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Abstract

In this paper a second degree iterative Monte Carlo method for solving Systems of
Linear Algebraic Equations and Matrix Inversion is presented. Comparisons are made
with iterative Monte Carlo methods with degree one. It is shown that the mean value
of the number of chains N , and the chain length T , required to reach given precision

can be reduced. The following estimate on N is obtained N = Nc/
(
cN + bN

1/2
c

)2
,

where Nc is the number of chains in the usual degree one method. In addition it is
shown that b > 0 and that N < Nc/c2

N . This result shows that for our method the
number of realizations N can be at least c2

N times less than the number of realizations
Nc of the existing Monte Carlo method.

For parallel implementation, i.e. regular arrays or MIMD distributed memory ar-
chitectures, these results imply faster algorithms and the reduction of the size of the
arrays. This leads also in applying such methods to the problems with smaller sizes,
since until now Monte Carlo methods are applicable for large scale problems and when
the component of the solution vector or element or row of the inverse matrix has to be
found.
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1 Introduction

The problem under consideration is that of inverting a matrix A or solving systems of linear
algebraic equations of the form

Au = b, IR

by the Monte Carlo method, where
A is a square n× n matrix;
u = (u1, u2, . . . , un)T is a n× 1 solution vector, and
b = (b1, b2, . . . , bn)T is a given vector.
Clearly the two problems are equivalent because given A−1, the solution to Au = b is

u = A−1b. Normally the direct construction of A−1 is avoided because of ill-conditioning
It is known that Monte Carlo methods give statistical estimates for the elements of the

inverse of the matrix or for components of the solution vector of a linear system by performing
random sampling of a certain chance variable whose mathematical expectation is the desired
solution [HH64], [So73], [W68]. Moreover, the same algorithmic cost is needed for estimating
a linear functional of the solution vector (for example, an inner product of a given vector
with the solution vector of the linear algebraic system) [DT90], [DT93b] .

In general Monte Carlo numerical methods may be divided into two classes- direct
methods and iterative ones. The direct methods estimate the solution of the equation in a
finite number of steps, and contain only a stochastic error. A direct Monte Carlo method is,
for example, the interpolation Monte Carlo method for evaluating integrals [HH64], [So73].
Iterative Monte Carlo methods begin with an approximate solution and obtain an improved
solution with each step of the method. In principle they require an infinite number of steps
to obtain an exact solution, but usually we will be happy with an approximation to say t
significant figures for which there are two types of errors - stochastic and systematic. The
systematic error depends on the number of iterations performed, and of the characteristic
values of the matrix, while the stochastic errors depend on the probabilistic nature of the
method.

Iterative methods are preferred for solving large sparse systems (such as those arising
from approximations of partial differential equations). Such methods are good for dominant-
diagonal systems in which convergence is rapid. They are not so useful for dense matrices.

To place the discussion in the correct mathematical framework, define an iteration of
degree j as a function of the form

u(k+1) = Fk(A, b, u(k), u(k−1), . . . , u(k−j+1)),

where u(k) is the n-component vector obtained from the kth iteration. It is desired that

u(k) → u = A−1b as k →∞.

Usually the degree j is kept small because of storage requirements. The iteration is called
stationary if Fk = F for all k: that is, Fk is independent of k.

The iterative Monte Carlo process is linear if Fk is a linear function of uk, . . . , u(k−j+1) .
The systematic error is the most interesting to us. We will analyse the systematic error by
using a special mapping procedure.
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Monte Carlo methods are very efficient when parallel processors or parallel computers are
available, because the methods are inherently parallel and have loose dependencies. Indeed,
in the first paper on the Monte Carlo method [MU49] it was noted that ”the statistical
methods can be applied by many computers working in parallel and independently”.

We concentrate on the Monte Carlo method applied to matrix inversion (MI) and system
of linear algebraic equations (SLAE), since only O(NT ) steps are required to find an ele-
ment of the inverse matrix or component of the solution vector, where N the mathematical
expectation of the number of chains and T a measure on the chain length in the stochastic
process are independent of n. Thus, for sufficiently large n the Monte Carlo approach is
theoretically more efficient [C56]. Note that the direct methods of solution require O(n3)
sequential steps (for dense matrices) when some elimination or annihilation scheme (e.g non-
pivoting Gaussian Elimination, Gauss-Jordan methods) are employed [BT88]. As a result,
the computation time for large problems or real-time problems is prohibitive and prevents
the use of many established algorithms and results.

