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Abstract. In this work we study the computational complexity of a class of grid
Monte Carlo algorithms for integral equations. The idea of the algorithms consists
in an approximation of the integral equation by a system of algebraic equations.
Then the Markov chain iterative Monte Carlo is used to solve the system. The
assumption here is that the corresponding Neumann series for the iterative matrix
does not necessarily converge or converges slowly. We use a special technique
to accelerate the convergence. An estimate of the computational complexity of
Monte Carlo algorithm using the considered approach is obtained. The estimate
of the complexity is compared with the corresponding quantity for the complexity
of the grid-free Monte Carlo algorithm. The conditions under which the class of
grid Monte Carlo algorithms is more efficient are given.

1 Introduction

Monte Carlo method (MCM) is established as a powerful numerical approach for inves-
tigation of various problems (evaluation of integrals, solving integral equations, bound-
ary value problems) with the progress in modern computational systems. In this paper,
a special class of integral equations obtained from boundary value problems for ellip-
tic partial differential equations is considered. Many problems in the area of environ-
mental modeling, radiation transport, semiconductor modeling, and remote geological
sensing are described in terms of integral equations that appear as integral represen-
tation of elliptic boundary value problems. Especially, the approach presented in this
paper is of great importance for studying environmental security. There are different
Monte Carlo algorithms (MCAs) for solving integral equations. A class of grid Monte
Carlo algorithms (GMCAs) falls into the range of the present research. The question:
Which Monte Carlo algorithm is preferable to solve a given problem? is of great impor-
tance in computational mathematics. That is why the purpose of this paper is to study
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the conditions under which the class of algorithms under consideration solves a given
problem more efficiently with the same accuracy than other MCAs or is the only ap-
plicable. Here we compare the efficiency of grid MCAs with known grid-free Monte
Carlo algorithms (GFMCAs), called spherical process (see [5]). A measure of the ef-
ficiency of an algorithm is its complexity (computational cost), which is defined as the
mean number of operations (arithmetic and logical) necessary for computing the value
of the random variable for a transition in a Markov chain.

2 Formulation of the Problem

We consider a special class of Fredholm integral equations that normally appears as an
integral representation of some boundary-value problems for differential equations. As
an example which has many interesting applications we consider an elliptic boundary
value problem:
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Mu = −φ(x), x ∈ Ω ⊂ R
d,

u = ω(x) x ∈ ∂Ω,
(1)
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+ vi(x)

∂
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+ w (x), x = (x(1), x(2), . . . , x(d)).

Definition 1. The domain Ω belongs to the class A(n,ν) if it is possible to associate
a hypersphere Γ (x) with each point x ∈ ∂Ω, so that the boundary ∂Ω can be pre-
sented as a function z(d) = ζ(z(1), . . . , z(d−1)) in the neighborhood of x for which
ζ(n)(z(1), z(2), . . . , z(d−1)) ∈ C(0,ν), i.e. |ζ(n)(z1) − ζ(n)(z2)| ≤ const |z1 − z2|ν ,

where the vectors z1 = (z(1)
1 , z

(2)
1 , . . . , z

(d−1)
1 ) and z2 = (z(1)

2 , z
(2)
2 , . . . , z

(d−1)
2 ) are

(d − 1)-dimensional vectors and ν ∈ (0, 1].

If in the bounded domain Ω̄ ∈ A(1,ν) the coefficients of the operator M satisfy the
conditions vj , w(x) ∈ C(0,ν)(Ω̄), w(x) ≤ 0 and φ ∈ C(0,ν)(Ω)∩C(Ω̄), ω ∈ C(∂Ω),
the problem (1) has an unique solution u(x) ∈ C2(Ω) ∩ C(Ω̄). The conditions for
uniqueness of the solution can be found in [9].

