

where

\[B_{1/n}, B_{2/n} - B_{1/n}, \ldots, B_{n/n} - B_{(n-1)/n} \]

are independent normal variables with mean 0 and variance \(\frac{1}{n} \), from

\[X_1, \ldots, X_n \ldots i.i.d. N(0, 1) \]
Discrete Brownian paths
What - and why

We therefore want efficient ways to generate a random vector

\[B = (B_1^n, \ldots, B_n^n) \]

where

\[B_1^n, B_2^n - B_1^n, \ldots, B_n^n - B_{n-1}^n \]

are independent normal variables with mean 0 and variance \(\frac{1}{n} \), from

\[X_1, \ldots, X_n \ldots i.i.d. N(0, 1) \]
Discrete Brownian paths

What - and why

We therefore want efficient ways to generate a random vector

\[\mathbf{B} = (B_1^n, \ldots, B_n^n) \]

where

\[B_1^n, B_2^n - B_1^n, \ldots, B_n^n - B_{n-1}^n \]

are independent normal variables with mean 0 and variance \(\frac{1}{n} \), from

\[X_1, \ldots, X_n \ldots i.i.d. N(0, 1) \]
Forward construction
a.k.a. random walk construction, step-by-step method, crude method
Forward construction
a.k.a. random walk construction, step-by-step method, crude method

\[B_t \sim \frac{1}{\sqrt{n}} X_1 \]
Forward construction
a.k.a. random walk construction, step-by-step method, crude method

\[B_t \sim \frac{1}{\sqrt{n}} X_2 \]
Forward construction
a.k.a. random walk construction, step-by-step method, crude method

\[B_t \sim \frac{1}{\sqrt{n}} X_3 \]
Forward construction
a.k.a. random walk construction, step-by-step method, crude method

\[B_t \sim \frac{1}{\sqrt{n}} X_4 \]
Brownian bridge construction
a.k.a. Lévy-Ciesielski construction, midpoint displacement
Brownian bridge construction

a.k.a. Lévy-Ciesielski construction, midpoint displacement
Brownian bridge construction

a.k.a. Lévy-Ciesielski construction, midpoint displacement
Brownian bridge construction
a.k.a. Lévy-Ciesielski construction, midpoint displacement

\[B_t \sim \frac{1}{2\sqrt{2}} X_3 \]
Brownian bridge construction

a.k.a. Lévy-Ciesielski construction, midpoint displacement

\[B_t \sim \frac{1}{2\sqrt{2}} X_4 \]
Brownian bridge construction

- Probabilistically equivalent to forward construction
- Influence of X_k on overall behavior of B is decreasing with k
 - stratified sampling
 - quasi-Monte Carlo
- Cost of generating path on n nodes is of same order as for forward construction: $O(n)$

First application in financial/QMC context: Moskowitz & Caflisch (1996)
Brownian bridge construction

- Probabilistically equivalent to forward construction
- Influence of X_k on overall behavior of B is decreasing with k
 - stratified sampling
 - quasi-Monte Carlo
- Cost of generating path on n nodes is of same order as for forward construction: $O(n)$

First application in financial/QMC context: Moskowitz & Caflisch (1996)
Brownian bridge construction

- Probabilistically equivalent to forward construction
- Influence of X_k on overall behavior of B is decreasing with k
 - stratified sampling
 - quasi-Monte Carlo
- Cost of generating path on n nodes is of same order as for forward construction: $O(n)$

First application in financial/QMC context: Moskowitz & Caflisch (1996)
Brownian bridge construction

- Probabilistically equivalent to forward construction
- Influence of X_k on overall behavior of B is decreasing with k
 - stratified sampling
 - quasi-Monte Carlo
- Cost of generating path on n nodes is of same order as for forward construction: $O(n)$

First application in financial/QMC context: Moskowitz & Caflisch (1996)
Brownian bridge construction

- Probabilistically equivalent to forward construction
- Influence of X_k on overall behavior of B is decreasing with k
 - stratified sampling
 - quasi-Monte Carlo
- Cost of generating path on n nodes is of same order as for forward construction: $O(n)$