There are still very few results in the area of parallel Monte Carlo methods for Linear
Algebra problems. Some regular arrays for matrix inversion and finding a solution vector of
system of linear algebraic equations by Monte Carlo method have been recently derived by
Megson, Alexandrov, Dimov [MAD93, MAD94a, AM96]. Regular arrays for matrix inversion
that have been derived from affine and uniform recurrences using linear timing schedules
have received considerable attention in the literature [D88, EA89, KLL87, M92]. Most of
the methods are based on variations of the Gauss-Jordan algorithm, or triangularization with
the assumption that the matrix being inverted is diagonally dominant or positive definite
so that no pivoting is required. If no data is duplicated in the array then approximately 5n
steps and O(n2) processors are required for matrix inversion. If data duplication is allowed,
then 4n steps and O(n2) processors are possible. In [MAD93] the authors demonstrated
the existence of an array which required O(n4) cells and a time bounded above by 4n: in
fact, an array with O(n2NT ) cells and time 3n/2 + N + T was constructed. In [MAD94a]
these results were extended to derive a fixed size array independent of n: this array requires
m2 + 2m1 + T + N − 1 time steps and (m2 + 2)TN cells for a single row of the inverse where
m1m2 = n2, N is the mathematical expectation of the number of chains required to reach
given precision, and T is the mathematical expectation of chain length in the stochastic
process and n is the matrix order. When m2 = m and m1 = n2/m for m > 0 a constant, the
matrix can be restructured to produce a run-time of n2/m+2m+T +N −1 and (m+2)TN
cells. A simple re-timing produces a multi-pass organisation requiring only (m + 2)T cells
with the effective length of m2 = Nn2/m.

Parallel Monte Carlo methods with reduced probable error for MI running on cluster
of workstations under PVM have been developed by Alexandrov and Lakka [AL96]. Some
comparison of parallel Monte Carlo methods for MI can be found in [L95]. The algorithms
have very high efficiency, above 0.9.

In this paper we continue the work in [MAD93] by exploiting Monte Carlo methods
with minimum probable error. We introduce a new mathematical framework, that develops
an alternative Monte Carlo method, which produces a reduction in N and T making it
applicable to smaller size matrices. In particular, we present a new iterative Monte Carlo
method with high convergence rate. In comparison with existing Monte Carlo methods
(which are stationary iterative methods of degree j = 1) the new one has degree j = 2.
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This method allows a smaller number of iterations (respectively, smaller T ) for reaching a
given error. In addition, when the Neumann series does not converge (for example, when
the norm of the matrix is 1 - such as in the case where the Laplacian operator is employed)
our method can still be applied.

2 Formulation

Consider a general description of the Monte Carlo method. Let X be a Banach space of
real-valued functions. Let f = f(x) ∈ X and uk = u(xk) ∈ X be defined in Rn and L = L(u)
be a linear operator defined on X.

Consider the sequence u1, u2, ..., defined by the recursion formula

uk = L(uk−1) + f, k = 1, 2, . . . (1)

The formal solution of (1) is the truncated Neumann series

uk = f + L(f) + . . . + Lk−1(f) + Lk(u0), k > 0 , (2)

where Lk means the k-th iterate of L.
A special case is when the corresponding infinite series converges. Then the sum is an

element u from the space X which satisfies the equation

u = L(u) + f. (3)

The truncation error of (2) is thus

uk − u = Lk(u0 − u). (4)

Let J(uk) be a linear functional that is to be calculated, and consider the spaces

Ti+1 = Rn ×Rn × . . .×Rn

︸ ︷︷ ︸
i times

, i = 1, 2, . . . , k , (5)

where ”×” denotes the Cartesian product of spaces.
Random variables θi, i = 0, 1, . . . , k are defined on the respective product spaces Ti+1

and have conditional mathematical expectation:

Eθ0 = J(u0), E(θ1/θ0) = J(u1), . . . , E(θk/θ0) = J(uk). (6)

The computational problem then becomes one of calculating repeated realisations of θk and
combining them into an appropriate statistical estimator for J(uk). As an approximate value
of the linear functional J(uk), form

