
Monte Carlo Simulation
of Vehicular Traffic Flow

for Kinetic Model
with Distance Oriented Interactions

Aleksandr Burmistrov
Institute of Computational Mathematics and Mathematical Geophysics SB RAS,

Novosibirsk State University, Novosibirsk, Russia.

e-mails: burm@osmf.sscc.ru

Eighth IMACS Seminar on Monte Carlo Methods.

Borovets, Bulgaria, August 29 — September 2

2011



MCM–2011 1

Outline

• Introduction

– Kinetic Models

– Acceleration Oriented Kinetic Model

– Distance Oriented Interactions

• Integral Equation of the Second Kind

• Monte Carlo Estimation of Functionals

• Results

• Conclusion



MCM–2011 2

Introduction

Kinetic Models

Within the kinetic theory VTF is considered as a gas, i.e. as a system of interacting
particles. Every particle in this system corresponds to a certain vehicle. These models are
called mesoscopic due to the fact that they use information of a single vehicle behaviour
as input and produce results of the whole traffic flow.

The most obvious differences of VTF from gas flow are:

• it is organized and mostly one dimensional;

• it is based on a deterministic set of rules;

• it depends (more or less) on individual drivers.
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Main quantity of interest: one-particle probability density f (x, v, a, t), which de-
scribes the state of a car.

f (x, v, a, t)dxdvda is the probability to find a car at place between x and x + dx,
with velocity between v and v + dv, with acceleration between a and a + da at
time t.

Boltzmann kinetic equation:
[

∂

∂t
+

p

m
∇r + F · ∇p

]

f (r,p; t) =

(

∂f

∂t

)

coll

.

The item

(

∂f

∂t

)

coll

is responsible for particle interactions in the system.
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Describing VTF we assume, that the state of a vehicle is determined by a number of
characteristics (x, v, a, . . .).

We say that an interaction took place between two vehicles, if there was any change
in the state of these vehicles.

Assumptions for interactions

• only pair interactions of cars are considered;

• characteristics of leading car are not changed due to an interaction;

• duration of an interaction ≪ time between two interactions;

• the pair state density for two cars decouples into a product of two single car densities
(vehicular chaos).
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Acceleration Oriented Kinetic Model (K.T.Waldeer)

The time scale of changes in acceleration is much smaller than time scale of any other
relevant process. In the model, suggested by K.T. Waldeer, the acceleration variable is
regarded as one of the phase coordinates, describing the state of a car. So, we assume
that

• acceleration of the following car is changed discontinuous.
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For a spatial homogeneous traffic flow the Boltzmann-like equation describ-
ing VTF has the following form

∂f

∂t
+a

∂f

∂v
=

∫

v̄,ā,a′

[Σ(a|v, a′, v̄, ā)f (a′, v, t) − Σ(a′|v, a, v̄, ā)f (a, v, t)] f (ā, v̄, t)dādv̄da′

• We distinguish two types of vehicles: the leader (v̄, ā) and the follower.

• The function Σ(a′ → a|v, ā, v̄) is weighted interaction rate function (which

determines the type of interaction in the system), we introduce it later.

• Boundary condition:

– there are no cars with negative velocities;

– there is a maximum velocity of a VTF, which can not be exceeded.
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Interaction rate function Σ(a′ → a|v, ā, v̄):

Σ(a|a′, v, ā, v̄,mf(t)) =

∞
∫

hmin

σ(a|h, a′, v, ā, v̄) · Q(h, a′, v, ā, v̄) · D(h|a′, v,mf(t)) dh.

• hmin is the minimal distance between two cars at rest, i. e. the mean length of
a car;

• Q(·) is the interaction rate, it depends on a current microscopic state of the
interacting car pair and the distance h between them;

• σ(·) is the probability density of the follower’s acceleration in case when
the interaction between the cars with states (a′, v) and (ā, v̄) takes place at distance
h;

• D(·) is a conditioned probability density of the distance h. It depends
on the follower’s state (a′, v) and a vector mf(t), which value is determined by
some moments of the solution f (such as mean velocity, velocity scattering, mean
acceleration, etc.). Further on the function D(·) will also depend on the car den-
sity K.
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Distance Oriented Interactions

We consider an interaction model with dependence on the distance between cars, and
study stochastic equilibrium distribution with respect to car density K.

• Let us consider simple threshold function H(v) = α · v + hmin.

• Density σ(·) with two possible accelerations a:

σ(a|h, v) = Θ(h − H(v)) · δ(a − a0) + Θ(H(v) − h) · δ(a + a0).

• We choose constant interaction rate: Q = 1/T .
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• Exponential distribution is a good approximation for the density D(·):

D(h) =
1

H̄ − hmin
exp

{

−
h − hmin

H̄ − hmin

}

Θ(h − hmin),

here H̄ is mean distance between interacting cars, i.e. H̄ = 1/K.

• Taking these functions into account we find the form of Σ:

Σ(a′i → ai|vi, aj, vj) = p · Q · δ(a + a0) + (1 − p) · Q · δ(a − a0),

where p = P(h < H(vi)) =
H(vi)
∫

hmin

D(h) dh.