First application in financial/QMC context: Moskowitz & Caflisch (1996)
Brownian bridge construction

- Probabilistically equivalent to forward construction
- Influence of X_k on overall behavior of B is decreasing with k
 - stratified sampling
 - quasi-Monte Carlo
- Cost of generating path on n nodes is of same order as for forward construction: $O(n)$

First application in financial/QMC context: Moskowitz & Caflisch (1996)
Unifying principle I: Linearity

Both constructions are of the form

\[B = AX \]

where

- \(B = (B_{\frac{1}{n}}, \ldots, B_{\frac{n}{n}}) \)
- \((X_1, \ldots, X_n)\) indep. std. normal variables
- \(A\) an \(n \times n\) matrix
Unifying principle I: Linearity

Both constructions are of the form

\[B = AX \]

where

- \(B = (B_1^n, \ldots, B_n^n) \)
- \((X_1, \ldots, X_n)\) indep. std. normal variables
- \(A\) an \(n \times n\) matrix
Unifying principle I: Linearity

Both constructions are of the form

\[B = AX \]

where

- \(B = (B_{\frac{1}{n}}, \ldots, B_{\frac{n}{n}}) \)
- \((X_1, \ldots, X_n) \) indep. std. normal variables
- \(A \) an \(n \times n \) matrix
Both constructions are of the form

\[B = AX \]

where

- \(B = (B_{\frac{1}{n}}, \ldots, B_{\frac{n}{n}}) \)
- \((X_1, \ldots, X_n)\) indep. std. normal variables
- \(A\) an \(n \times n \) matrix
Unifying principle I: Linearity

Necessary and sufficient for \(B \) being a (discrete) Brownian path:

\[
AA^\top = \frac{1}{n} \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & \ldots & 2 \\
1 & 2 & 3 & \ldots & 3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 3 & \ldots & n
\end{pmatrix} =: \Sigma
\]
Unifying principle I: Linearity

Necessary and sufficient for B being a (discrete) Brownian path:

$$AA^\top = \frac{1}{n} \begin{pmatrix} 1 & 1 & 1 & \ldots & 1 \\ 1 & 2 & 2 & \ldots & 2 \\ 1 & 2 & 3 & \ldots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \ldots & n \end{pmatrix} =: \Sigma$$
Unifying principle I: Linearity

For example:

- For the forward method

\[A = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 \\ 1 & 1 & 0 & \ldots & 0 \\ 1 & 1 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 1 \end{pmatrix} =: S \]

\[SS^\top = \Sigma \ldots \text{Cholesky decomposition of } \Sigma \]

- For the Brownian bridge construction

\[A = \text{something else} \]
Unifying principle I: Linearity

For example:

- For the forward method

\[
A = \frac{1}{\sqrt{n}} \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{pmatrix} =: S
\]

\[
SS^\top = \Sigma \ldots \text{Cholesky decomposition of } \Sigma
\]

- For the Brownian bridge construction

\[
A = \text{something else}
\]
Unifying principle I: Linearity

For example:

- For the forward method

\[
A = \frac{1}{\sqrt{n}} \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{pmatrix} =: S
\]

\[SS^\top = \Sigma \ldots \text{Cholesky decomposition of } \Sigma\]

- For the Brownian bridge construction

\[
A = \text{something else}
\]
Unifying principle I: Linearity

For example:

- For the forward method

\[
A = \frac{1}{\sqrt{n}} \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{pmatrix} =: S
\]

\[SS^\top = \Sigma \ldots \text{Cholesky decomposition of } \Sigma\]

- For the Brownian bridge construction

\[A = \text{something else}\]
Unifying principle I: Linearity

For example:

- For the forward method

\[
A = \frac{1}{\sqrt{n}} \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{pmatrix} =: S
\]

\[SS^\top = \Sigma \ldots \text{Cholesky decomposition of } \Sigma\]

- For the Brownian bridge construction

\[A = \text{something else}\]
Principal component analysis
a.k.a. PCA construction, Singular value construction

Take

\[A = VD^{1/2} \]

where \(VDV^\top = \Sigma \) is the singular value decomposition of \(\Sigma \).