J(uk) ≈ 1

N

N∑

s=1

{θk}s , (7)

where {θk}s is the s-th realisation of the random variable θk. The probable error rN of (7)
[EM82] is then

rN = c s(θk)N
− 1

2 , (8)
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where c ≈ 0.6745 and s(θk) is the standard deviation of the random variable θk.
Clearly it follows from (8) that if we find a method to reduce s(θk) then the number of

realizations to achieve a given probable error is reduced.
There are two interesting special cases of the operator L:
(i) L is an ordinary integral transform

L(u) =
∫

G
k(x, y)u(y)dy ; (9)

(ii) L is a matrix and u and f are vectors.
In the first case equation (3) becomes :

u(x) =
∫

G
k(x, y)u(y)dy + f(x) . (10)

and the random variable whose mathematical expectation coincides with J(u) is given
by

θ[h] =
h(ξ0)

p(ξ0)

∞∑

j=0

Qjf(ξj) , (11)

where Q0 = 1; Qj = Qj−1
k(ξj−1, ξj)

p(ξj−1, ξj)
, j = 1, 2, . . . , and ξ0, ξ1, . . . is a Markov chain in G with

initial density function p(x) and transition density function p(x, y).
For the second case, the linear operator L is a matrix and equation (2) can be written in

the following form :

uk = Lku0 + Lk−1f + . . . + Lf + f = (I − Lk)(I − L)−1f + Lku0 , (12)

where I is the identity matrix; L = (lij); u0 = (u0
1, . . . , u

0
n) and matrix I − L is supposed to

be non-singular.
It is well known that if all eigenvalues of the matrix L lie within the unit circle of the

complex plane there exists a vector u such that

u = lim
k→∞

uk , (13)

which satisfies the equation
u = Lu + f. (14)

Now consider the problem of evaluating the inner product

J(u) = (h, u) =
n∑

i=1

hiui , (15)

where h ∈ Rn is a given vector .
The following random variable can now be constructed:

θ[h] =
hk0

p0

∞∑

ν=0

Qνfkν , (16)
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where

Q0 = 1; Qν = Qν−1
lkν−1,kν

pkν−1,kν

, ν = 1, 2, . . .

and k0, k1, . . . is a Markov chain on elements of the matrix L constructed by using initial
probability p0 and transition probability pkν−1,kν for choosing the element lkν−1,kν of the
matrix L.

Consider the following system of linear equations:

Au = b , (17)

where b = (b1, . . . , bm) is an m-dimensional vector.
Clearly it is possible to choose a non singular matrix M such that

MA = I − L (18)

and
Mb = f (19)

and then (17) becomes
MAu = Mb. (20)

The last equation is equivalent to (15). If matrices M and A are both non-singular and L
has its eigenvalues all inside the unit circle, then (16) becomes a stationary linear iterative
process. As a result the convergence of the Monte Carlo method depends on the truncation
error of (12).

3 Convergence and mapping

To analyse the convergence of the Monte Carlo method consider the functional equation:

u− λLu = f, (21)

where λ is some parameter. Define a resolvent operator Rλ by equation

I + λRλ = (I − λL)−1, (22)

where I is identity operator.
Let λ1, λ2, . . . be the characteristic values (or eigenvalues) of equation (21), where

|λ1| ≤ |λ2| ≤ . . .

Monte Carlo algorithms are based on representation

u = (I − λL)−1f = f + λRλf, (23)

where
Rλ = L + λL2 + . . . , (24)
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Obviously the resolvent operator Rλ exists if the sequence (24) converges. The systematic
error of the presentation (24) when m terms are used is

rs = O[(|λ|/|λ1|)m+1mρ−1], (25)

where ρ is the multiplicity of the roots of λ1.
From (25) is follows that when λ is approximately equal to λ1 the sequence (24) (and the

corresponding Monte Carlo algorithm) converges slowly. When λ ≥ λ1 the algorithm does
not converge. Obviously, the representation (24) can be used for λ : |λ| < |λ1|.

Thus, there are two problems to consider.

Problem 1. How can the convergence of the Monte Carlo algorithm be accel-
erated when the corresponding Neumann series converges slowly,

and

Problem 2. How can a Monte Carlo algorithm be constructed, which corre-
sponds to the resolvent of

(I − λL)−1f

when the sequence (24) does not converge.

To answer these questions we apply a mapping of the spectral parameter λ in (21) .
The method follows a similar approach used by E. Gursa, L. Kantorovich & V. Krilov and
K. Sabelfeld [Sa89] for integral equations. In Kantorovich & Krilov the mapping approach
is used for solving some problems of numerical analysis. To extend these results we have
to show that the mapping approach can be extended for any linear operators (including
matrices).