• We can solve equation analytically for given Σ(·):

f (v) =
exp

{

− v
a0T

− 2βe
− v

a0T β

}

a0T (e−2β + β(2β)−βγ(β, 2β))
, β =

H̄ − hmin

αa0T
.
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Integral Equation of the Second Kind

For the given ensemble of N cars we can obtain the following integral equation of the
second kind in the phase space with coordinates (Z, t) = (π = (i, j), A, V, t) for F (Z, t):

F (Z, t) = δ(t)P0(A, V )δ(π0) +

t
∫

0

∫

F (Z ′, t′)K(Z ′, t′ → Z, t) dZ ′
dt′.

(or F = KF + F0) with the following multiplicative kernel K:

K(Z ′, t′ → Z, t) = Kt(t
′ → t|A′, V ′)KV (V ′ → V |A′, t − t′)Kπ(π)Ka(a

′
i → ai|π, V ).

F (Z, t) is a distribution density of the interactions in the system.
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The transition in Markov chain, which is related to the integral equation, consists
of several elementary transitions in the following order:

(A′, V ′, t′) → (A′, V ′, t) → (A′, V, t)
π
−→ (A, V, t)

The transition of the system from the state Z ′ to the state
Z is performed as follows:

1. the instant t of the next interaction in the system is chosen according to the
exponential transition density

Kt(t
′ → t|A′, V ′) = χ(t′ < t)ν(A′, V ′ + A′(t − t′))e

{

−
t
∫

t′
ν(A′,V ′+A′(τ−t′)) dτ

}

,

ν(A, V ) =
1

N − 1

∑

i6=j

∫

Σ(ai → a′′i |vi, vj, aj) da
′′
i =

∑

π

ν(i,j)

N − 1
;
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2. the velocities of all cars are calculated at time t according to the transition density

KV (V ′ → V |A′, t − t′) = δ(V − V ′ − A′(t − t′));

3. the pair number (i, j) is chosen by the probabilities

Kπ(i, j) =
1

N − 1
·

ν(i,j)

ν(A′, V )
;

4. new accelerations of all cars are determined as follows:

• for the car with number i (the follower in the pair (i, j)) its acceleration ai is
changed according to the transition density

Ka(a
′
i → ai|π, V ) = Σ(a′i → ai|vi, aj, vj)/ν(i,j);

• the accelerations of other cars do not change.
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Estimation of Functionals

• The following functionals of one-particle distribution function f are of our interest:

Ih(T ) =

∫ ∫

h(v, a)f (T, v, a) dv da = (h, f ).

• We can prove that

Ih(T ) =

∫

T
∫

0

hN(A, V +A(T−t′)) exp







−

T
∫

t′

ν(A, V + A(τ − t′) dτ







F (Z, t′)dZdt′,

where hN(V,A) = 1
N

N
∑

i=1

h(vi, ai). As a result we have

Ih(T ) = (h̃N , F ).

• For numerical estimation of Ih(T ) we can use the collision estimator or absorption
estimator, which are functionals of the Markov chain trajectory.
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Figure 1: Numerical estimate of the velocity distribution evolution f (v). T = 2.5 s,
hmin = 6.5 m, K = 0.025 m−1, a0 = 0.3 m/s2, α = 1.2 s, σ0 = 1 m/s.
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• Next we will estimate

– the mean velocity;

– the mean square scattering of the velocity;

– the flow density.

• We simulated M = 102 trajectories of the system of N = 102 vehicles, using the
following parameters:

T = 2.5 s, hmin = 6.5 m,

α1 = 1.2 s, α2 = 1.5 s, α3 = 1.8 s,

a01 = 0.05 m/s2, a02 = 0.1 m/s2, a03 = 0.2 m/s2.

• In Fig. 2-4 we present the estimates of functionals for nine sets of the parameters
(α, a0). The correspondence of the curves in the graphs is the following:

1 ∼ (α1, a01), 2 ∼ (α1, a02), 3 ∼ (α1, a03),

4 ∼ (α2, a01), 5 ∼ (α2, a02), 6 ∼ (α2, a03),

7 ∼ (α3, a01), 8 ∼ (α3, a02), 9 ∼ (α3, a03).
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Figure 2: Numerical estimate of the mean velocity V dependence on car density K.
(h(a, v) = v)
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Figure 3: Numerical estimate of the mean square scattering σV dependence on car density
K. (h(a, v) = v2)
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Figure 4: Numerical estimate of the flow density dependence K · V on car density K
(Fundamental diagram).
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Conclusion

1. Numerical results show the efficiency of transition to the basic integral equation
and Markov chain simulation in VTF problems.

2. The transition presented here enables us to study parametric dependencies of func-
tionals of our interest and apply various techniques to reduce computational costs.

Possible directions for future studies:

• more realistic interaction profiles (including random parameters);

• mixture of both driver behaviors and vehicle classes;

• multilane traffic with overtaking;

• cluster formation on the road;

• spatial inhomogeneity.
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