An integral representation of the solution is obtained using the Green’s function for
standard domains B(x), x ∈ Ω (for example - sphere, ball, ellipsoid), lying inside the
domain Ω taking into account that B(x) satisfies required conditions (see [9]). There-
fore, the initial problem for solving an elliptic differential task (1) is transformed into
the following Fredholm integral equation of the second kind with a spectral parameter
λ (K is an integral operator, K : Lp �−→ Lp):

u(x) = λ

∫

B(x)
k(x, t)u(t) dt + f(x), x ∈ Ω (or u = λKu + f), (2)

where k(x, t) and f(x) are obtained using Levy’s function and satisfy:

k(x, t) ∈ Lx
p(Ω)

⋂

Lt
q(B(x)), f(x) ∈ Lp(Ω), p, q ∈ Z, p, q ≥ 0,

1
p

+
1
q

= 1.

The unknown function is denoted by u(x) ∈ Lp(Ω), x ∈ Ω, t ∈ B(x).
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We are interested in Monte Carlo method for evaluation with a priori given error ε
of linear functionals of the solution of the integral equation (2) of the following type:

J(u) =
∫

Ω

ϕ(x)u(x) dx = (ϕ, u) for λ = λ∗. (3)

It is assumed that ϕ(x) ∈ Lq(Ω), q ≥ 0, q ∈ Z.

3 A Class of Grid Monte Carlo Algorithms for Integral Equations

The investigated grid Monte Carlo approach for approximate evaluating of the linear
functional (3) is based on the approximation of the given integral equation (2) by a
system of linear algebraic equations (SLAE). This transformation represents the ini-
tial step of the considered class of grid MCAs. It is obtained using some approximate
cubature rule (cubature method, Nystrom method, [1,7]). The next step is to apply the
resolvent MCA [2,3] for solving linear systems of equations.

3.1 Cubature Method

Let the set {Aj}m
j=1 be the weights and the points {xj}m

j=1 ∈ Ω be the nodes of the
chosen cubature formula. Thus, the initial problem for evaluating of (ϕ, u) is trans-
formed into the problem for evaluating of the bilinear form (h, y) of the solution y of
the obtained SLAE:

y = λL y + b, L = {lij} ∈ R
m×m, y = {yi}, b = {bi}, h = {hi} ∈ R

m×1 (4)

with the vector h ∈ R
m×1. The following notation is used:

lij = Aj k(xi,xj), yi = u(xi), bi = f(xi), hi = Ai ϕ(xi), i, j = 1, . . . , m.

The error in the approximation on the first step is equal to:

λ

m∑

i=1

hi ρ1(xi; m, k, u) + ρ2(m, ϕ, u),

where ρ1(xj ; m, k, u) and ρ2(m, ϕ, u) are the approximation errors for the integral in
equation (2) at the node xi and linear functional (3), respectively.

Some estimations for the obtained errors ρ1, ρ2 from the approximation with some
quadrature formula in the case when Ω is an interval [a, b] ⊂ R are given below. The
errors depend on derivatives of some order of the functions k(x, t)u(t) and ϕ(x)u(x).
Estimations for these quantities obtained after differentiation of the integral equation
and using Leibnitz’s rule are given in the works of Kantorovich and Krylov [7]. Analo-
gous estimations are given below:
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F (j) = max
x∈Ω

|f (j)(x)|, U (j) = max
x∈Ω

|u(j)(x)|, Φ(j) = max
x∈Ω

|ϕ(j)(x)|.

The quantity U (0), which represents the maximum of the solution u in the interval
Ω = [a, b], is unknown. We estimate it using the original integral equation, where the
maximum of the solution in the right-hand side is estimated by the maximum of the
initial approximation: U (0) ≤ (1 + |λ|(b − a)K(0))F (0).

3.2 Resolvent Monte Carlo Method for SLAE

Iterative Monte Carlo algorithm is used for evaluating a bilinear form (h, y) of the solu-
tion of the SLAE (4), obtained after the discretization of the given integral equation (2).