Consider the problem of constructing the solution of (21) for λ ∈ D and λ 6= λk, k =
1, 2, . . ., where the domain D lies inside the definition domain of the Rλf , such that all
characteristic values are outside of the domain D. In the neighbourhood of the point λ = 0
(λ = 0 ∈ D) the resolvent can be expressed by the series

Rλf =
∞∑

k=0

ckλ
k, (26)

where
ck = Lk+1f. (27)

Consider variable α in the unit circle ∆(|α| < 1) on the complex plane. The function

λ = ψ(α) = a1α + a2α
2 + . . . , (28)

maps the domain ∆ into D. It is possible to use the resolvent:

Rψ(α)f =
∞∑

j=0

bjα
j , (29)

where

bj =
j∑

k=1

d
(j)
k ck (30)
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and

d
(j)
k =

1

j!

[
∂j

∂αn
[ψ(α)]k

]

α=0

. (31)

Clearly, the domain D can be so chosen that it is possible to map the value λ = λ∗ into
point α = α∗ = ψ−1(λ∗) for which the sequence (29) converges. Hence the solution of the
functional equation (21) can be presented in the form:

u = f + λ∗Rψ(α∗)f, (32)

where the corresponding sequence for Rψ(α)f converges absolutely and uniformly in the
domain ∆ .

This approach is also helpful when the sequence (24) converges slowly.
For example, assume that all eigenvalues λk are real and λk ∈ (−∞,−a], where a > 0 .

Consider a mapping for the case of interest (λ = λ∗ = 1):

λ = ψ(α) =
4aα

(1− α)2
. (33)

The sequence Rψ(α)f for the mapping (33) converges absolutely and uniformly.
In Monte Carlo calculations we keep m terms of the sequence (29):

Rλ∗f ≈
m∑

k=1

bkα
k
k =

m∑

k=1

αk
∗

k∑

i=1

d
(k)
i ci =

m∑

k=1

g
(m)
k ck, (34)

where

g
(m)
k =

m∑

j=k

d
(j)
k αj

∗. (35)

and the coefficients
d

(j)
k = (4a)kqk,j (36)

and g
(m)
k can be calculated at advance. The calculated coefficients d

(j)
k for the mapping (33)

are presented in table 1 (for k, j ≤ 9) .
It is easy to see that coefficients qk,j are combinations of the following type:

qk,j = C2k−1
k+j−1. (37)

For calculating iterations ck = Lk+1f a Monte Carlo method must be used. It is easy to
see that

g
(m)
k ≤ 1. (38)

In fact
lim

m→∞ g
(m)
k = 1 (39)

and d
(n)
k and αn

∗ are both positive. So g
(m)
k increases for any fixed k when m increases. Thus,

|g(m)
k | ≤ 1 for any k,m = 1, 2, . . .

The mapping (33) creates the following Monte Carlo iteration process

u0 = f
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k/j 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 1 4 10 20 35 42 84 120
3 1 6 21 56 126 252 462
4 1 8 36 120 330 792
5 1 10 55 220 715
6 1 12 78 364
7 1 14 105
8 1 16
9 1

Table 1: Table of the coefficients qk,j = (4a)−kd
(j)
k for k, j ≤ 9

u1 = 4aLu0

u2 = 4aLu1 + 2u1 (40)

u3 = 4aLu2 + 2u2 − u1

uj = 4aLuj−1 + 2uj−1 − uj−2, j > 2.

and from (40) we have

u(m) = 4aαLu(m−1) + 2αu(m−1) − α2u(m−2) + f(1− α2), m > 2. (41)

4 The Method

Suppose we have a Markov chain with m states. The random trajectory (chain) Ti of length
i starting in the state k0 is defined as follows:

k0 → k1 → · · · → kj → · · · → ki, (42)

where kj means the number of the state chosen, for j = 1, 2, · · · , i.
Assume that

P (k0 = α) = pα, P (kj = β|kj−1 = α) = pαβ, (43)

where pα is the probability that the chain starts in state α and pαβ is the transition probability
to state β after being in state α. Probabilities pαβ define a transition matrix P . We require
that

n∑

α=1

pα = 1,
n∑

β=1

pαβ = 1, for any α = 1, 2, ..., n. (44)

Suppose the distributions created from the density probabilities pα and pαβ are accept-
able, according to the following definition:

The distribution (pk1 , ..., pkm)t is acceptable to vector h, and similarly that the distribution
pkν−1,kν is acceptable to L [So73], if

{
pkν > 0 when hkν 6= 0
pkν ≥ 0 when hkν = 0

(45)
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{
pkν−1,kν > 0 when lkν−1,kν 6= 0
pkν−1,kν ≥ 0 when lkν−1,kν = 0

(46)

Now consider the problem of evaluating the inner product J(u) = (h, u) =
∑n

α=1 hαuα of a
given vector h with the vector solution of the system (15).

