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Context

We consider the general stochastic program (SP)

min
x∈X

g (E [f (x , ξ)]) ,

where
X is a compact set in Rn;
ξ = (ξ1, . . . , ξm) is a random vector of size m;
f : Rn ×Rm → R;
g : R → R.

We will also denote

f (x) := E [f (x , ξ)].
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Context (cont’d)

g is usually the identity function, so we have

min
x∈X

E [f (x , ξ)].

This problem has (and is) studied extensively (Bayraksan,
Homem-de-Mello, Morton, Robinson, Royset, Pasupathy,
Shapiro,. . . ).
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Example 1: constraining nonlinear programming

min
x

f (x)

s.t. E [ci(x , ξ)] ≥ 0, i = 1, . . . , s.

Log-barrier methods will replace this problem by a sequence of
unconstrained problems of the form

min
x

f (x)− µ
s∑

i=1

ln E [ci(x)],

which are solved for decreasing values of µ.
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Example 2: maximum likelihood

We consider the log-likelihood over I mean probabilities
(correspond to I individuals):

min
θ
− ln

(
E

[
I∏

i=1

f (i ;θ; ξi)

])
:= −LL(θ).

Here,
g = − ln .

If the probabilities are independent, we can rewrite the problem
as

min
θ
−1

I

I∑
i=1

ln (E [f (i ;θ; ξi)]) .

Such a problem occurs for instance in discrete choice theory
(more specifically, for mixed logit models estimation).
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Sample average approximation (SAA)

Assume
X is deterministic;
smoothness and regularity assumptions;
range(f ) is compact.

Monte Carlo sample over ξ. With R random draws:

f̂R(x) :=
1
R

R∑
r=1

f (x , ξr ).

The SAA problem is

min
x∈X

ĝ(x) = g
(

f̂R(x)
)
.
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Consistency for the identity case

Consistency:

D
(

SR,S∗
)
→ 0, a.s. when R →∞.

The distance between approximate solutions and real solutions
goes to infinity when the sample size goes to infinity.

Solutions?
global minimizers;
first-order critical points.

Not true for second-order critical points. But works well in
practice.
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Consistency: general case

First-order consistency can sill be proved, using similar
arguments to those known in the litterature.

Moreover, if g ∈ C1, we still can use the Delta theorem: if√
R(Y R − µ)⇒ N(0,Σy ) when R →∞, then we have the

central limit theorem:
√

R(g(Y R)− g(µ))/σg ⇒ N(0,1) quand R →∞,

where σg
2 = (∇g(µ))T Σy∇g(µ).
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Simulation bias

For finite R,

E

[
g

(
1
R

R∑
r=1

f (x , ξr )

)]
6= g(f (x)).

Let

BR(θ) = E

[
g

(
1
R

R∑
r=1

f (x , ξr )

)]
− g(f (x)).

denotes the bias of our estimator, when using R draws.
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Simulation bias - statistical Taylor expansion

Assume also the f and g are in C2. Let’s introduce

h(x) = f̂R(x)− f (x),

For R large enough, the probability that f̂R(x) is close to f (x) is
high. The (statistical) Taylor expansion gives us

g(f̂R(x)) = g(f (x)) + g′(f (x))h(x) +
1
2

g′′(x)h2(x) + O(h3).

Since E [h(x)] = 0 and E [h2(x)] = 1
R Var[f (x , ξ)],

E [g(f̂R(x)]− g(f (x)) =
1
2

g′′(f (x))Var[f (x , ξ)] + O(E [h3]).
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Bias correction

This suggests the correction

B̂R(x) =
1
2

g′′
(

f̂R(x)
)

V̂ar[f (x , ξ)],

as long as evaluating g′′(·) is not too expensive and we can
neglect the higher-order terms.

Idea: solve the modified optimization problem

min
x∈X

g
(

f̂R(x)
)
− B̂R(x).

Issue: B̂R(x) is itself a statistical estimator.
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Application in log-likelihood estimation

In our application, we have

B̂R(θ) = −E [SLLR(θ)] + LL(θ) ≈ 1
2IR

I∑
i=1

σ2
iji

(θ)(
Piji (θ)

)2 ≥ 0.

Note: one also has

Var[SLLR(θ)] =
1
I2

I∑
i=1

σ2
iji (θ).

Therefore
variance is in O(1/(IR)),
bias is in O(1/R).

For large populations, the bias tends to dominate.
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Application in log-likelihood estimation (cont’d)

The idea to correct the bias if such log-likehood estimation
problems is not new. . .

Similar ideas expressed in Gouriéroux and Monfort (1996),
but using different arguments.
Tsagkanos (2007) suggests using bootstrap bias estimate.
More recently, Kristensen and Salanie (2010) make
comparison between bootstrap, Taylor, and a new method
base on Newton-Raphson. Practical recommendation:
Taylor-based correction.