- First component captures maximal variance
- Second component captures maximal remaining variance
- And so on

First application in financial context: Acworth, Broadie & Glasserman (1996)
Principal component analysis
a.k.a. PCA construction, Singular value construction

Take

\[A = VD^{1/2} \]

where \(VDV^\top = \Sigma \) is the singular value decomposition of \(\Sigma \).

- First component captures maximal variance
- second component captures maximal remaining variance
- and so on

First application in financial context: Acworth, Broadie & Glasserman (1996)
Principal component analysis
a.k.a. PCA construction, Singular value construction

Take

\[A = V D^{1/2} \]

where \(V D V^\top = \Sigma \) is the singular value decomposition of \(\Sigma \).

- First component captures maximal variance
- Second component captures maximal remaining variance
- And so on

First application in financial context: Acworth, Broadie & Glasserman (1996)
Principal component analysis
a.k.a. PCA construction, Singular value construction

Take

\[A = VD^{1/2} \]

where \(VDV^\top = \Sigma \) is the singular value decomposition of \(\Sigma \).

- First component captures maximal variance
- Second component captures maximal remaining variance
- And so on

First application in financial context: Acworth, Broadie & Glasserman (1996)
Principal component analysis
a.k.a. PCA construction, Singular value construction

Take

$$A = VD^{1/2}$$

where $VDV^\top = \Sigma$ is the singular value decomposition of Σ.

- First component captures maximal variance
- second component captures maximal remaining variance
- and so on

First application in financial context: Acworth, Broadie & Glasserman (1996)
Principal component analysis

Disadvantage of PCA:

Multiplication with V costs $O(n^2)$

Or does it?

Scheicher (2007): PCA generation costs $O(n \log(n))$ by using the fast sine transform in dimension $2n + 1$
Principal component analysis

Disadvantage of PCA:

\[\text{Multiplication with } V \text{ costs } O(n^2) \]

Or does it?

Scheicher (2007): PCA generation costs \(O(n \log(n)) \) by using the fast sine transform in dimension \(2n + 1 \)
Principal component analysis

Disadvantage of PCA:

\[\text{Multiplication with } V \text{ costs } O(n^2) \]

Or does it?

Scheicher (2007): PCA generation costs \(O(n \log(n)) \) by using the fast sine transform in dimension \(2n + 1 \)
Dependence on payoff
(Some people are never satisfied)

Papageorgiou (2002), Sloan & Wang (2011)

- Integration error depends on payoff
- Let f be a payoff function, A_1, A_2 two linear generation methods such that $E(f(A_1X))$ admits good/bad convergence under some QMC rule. Then there is a payoff g such that $E(g(A_2X))$ admits the same convergence under the same rule: $g(Y) = f(A_1A_2^{-1}Y)$.
- So there is no best generation method
- Suggests to look for optimal A (in some sense) for given payoff
Dependence on payoff
(Some people are never satisfied)

Papageorgiou (2002), Sloan & Wang (2011)

- Integration error depends on payoff

Let f be a payoff function, A_1, A_2 two linear generation methods such that $E(f(A_1X))$ admits good/bad convergence under some QMC rule. Then there is a payoff g such that $E(g(A_2X))$ admits the same convergence under the same rule: $g(Y) = f(A_1A_2^{-1}Y)$.

- So there is no best generation method

- Suggests to look for optimal A (in some sense) for given payoff
Dependence on payoff
(Some people are never satisfied)

Papageorgiou (2002), Sloan & Wang (2011)

- Integration error depends on payoff
- Let f be a payoff function, A_1, A_2 two linear generation methods such that $E(f(A_1 X))$ admits good/bad convergence under some QMC rule. Then there is a payoff g such that $E(g(A_2 X))$ admits the same convergence under the same rule: $g(Y) = f(A_1 A_2^{-1} Y)$.
- So there is no best generation method
- Suggests to look for optimal A (in some sense) for given payoff
Dependence on payoff
(Some people are never satisfied)

Papageorgiou (2002), Sloan & Wang (2011)

- Integration error depends on payoff
- Let f be a payoff function, A_1, A_2 two linear generation methods such that $E(f(A_1X))$ admits good/bad convergence under some QMC rule. Then there is a payoff g such that $E(g(A_2X))$ admits the same convergence under the same rule: $g(Y) = f(A_1A_2^{-1}Y)$.