Define the random variable θ∗[h]:

θ∗[h] =
hk0

p0

m∑

ν=0

g(m)
ν Qνfkν , (47)

where Q0 = 1; g
(m)
0 = 1;

Q0 = 1; Qν = Qν−1
lkν−1,kν

pkν−1,kν

, ν = 1, 2, . . .

(k0, k1, k2, . . . is a Markov chain in Rn with initial density function pk0 and transition density

function pkν−1,kν ) and coefficients g
(m)
j are defined by (35) for j ≥ 1.

The following theorem can be proved:

Theorem 4.1 Consider matrix A, whose Neumann series (24) does not converge. Let (33)
be the required mapping, so that the presentation (34) exists. Then

E

{
lim

m→∞
hk0

p0

m∑

ν=0

g(m)
ν Qνfkν

}
= (h, u).

Sketch of proof:
First consider the density of the Markov chain k0 → k1 → . . . → ki as a point in

n(i + 1)-dimensional Eucledian space Ti+1 = IRn × . . .× IRn

︸ ︷︷ ︸
i+1

:

P{k0 = t0, k1 = t1, . . . , ki = ti} = p0pt0t1pt1t2 . . . pti−1ti .

Now calculate the mathematical expectation of the random variable

hk0

p0

g(m)
ν Qνfkν .

From the definition of the mathematical expectation and presentations (45), (46), (47)
it follows:

E

{
hk0

p0

g(m)
ν Qνfkν

}
=

n∑

t0,...,tν=1

ht0

p0

g(m)
ν Qνftνp0pt0t1 . . . ptν−1tν =

n∑

t0,...,tν=1

ht0lt0t1lt1t2 . . . ltν−1tνftν = (h, Lνf).

The existence and convergence of the sequence (35) ensures the following presentations:

n∑

ν=0

E

∣∣∣∣∣
hk0

p0

g(m)
ν Qνfkν

∣∣∣∣∣ =
n∑

ν=0

(|h|, |L|ν |f |) =

(
|h|,

n∑

ν=0

|L|ν |f |
)

,
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E

{
lim

m→∞
hk0

p0

m∑

ν=0

g(m)
ν Qνfkν

}
=

∞∑

ν=0

E

{
hk0

p0

g(m)
ν Qνfkν

}
=

∞∑

ν=0

(h, Lνf) = (h, u).

This theorem permits use of the random variable θ∗m[h] for calculating the inner product
(15).

For calculating one component of the solution , for example the ”r”th component of u,
we must choose

h = e(r) = (0, ..., 0, 1, 0, ..., 0), (48)

where the one is in the ”r”th place. It follows that

(h, u) =
n∑
α

eα(r)uα = ur

and the corresponding Monte Carlo method is given by

ur ≈ 1

N

N∑

s=1

θ∗m[e(r)]s, (49)

where N is the number of chains and

θ∗m[e(r)]s =
m∑

ν=0

g(m)
ν Qνfkν ; (50)

Qν =
lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

. (51)

To find the inverse C = {crr′}n
r,r′=1 of some matrix A, we must first compute the elements of

matrix
L = I − A, (52)

where I is the identity matrix. Clearly, the inverse matrix is given by

C =
∞∑

i=0

Li, (53)

which converges if ‖L‖ < 1 . If this condition is not satisfied or if the corresponding Neumann
series converges slowly, we can use the same technique for accelerating the convergence of
the method.

To estimate the element crr′ of the inverse matrix C, let the vector f (21) be the following
unit vector

fr′ = e(r′). (54)

Theorem 4.2 Consider matrix A, whose Neumann series (24) does not converge. Let (33)
be the required mapping, so that presentation (34) exists. Then

E

{
lim

m→∞

m∑

ν=0

g(m)
ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

fr′

}
= crr′ .
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Sketch of proof:
The proof is similar to the proof of Theorem 4.1, but in this case we need to consider an

unit vector e(r) instead of vector h and vector e(r′) instead of fkν :

E

{
e(r)

1
g(m)

ν Qνfkν

}
= (e(r), Lνf) = (Lνf)r .