Consider the discrete Markov chain T : k0 −→ k1 −→ . . . −→ ki with m states
1, 2, . . . , m. The chain is constructed according to initial probability π = {πi}m

i=1
and transition probability P = {pij}m

i,j=1. The mentioned probabilities have to be
normilized and tolerant to the vector h and the matrix L respectively.

It is known (see, for example, [5,11]) that the mathematical expectation of the ran-
dom variable, defined by the formula

θ[h] =
hk0

πk0

∞∑

j=0

Wj bkj , where W0 = 1, Wj = Wj−1
lkj−1kj

pkj−1kj

,

is equal to the unknown bilinear form, i.e. Eθ[h] = (h, y).
Iterative MCM is characterized by two types of errors:

– systematic error ri, i ≥ 1 (obtained from truncation of Markov chain) which de-
pends on the number of iterations i of the used iterative process:

|ri| ≤ αi+1 ‖b‖2 /(1 − α), α = |λ| ||L||2, b = {bj}m
j=1, bj = f(xj)

– statistical error rN , which depends on the number of samples N of Markov chain:
rN = cβ σ2(θ[h])N−1/2, 0 < β < 1, β ∈ R.

The constant cβ (and therefore also the complexity estimates of algorithms) depends
on the confidence level β. Probable error is often used, which corresponds to a 50%
confidence level.

The problem to achieve a good balance between the systematic and statistical error
has a great practical importance.

4 Estimate of the Computational Complexity

In this section, computational complexity of two approaches for solving integral equa-
tions is analysed. These approaches are related to iterative Monte Carlo methods and
they have similar order of computational cost. That is why, our main goal is to compare
the coefficients of leading terms in the expressions for complexity of algorithms under
consideration. The values of these coefficients (depending on the number of operations
necessary for every move in Markov chain) allow to determine the conditions when the
considered grid MCA has higher computational efficiency than the mentioned grid-free
MCA.
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4.1 A Grid Monte Carlo Algorithm

To estimate the performance of MCAs, one has to consider the mathematical expec-
tation ET (A) of the time required for solving the problem using an algorithm A (see
[4]). Let lA and lL be the number of suboperations of the arithmetic and logical oper-
ations, respectively. The time required to complete a suboperation is denoted by τ (for
real computers this is usually the clock period).

Cubature Algorithm. The computational complexity is estimated for a given cubature
rule:

T (CA) > τ
[

cs(pk + 1)ε−s + c−s/2(pf + pϕ + pnode)ε−s/2 + pcoef

]

lA,

where the constant c depends on the following quantities

c = c (λ, K(r)
x , K

(r)
t , F (r), Φ(r)), r = 1, . . . , ADA + 1, s = s(ADA) (5)

(ADA is the algebraic degree of accuracy of the chosen cubature formula). The number
of arithmetic operations required to compute one value of the functions k(x, t), f(x)
and ϕ(x) and one node (coefficient) is denoted by pk, pf and pϕ, respectively and by
pnode(pcoef ).

The degree s and the constants pnode and pcoef depend on the applied formula. For
instance:

s =
{

1 for rectangular and Trapezoidal rule;
1/2 for Simpson’s rule.

(6)

Resolvent Monte Carlo Algorithm. Firstly, the case when the corresponding Neu-
mann series converges (the supposition for slow convergence is allowed) is considered.

The following number of operations is necessary for one random walk:

– generation of one random number : kA arithmetic and kL logical operations;
– modeling the initial probability π to determine the initial or next point in the

Markov chain: μA arithmetic and μL logical operations (EμA + 1 = EμL =
μ, 1 ≤ μ ≤ m − 1);

– computing one value of the random variable: 4 arithmetic operations.

To calculate in advance the initial π and transition P probabilities (a vector and a
square matrix, respectively), it is necessary a number of arithmetic operations, propor-
tional to the matrix dimension m: 2m(1 + m).