- So there is no best generation method
- Suggests to look for optimal A (in some sense) for given payoff
Dependence on payoff
(Some people are never satisfied)

Papageorgiou (2002), Sloan & Wang (2011)

- Integration error depends on payoff
- Let f be a payoff function, A_1, A_2 two linear generation methods such that $E(f(A_1X))$ admits good/bad convergence under some QMC rule. Then there is a payoff g such that $E(g(A_2X))$ admits the same convergence under the same rule: $g(Y) = f(A_1A_2^{-1}Y)$.
- So there is no best generation method
- Suggests to look for optimal A (in some sense) for given payoff
Dependence on payoff
(Some people are never satisfied)

Papageorgiou (2002), Sloan & Wang (2011)

- Integration error depends on payoff
- Let f be a payoff function, A_1, A_2 two linear generation methods such that $E(f(A_1X))$ admits good/bad convergence under some QMC rule. Then there is a payoff g such that $E(g(A_2X))$ admits the same convergence under the same rule: $g(Y) = f(A_1A_2^{-1}Y)$.

- So there is no best generation method
- Suggests to look for optimal A (in some sense) for given payoff
Unifying principle II: Orthogonality

In fact we can write any matrix A with $AA^\top = \Sigma$ as

$$A = SU$$

where

- U is an orthogonal matrix and
- S is the scaled summation defined earlier
- suggests we look for good/optimal U for our payoff
- PCA/BB provide good U for Asian options (and many other types)
In fact we can write any matrix \(A \) with \(AA^\top = \Sigma \) as

\[
A = SU
\]

where

- \(U \) is an orthogonal matrix and
- \(S \) is the scaled summation defined earlier
- suggests we look for good/optimal \(U \) for our payoff
- PCA/BB provide good \(U \) for Asian options (and many other types)
Unifying principle II: Orthogonality

In fact we can write any matrix A with $AA^\top = \Sigma$ as

$$A = SU$$

where

- U is an orthogonal matrix and
- S is the scaled summation defined earlier
- suggests we look for good/optimal U for our payoff
- PCA/BB provide good U for Asian options (and many other types)
Unifying principle II: Orthogonality

In fact we can write any matrix \(A \) with \(AA^\top = \Sigma \) as

\[
A = SU
\]

where

- \(U \) is an orthogonal matrix and
- \(S \) is the scaled summation defined earlier
- suggests we look for good/optimal \(U \) for our payoff
- PCA/BB provide good \(U \) for Asian options (and many other types)
Unifying principle II: Orthogonality

In fact we can write any matrix A with $AA^\top = \Sigma$ as

$$A = SU$$

where

- U is an orthogonal matrix and
- S is the scaled summation defined earlier
- suggests we look for good/optimal U for our payoff
- PCA/BB provide good U for Asian options (and many other types)
Unifying principle II: Orthogonality

Makes method generic: every (quasi-)MC problem can by written as

\[E(f(X)) \]

where \(X \) is a standard normal vector.

- \(E(f(X)) = E(f(UX)) \) for any orthogonal matrix \(U \).
- Choose \(U \) such that variance/variation is concentrated on few variables.

Sample application: BB/PCA-type generation for Lévy paths (L (2006))
Unifying principle II: Orthogonality

Makes method generic: every (quasi-)MC problem can be written as

\[E(f(X)) \]

where \(X \) is a standard normal vector.

- \(E(f(X)) = E(f(UX)) \) for any orthogonal matrix \(U \).
- Choose \(U \) such that variance/variation is concentrated on few variables.

Sample application: BB/PCA-type generation for Lévy paths (L (2006))
Unifying principle II: Orthogonality

Makes method generic: every (quasi-)MC problem can be written as

$$E(f(X))$$

where X is a standard normal vector.

- $E(f(X)) = E(f(UX))$ for any orthogonal matrix U.
- Choose U such that variance/variation is concentrated on few variables.