So, in this case the ”r”-th component of the solution is estimated:

ur =
n∑

ν=1

crifi

When fr′ = e(r′), one can get:
ur = crr′ ,

that is:

E

{
lim

m→∞

m∑

ν=0

g(m)
ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1kν

e(r′)

}
=

=
∞∑

ν=0

E

{
g(m)

ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1kν

e(r′)

}
=

∞∑

ν=0

(e(r), Lνe(r′)) =

=

(
e(r),

∞∑

ν=0

Lνe(r′)

)
=

n∑

i=1

crie(r
′) = crr′ .

This theorem permits use of the following Monte Carlo method for calculating elements
of the inverse matrix C:

crr′ ≈ 1

N

N∑

s=1




m∑

(ν|kν=r′)
g(m)

ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν


 , (55)

where (ν|kν = r′) means that only the variables

W (m)
ν = g(m)

ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

(56)

for which kν = r′ are included in the sum (52).
Since W (m)

ν is included only into the corresponding sum for r′ = 1, 2, . . . , n, then the same
set of N chains can be used to compute a single row of the inverse matrix, an important
saving in computation which is used later.

5 Balancing of errors

Two types of errors, systematic and stochastic, can occur in Monte Carlo methods, and
achieving a balance between these two types of error is necessary. Clearly, to obtain good
results the stochastic (probable) error must be approximately equal to the systematic one
and so
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rN = O(rs).

The problem of balancing the error is closely connected with the problem of obtaining
an optimal ratio between the number of realizations N of the random variable and the mean
value T of the number of steps in each random trajectory m.

Let us consider the case when our method is applied to Problem 1. Using the procedure
of mapping and a random variable , defined by (52), we accelerate the convergence of the
method proposed by Curtiss [C54],[C56]. This means, that for a fixed number of steps m,

rs(m) < r(C)
s (m), (57)

where r(C)
s (m) is the systematic error of the Curtiss method and rs(m) is the systematic

error of our method. A similar inequality holds for the probable errors. From g
(m)
k in (52) it

follows that
σ(θ∗) < σ(θ) (58)

and thus
rN(σ(θ∗)) < r

(C)
N (σθ) (59)

where r
(C)
N is the probable error for the Curtiss method.

Next consider the general error

R = rN(σ) + rs(m) (60)

for matrix inversion by our Monte Carlo approach. Let R be fixed. Obviously from (57) and
(58) it follows that there exist constants cs > 1 and cN > 1, such that

r(C)
s (m) = csrs,

r
(C)
N (σ) = cNrN .

Since we consider the problem of matrix inversion for a fixed general error R, we have:

R = R(C) = r
(C)
N (σ) + r(C)

s (m) = cNrN(σ) + csrs(m). (61)

The last presentation shows that in our method we can reduce one (say N) or both parameters
N and T = E(m). In fact,

cσ(θ)/N1/2
c + r(C)

s (m) = ccNσ(θ∗)/N1/2
c + csrs(m)

= cσ(θ∗)/N1/2 + rs(m), (62)

or
cσ(θ∗)/N1/2 = ccNσ(θ∗)/N1/2

c + (cs − 1)rs(m) (63)

and
1

N1/2
=

cN

N
1/2
c

+
(cs − 1)rs(m)

cσ(θ∗)
, (64)

where Nc is the number of realizations of the random variable for the Curtiss method.
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Denote by b the following strongly positive variable:

b =
(cs − 1)rs(m)

cσ(θ∗)
> 0. (65)

From (64) and (65)

N =
Nc(

cN + bN
1/2
c

)2 . (66)

Alltough result (66) is an exact result, in practice it may be difficult to estimate rs(m)
exactly. In such cases by employing the conditions b > 0 (65), we can obtain the following
estimate for N :

N <
Nc

c2
N

. (67)

This last result shows that for our method the number of realizations N can be at least c2
N

times less than the number of realizations Nc of the existing method.