In practical experiments on mixed-logit models, Bastin and
Cirillo (2010) obtain mitigated results. Why?
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Evaluation of the bias correction

One therefore aims to solve the modified problem

min
x∈X

g(f̂R(x))− B̂R(x).

But. . .
1 the variance of the new objective function could increase,

since

Var
[
g(f̂R(x))− B̂R(x)

]
= Var

[
g
(

f̂R(x)
)]

+ Var
[
B̂R(x)

]
− Cov

[
(g
(

f̂R(x)), B̂R(x)
)]
.

2 Usually, E [B̂R(x)] 6= BR(x) since
1 one neglects high-order terms;
2 most important, typically, E [g′′(fR(x))] 6= g′′(f (x)).

Gains in terms of MSE?
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Bias correction assessment

Var
[
B̂R(x)

]
, Cov

[
g
(

f̂R(x)
)
, B̂R(x))

]
?

No real theoretical clue here. We therefore turn to a more
practical approach: bootstrap.

We consider the realisations ξ1, . . . , ξR. From them, we can
construct the empirical distribution function F̂R of ξ.

We then generate R draws from F̂R of ξ, that is we produce R
draws from {ξ1, . . . , ξR} with replacement, in order to obtain the
new sample

{ξb
1 , . . . , ξ

b
R},

and calculate

B̂b,R(x , ξb
1 , . . . , ξ

b
R) =: B̂b,R(x).
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Bias properties

We take q bootstrap samples at x∗, delivering m values

B̂b1,R(x∗), . . . , B̂bq ,R(x∗)

The variance of the bias estimation can be estimated as

V̂ar
[
B̂b,R

]
,

and its own bias, as

EF̂

[
B̂b,R(x∗)

]
− B̂b,R(x∗).

Note: existence of an improved bootstrap bias estimator.
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Application in discrete choice theory

(Bastin and Cirillo, 2010) 674 individuals, 4089 obs.

Bootstrap analysis at solution with uncorrected log-likelihood.

Nb of draws 500 500 1000 1000 2000 2000
Corr. std corr. std. corr. std. corr.
Mean -3.3186 -3.3078 -3.2964 -3.2903 -3.2830 -3.2787
Std. dev. 0.0066 0.0066 0.0060 0.0061 0.0047 0.0048
Boot. bias -0.0139 -0.0031 -0.0088 -0.0027 -0.0056 -0.0018
Imp. bias -0.0134 -0.0026 -0.0088 -0.0026 -0.0054 -0.0017

Bootstrap analysis at solution with corrected log-likelihood.

Nb of draws 500 500 1000 1000 2000 2000
Corr. std corr. std. corr. std. corr.
Mean -3.3173 -3.3060 -3.2968 -3.2905 -3.2886 -3.2849
Std. dev. 0.0079 0.0080 0.0061 0.0062 0.0046 0.0048
Boot. bias -0.0166 -0.0052 -0.0091 -0.0027 -0.0056 -0.0019
Imp. bias -0.0160 -0.0045 -0.0090 -0.0027 -0.0054 -0.0017

Residual bias is significantly smaller.
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Application in log-likelihood estimation (cont’d)

Taylor-based bias estimator properties

Nb of draws 500 500 1000 1000 2000 2000
Corr. std corr. std. corr. std. corr.
Mean -0.01080 -0.01142 -0.00616 -0.00632 -0.00372 -0.00372
Std. dev. 0.00049 0.00052 0.00036 0.00037 0.00032 0.00032
Bp bias 0.00095 0.00126 0.00065 0.00068 0.00058 0.00058
Imp. bias 0.00097 0.00122 0.00066 0.00070 0.00058 0.00058

Observations:
1 the bias estimator has a small variance, so it impacts the

total variance only marginally;
2 its own bias is small compared to its magnitude.

It is therefore useful in this context.
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Enforcing a positive correlation

One would prefer Cov[(g(f̂R(x)), B̂R(x))] to be positive.

B̂R(x) =
1
2

g′′
(

f̂R(x)
)

V̂ar[f (x , ξ)],

Cheap to evaluate when g′′
(

f̂R(x)
)

is easy to compute. Reuse
of already computed elements usually implies use of common
random numbers: one generates the draws from the same
uniforms Ur , r = 1, . . . ,R.

If the correlation is negative, one can try antithetic variates,
using 1− Ur , r = 1, . . . ,R for BR(x)), but can make the reuse
of previously computed elements less direct.
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Enforcing a positive correlation (cont’d)

Other dataset: 274 individuals, 2466 observations.

Covariance values (200 evaluations at the solution):
common random variables: −1.89e−7.
antithetics: 5.28e−9.

We found the desired sign,. . . but
1 the computational cost for antithetics is twice that for

common random numbers;
2 the covariance is too small to play a significant effect.
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Optimization bias

It is well-known that

E
[
min
x∈X

f̂R(x)

]
≤ min

x∈X
E
[
f̂R(x)

]
= f (x).