Sample application: BB/PCA-type generation for Lévy paths (L (2006))
Unifying principle II: Orthogonality

Makes method generic: every (quasi-)MC problem can be written as

\[E(f(X)) \]

where \(X \) is a standard normal vector.

- \(E(f(X)) = E(f(UX)) \) for any orthogonal matrix \(U \).
- Choose \(U \) such that variance/variation is concentrated on few variables

Sample application: BB/PCA-type generation for Lévy paths (L (2006))
Unifying principle II: Orthogonality

Examples

\[\Sigma = AA^\top \text{ with } A = SU \]

- Forward method: \(U = \text{Id}_{\mathbb{R}^n} \).
- Brownian Bridge: \(U = H^{-1} \) where \(H \) is the Haar transform
- PCA: \(U = S^{-1}VD^{1/2} \) (trivially)
Unifying principle II: Orthogonality

Examples

\[
\Sigma = AA^\top \text{ with } A = SU
\]

- Forward method: \(U = \text{Id}_{\mathbb{R}^n} \).
- Brownian Bridge: \(U = H^{-1} \) where \(H \) is the Haar transform
- PCA: \(U = S^{-1}VD^{1/2} \) (trivially)
Unifying principle II: Orthogonality

Examples

\[\Sigma = AA^\top \text{ with } A = SU \]

- Forward method: \(U = \text{Id}_{\mathbb{R}^n} \).
- Brownian Bridge: \(U = H^{-1} \) where \(H \) is the Haar transform
- PCA: \(U = S^{-1}VD^{1/2} \) (trivially)
One advantage of "orthogonal" formulation: there are many fast generation methods for BM besides forward, BB and PCA method (L 2011) reviews transforms that need at most $O(n \log n)$ operations

- Discrete Sine/Cosine transform
- Hartley-, Hilbert-, W- transform
- Walsh transform
- Haar transform, general wavelet transforms
- Tensor products of orthogonal transforms
- and more
Unifying principle II: Orthogonality

One advantage of "orthogonal" formulation: there are many fast generation methods for BM besides forward, BB and PCA method (L 2011) reviews transforms that need at most $O(n \log n)$ operations

- Discrete Sine/Cosine transform
- Hartley-, Hilbert-, W- transform
- Walsh transform
- Haar transform, general wavelet transforms
- Tensor products of orthogonal transforms
- and more
Unifying principle II: Orthogonality

One advantage of "orthogonal" formulation: there are many fast generation methods for BM besides forward, BB and PCA method (L 2011) reviews transforms that need at most $O(n \log n)$ operations

- Discrete Sine/Cosine transform
- Hartley-, Hilbert-, W- transform
- Walsh transform
- Haar transform, general wavelet transforms
- Tensor products of orthogonal transforms
- and more
One advantage of "orthogonal" formulation: there are many fast generation methods for BM besides forward, BB and PCA method (L 2011) reviews transforms that need at most $O(n \log n)$ operations

- Discrete Sine/Cosine transform
- Hartley-, Hilbert-, W- transform
- Walsh transform
- Haar transform, general wavelet transforms
- Tensor products of orthogonal transforms
- and more
One advantage of "orthogonal" formulation: there are many fast generation methods for BM besides forward, BB and PCA method (L 2011) reviews transforms that need at most $O(n \log n)$ operations

- Discrete Sine/Cosine transform
- Hartley-, Hilbert-, W- transform
- Walsh transform
- Haar transform, general wavelet transforms
- Tensor products of orthogonal transforms
- and more
One advantage of "orthogonal" formulation: there are many fast generation methods for BM besides forward, BB and PCA method (L 2011) reviews transforms that need at most $O(n \log n)$ operations

- Discrete Sine/Cosine transform
- Hartley-, Hilbert-, W- transform
- Walsh transform
- Haar transform, general wavelet transforms
- Tensor products of orthogonal transforms
- and more
One advantage of "orthogonal" formulation: there are many fast generation methods for BM besides forward, BB and PCA method (L 2011) reviews transforms that need at most $O(n \log n)$ operations

- Discrete Sine/Cosine transform
- Hartley-, Hilbert-, W- transform
- Walsh transform
- Haar transform, general wavelet transforms
- Tensor products of orthogonal transforms
- and more
Unifying principle II: Orthogonality

Theorem (Sloan & Wang (2011))

For every orthogonal transform there is a (theoretical) financial derivative for which the orthogonal transform is optimal, i.e. where variability is reduced to one dimension.