6 Discussion

Consider some estimates of N and T . Using an almost optimal frequency function, and
according to the principal of collinearity of norms [ID91] and [MAD93], we choose pαβ pro-
portional to the |aαβ|. Depending on estimates of the convergence of the Neumann series,
one of the following stopping rules can be selected to drop Markov chains:

(i) when |W (m)
ν | < δ

or
(ii) when a chain enters an absorbing state [C54, C56, FL50].
In the first case this leads to a small bias.
For the Monte Carlo method without absorbing states (MWA) ( fkj

= δkjβ in
(56), if αβ-th entry of inverse matrix is computed) the bounds on T and DΘ∗ are

T ≤ | log δ|
| log ‖L‖|

and

DΘ∗ ≤ ‖ϕ‖2

(1− ‖L‖)2
≤ 1

(1− ‖L‖)2
.

Consider Monte Carlo methods with absorbing states (MA) [C54, C56, FL50], where
η∗[g] means a random variable ηT [g] (T is the length of the chain when absorption take place)
taken over infinitely long Markov chain.

The bounds on T and Dη∗[g] [C54, C56] if the chain starts in state r = α and pαβ = |lαβ|,
for α, β = 1, 2, ..., n are

E(T |r = α) ≤ 1

(1− ‖L‖) ,

and

Dη∗[g] ≤ 1

(1− ‖L‖)2
.
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According to the Central Limit Theorem

N ≥ 0.67452

ε2
Dη∗[g]

for the given error ε. Thus

N ≥ 0.67452

ε2

1

(1− ‖L‖)2

is a lower bound on N .
ε δ ‖L‖ Tmin Tmax N ‖L‖ Tmin Tmax N

0.4 0.1 0.9 7 16 284 - 2500 0.5 0 4 11 - 100
0.3 0.1 0.9 6 17 505 - 4444 0.5 0 4 20 - 177
0.2 0.1 0.9 6 17 1137 - 10000 0.5 0 4 45 - 399
0.1 0.1 0.9 7 17 4549 - 40000 0.5 0 4 181 - 1599
0.05 0.05 0.9 10 21 18198 - 160000 0.5 0 5 727 - 6398

Table 2: Method without absorbing states

Accepting low precision solutions (e.g. 10−2 < ε < 1), it is clear that n >> N as n 7→ ∞.
Consider N and T as functions of

1

(1− ‖L‖) .

In both methods T is bounded by O(
√

N), since in MWA

T <
√

N
ε| log δ|
0.6745

and in MA
T ≤

√
N

ε

0.6745
.

Results in [DT93] show that for sufficiently large N , T ≈ √
N . Results of experiments for

different matrix norms ‖L‖ and precision ε are outlined in Table 2.
From the above results and discussion, it is clear that the parameters N and T can be

reduced by using our new method. N can be at least less than Nc/c
2
N , i.e. c2

N times less
than the number of realizations Nc of the existing method. Furthermore, if we can ensure
such mapping that ‖L‖ ≤ const < 1− ε1, where 1/2 ≤ ε1 < 1 we can bound the parameter
T by some constant and therefore reduce dramatically the computations.

7 Conclusion

In this paper we introduce a new mathematical framework, that develops an alternative
Monte Carlo method, which produces a reduction in number of chains N and chain length
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T making the algorithms applicable to smaller size matrices. In particular, we present a new
iterative Monte Carlo method with high convergence rate. In comparison with existing Monte
Carlo methods, which are stationary iterative methods of degree j = 1, the new method
has degree j = 2. This method allows use of a smaller number of iterations (and smaller
T ) for reaching a given error. In addition, when the Neumann series does not converge (for
example, when the norm of the matrix is 1 such as when the Laplacian operator is employed)
our method can still be applied.

A comparison with iterative Monte Carlo methods with degree one for the same problems
is made. It is shown that both the number of chains N , and their length T can be reduced

for a given error. For example, N can be estimated by N = Nc/
(
cN + bN1/2

c

)2
, where Nc

is number of chains in the existing degree one method. Since b > 0, N < Nc/c
2
N Thus for

our method the number of realizations N can be at least c2
N times less than the number of

realizations Nc of the existing method.
Furthermore if we can ensure that ‖L‖ ≤ const < 1 − ε1, where 1/2 ≤ ε1 < 1, we can

bound the parameter T by some constant and therefore reduce dramatically the number of
computations.

The presented method has the following advantages: In respect to parallel implementa-
tions, it will lead to competitive efficient Monte Carlo methods for solving the above problems
for matrices with smaller sizes; for regular array designs, this will lead to faster arrays than
those based on the existing direct methods.

Acknoledgements: The authors are grateful to the Royal Society, UK for the financial
support and to Professor G.M. Megson for the fruitful discussions.
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