Similarly

E
[
min
x∈X

g(f̂R(x))

]
≤ min

x∈X
E
[
g(f̂R(x))

]
= min

x∈X
[g(f (x)) + BR(x)] ,

and

E
[
min
x∈X

(
g(f̂R(x))− BR(x)

)]
≤ min

x∈X
E
[(

g(f̂R(x))− BR(x)
)]

= min
x∈X

g(f (x)).
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Observations

Assume that B̂R(x) = BR(x), and keeps the same sign in the
vicinity of the point of interest (typically a local solution).
We assume this solution to be global in X (or restrict X ).

Removing the simulation bias does not eliminate
optimization bias.
A negative simulation bias will amplify the optimization
bias, if not corrected; a positive simulation bias will play
against the optimization bias.
Difficult to estimate the optimization bias.
Both biases change at different rates with the number of
draws;
Increasing the number of draws typically reduces the bias
contribution in the MSE faster than the variance, both of
them being in O(1/R).

How to evaluate the benefit of the correction?
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Application in discrete choice theory (again)

1041 observations delivered by 173 individuals.

Draws 500 500 1000 1000 2000 2000
Method standard corrected standard corrected standard corrected
Mean -0.01080 -0.01142 -0.00616 -0.00632 -0.00372 -0.00372
Std. Dev. 0.00049 0.00052 0.00036 0.00037 0.00032 0.00032
Boot. bias 0.00097 0.00122 0.00066 0.00070 0.00058 0.00058

Table: Properties of bias estimator, 500 bootstrap replications.
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Figure: Evolution of the log-likelihood optimal value
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A more general picture

Since two bias sources interact, how to evaluate the real
interest of the correction?

Again, bootstrap helps to have a more general picture.

First obtained empirical observations (Bastin and Cirillo, 2011):
the optimisation bias is really the key in some applications.
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Mixed logit example (Bastin and Cirillo, 2011)

Application to panel data collected at Baltimore Washington International
Airport
We also used lattice rules, following Munger, L’Ecuyer, Bastin, Cirillo, and
Tuffin (2011).

Par. LL estimates Bootstrap mean Bootstrap bias
MC nc MC wc Lattice MC nc MC wc Lattice MC nc MC wc Lattice

Wait time 10 -0.619 -0.630 -0.615 -0.614 -0.618 -0.618 -0.004 -0.012 -0.003
Wait time 15 -1.010 -1.022 -1.017 -1.019 -1.025 -1.025 -0.009 -0.003 -0.007
Wait time 20 -1.732 -1.754 -1.740 -1.744 -1.756 -1.753 -0.011 -0.002 -0.013

Cost (m) -1.993 -1.980 -1.997 -2.008 -1.997 -1.999 -0.015 -0.017 -0.002
Cost (sd) 1.797 1.800 1.807 1.815 1.812 1.810 0.018 0.011 0.004

Pass dropp (m) 1.680 1.702 1.708 1.719 1.734 1.728 0.040 0.032 0.020
Pass dropp (sd) 1.589 1.612 1.607 1.563 1.579 1.575 -0.026 -0.033 -0.032

Auto cyb (m) -0.226 -0.230 -0.227 -0.213 -0.218 -0.216 0.013 0.012 0.012
Auto cyb (sd) 1.200 1.226 1.176 1.175 1.195 1.190 -0.026 -0.032 0.014

Human cyb (m) 0.129 0.130 0.139 0.155 0.157 0.155 0.026 0.027 0.017
Human cyb (sd) 0.721 0.731 0.744 0.652 0.654 0.659 -0.070 -0.076 -0.086
Guided way (m) -0.099 -0.099 -0.095 -0.133 -0.134 -0.133 -0.033 -0.032 -0.037
Guided way (sd) 1.029 1.050 1.051 1.035 1.050 1.046 0.007 0.023 -0.005

LL -4.418 -4.414 -4.409 -4.368 -4.366 -4.367 0.050 0.048 0.042

Using RQMC or correcting the simulation bias do not give a big improvement.
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Conclusions

Nonlinear stochastic programming:
Delta theorem ensures consistency under some regularity
conditions;
for finite sample sizes, there is often a simulation bias
(different than optimization bias);
statistical Taylor expansion allows to estimate this bias;
not without drawbacks:

this estimator is typically biased too;
it can result in an increase of the variance;

optimization bias and simulation can counteract.
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Conclusions: maximum likelihood

Lot of efforts put to correct inner simulation bias.
In our experiments, Taylor-based bias estimator worked
well, and has very limited impact on variance.
It seems that we lost the big picture: bias involved by
population sampling.
Data are costly to obtain, and efforts in the literature to
justify small populations. Really a good idea?
More efforts needed on this level.
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