Empirical finding: for typical real world derivatives in the 1-dimensional BS-model, BB/PCA are good enough
Unifying principle II: Orthogonality

Theorem (Sloan & Wang (2011))

For every orthogonal transform there is a (theoretical) financial derivative for which the orthogonal transform is optimal, i.e. where variability is reduced to one dimension.

Empirical finding: for typical real world derivatives in the 1-dimensional BS-model, BB/PCA are good enough
Unifying principle II: Orthogonality

Comparison PCA/DCT-IV, $n = 64$
Unifying principle II: Orthogonality

Comparison PCA/DCT-IV, \(n = 256 \)
Unifying principle II: Orthogonality

Numerical example

\[
f(B) := \max \left(\sum_{k=1}^{n} w_k S_{k/n} - K, 0 \right)
= \max \left(\frac{1}{n} \sum_{k=1}^{n} w_k S_0 \exp \left(\sigma B_{k/n} + (r - \frac{\sigma^2}{2}) k/n \right) - K, 0 \right),
\]
Unifying principle II: Orthogonality

Numerical example

OTP ... “orthogonal tensor product”

\[U = R \otimes R \otimes \ldots \otimes R \quad (\log_2(n) \text{ times}) \]

\(R \) is a two-dimensional rotation about a fixed angle (\(\phi = 0.4 \)).

Now choose weights \(w_1, \ldots, w_n \) to make \(U \) a (near) optimal orthogonal transform.
Unifying principle II: Orthogonality

Numerical example

OTP ... “orthogonal tensor product”

\[U = R \otimes R \otimes \ldots \otimes R \quad \text{(log}_2(n) \text{ times)} \]

\(R \) is a two-dimensional rotation about a fixed angle (\(\phi = 0.4 \)). Now choose weights \(w_1, \ldots, w_n \) to make \(U \) a (near) optimal orthogonal transform.
Unifying principle II: Orthogonality

Numerical example

G. Leobacher (JKU Linz, Austria) Orthogonal transforms/Brownian paths Summer 2011 22 / 28
Unifying principle II: Orthogonality

Numerical example

The corresponding weights are rather exotic:
Unifying principle II: Orthogonality

At least one of these earlier constructions is actually useful in practice.

Recall: Fast computation of path using PCA utilizes fast sine transform in dimension $2n + 1$.

This is usually quite a bit slower than, e.g., the discrete cosine transform in dimension n, especially if $n = 2^k$.
Unifying principle II: Orthogonality

At least one of these earlier constructions is actually useful in practice.

Recall: Fast computation of path using PCA utilizes fast sine transform in dimension $2n + 1$

This is usually quite a bit slower than, e.g., the discrete cosine transform in dimension n, especially if $n = 2^k$
Unifying principle II: Orthogonality

At least one of these earlier constructions is actually useful in practice

Recall: Fast computation of path using PCA utilizes fast sine transform in dimension $2n + 1$

This is usually quite a bit slower than, e.g., the discrete cosine transform in dimension n, especially if $n = 2^k$
Unifying principle II: Orthogonality

Theorem (L 2011)

Let

- $\Sigma = VDV^\top$ be the PCA of Σ
- C the discrete cosine transform of type IV in dimension n
- $d_n(P, Q)^2 := \sum_{l=1}^n \sum_{k=1}^n (P - Q)_{lk}^2$ for $n \times n$ matrices P, Q

Then for all $n \in \mathbb{N}$ we have $d_n(\text{SC}, VD_\frac{1}{2}) < 1$ and

$$\limsup_{n \to \infty} d_n(\text{SC}, VD_\frac{1}{2})^2 \leq \frac{2(48 - \pi^2)}{(\pi^2 - 24)^2} = 0.381 \ldots .$$
Unifying principle II: Orthogonality

Theorem (L 2011)

Let

- $\Sigma = VDV^T$ be the PCA of Σ
- C the discrete cosine transform of type IV in dimension n
- $d_n(P, Q)^2 := \sum_{l=1}^{n} \sum_{k=1}^{n} (P - Q)_{lk}^2$ for $n \times n$ matrices P, Q

Then for all $n \in \mathbb{N}$ we have $d_n(SC, VD^{1/2}) < 1$ and

$$\limsup_{n \to \infty} d_n(SC, VD^{1/2})^2 \leq \frac{2 (48 - \pi^2)}{(\pi^2 - 24)^2} = 0.381 \ldots .$$
Theorem (L 2011)

Let

- \(\Sigma = VDV^\top \) be the PCA of \(\Sigma \)
- \(C \) the discrete cosine transform of type IV in dimension \(n \)
- \(d_n(P, Q)^2 := \sum_{l=1}^n \sum_{k=1}^n (P - Q)_{lk}^2 \) for \(n \times n \) matrices \(P, Q \)

Then for all \(n \in \mathbb{N} \) we have \(d_n(SC, VD^{1/2}) < 1 \) and

\[
\limsup_{n \to \infty} d_n(SC, VD^{1/2})^2 \leq \frac{2 (48 - \pi^2)}{\left(\pi^2 - 24\right)^2} = 0.381 \ldots .
\]
Unifying principle II: Orthogonality

Theorem (L 2011)

Let

- $\Sigma = VDV^\top$ be the PCA of Σ
- C the discrete cosine transform of type IV in dimension n
- $d_n(P, Q)^2 := \sum_{l=1}^{n} \sum_{k=1}^{n} (P - Q)_{lk}^2$ for $n \times n$ matrices P, Q

Then for all $n \in \mathbb{N}$ we have $d_n(SC, VD^{\frac{1}{2}}) < 1$ and

$$\limsup_{n \to \infty} d_n(SC, VD^{\frac{1}{2}})^2 \leq \frac{2 \left(48 - \pi^2\right)}{\left(\pi^2 - 24\right)^2} = 0.381 \ldots .$$
Unifying principle II: Orthogonality

Theorem (L 2011)

Let

- \(\Sigma = V D V^\top \) be the PCA of \(\Sigma \)
- \(C \) the discrete cosine transform of type IV in dimension \(n \)
- \(d_n(P, Q)^2 := \sum_{l=1}^{n} \sum_{k=1}^{n} (P - Q)_{l,k}^2 \) for \(n \times n \) matrices \(P, Q \)

Then for all \(n \in \mathbb{N} \) we have \(d_n(\text{SC}, VD^{1/2}) < 1 \) and

\[
\limsup_{n \to \infty} d_n(\text{SC}, VD^{1/2})^2 \leq \frac{2 \left(48 - \pi^2\right)}{\left(\pi^2 - 24\right)^2} = 0.381 \ldots .
\]
Thus we have found a construction method that

- gives essentially same result as PCA
- uses at most half the time for path generation
Unifying principle II: Orthogonality

Thus we have found a construction method that
- gives essentially same result as PCA
- uses at most half the time for path generation
Unifying principle II: Orthogonality

Thus we have found a construction method that

- gives essentially same result as PCA
- uses at most half the time for path generation
Optimal orthogonal transforms

Imai & Tan (2007): Find U that works best

Goal: Find good U that admits fast matrix-vector multiplication (Irrgeher & L, ongoing research)

Useful only for derivatives or models that depend on several Brownian paths – or that are entirely different.
Optimal orthogonal transforms

Imai & Tan (2007): Find U that works best

Goal: Find good U that admits fast matrix-vector multiplication (Irrgeher & L, ongoing research)

Useful only for derivatives or models that depend on several Brownian paths – or that are entirely different.
Optimal orthogonal transforms

Imai & Tan (2007): Find U that works best

Goal: Find good U that admits fast matrix-vector multiplication (Irrgeher & L, ongoing research)

Useful only for derivatives or models that depend on several Brownian paths – or that are entirely different.
Thank you for your attention!