To ensure a statistical error ε, it is necessary to perform i transitions in the Markov
process, where i is chosen from the inequality

i > ln−1 α (ln ε + ln (1 − α) − ln ‖b‖2) − 1 (assuming ‖b‖2 > ε (1 − α)),
where α = |λ|‖L‖2 and the initial approximation is chosen to be the right-hand side b.

To achieve a probable error ε, it is necessary to do N samples depending on the
inequality N > c0.5 σ2(θ) ε−2, c0.5 ≈ 0.6745, where θ is the random variable, whose
mathematical expectation coincides with the desired linear functional (3).
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Therefore, the following estimate holds for the mathematical expectation of the time
required to obtain an approximation with accuracy ε using the considered grid MCA:

ET (RMCA) > τ [(kA + μ + 3) lA + (kL + μ) lL]
[cβ σ(ξRj [h])]2

ln3 α

(ln3 ε + a)
ε2

+ 2τm(m + 1)lA,

where a = ln(1 − α) − ln ‖b‖2, m >
√

csε−s/2 (the constants are given by (5) and
(6)), and ξRj is the unbiased estimate of the j-th iteration of the matrix L, obtained using
the resolvent MCA.

Consider the case when the corresponding Neumann series does not converge. The
convergence of the Monte Carlo algorithm for solving the SLAE (4) can be ensured (or
accelerated) by application of an analytical continuation of the Neumann series by sub-
stituting of the spectral parameter λ (mapping) (see [2,6,7,8,10]). The main advantage
of this approach for acceleration of convergence of an iterative process is its inessen-
tial influence over the computational complexity of the algorithm. The computational
complexity on every walk is increased only with one arithmetic operation required for
multiplication by the coefficients gj , j ≥ 0, that ensures convergence (on the supposi-
tion that these coefficients are calculated with a high precision in advance). To obtain
the computational complexity of the modified algorithm, it is necessary to estimate the

variation of the new random variable: θ[h] =
hk0

πk0

∞∑

j=0

gj Wj bkj .

We will use the following statement for a class of mappings proved in [10]: The
conformal mapping λ = ψ(η) = a1η+a2η+ . . . has only simple poles on its boundary
of convergence |η| = 1. If V ar ξRk ≤ σ2 and q = ā |η∗|/(1 − |η∗|) < 1, then the
complexity estimate of the algorithm has an order O(|ln ε|4/ε2), where ā is such a
constant that |ai| ≤ ā, i = 1, 2, . . ., λ∗ is the value of the spectral parameter in the
integral equation (2) (respectively SLAE (4)) and η∗ = ψ−1(λ∗).

In general, a computational estimate of this class of grid MCAs can be obtained if
the behavior of gj and V ar ξRj is known.

4.2 A Grid-Free Monte Carlo Algorithm

The computational complexity of the grid MCA under consideration is compared with
the computational complexity of a grid-free Monte Carlo approach. This approach is
based on the use of a local integral representation (assuming that such a representation
exists, [9,12]) of the solution of an elliptic boundary value problem. Existence of this
representation allows to construct a Monte Carlo algorithm, called spherical process (in
the simplest case) for computing of the corresponding linear functional. As a first step
of this algorithm an ε-strip ∂Ωε of the boundary ∂Ω is chosen (on the supposition that
the solution is known on the boundary) to ensure the convergence of the constructed
iterative process. The following number of operation is necessary for one random walk:

– generation of n (this number depends on initial probability π) random numbers to
determine the initial point in the Markov chain: n(kA + kL) operations (kA and kL

are the arithmetic and logical operations necessary for the generation of one random
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number) or modeling of an isotropic vector that needs of the order of R∗n(kA+kL)
operations (the constant R depends on the efficiency of the modeling method and
transition probability);

– calculating the coordinates of the initial or next point: pnext (depends on the mod-
eling method and the dimension d of the domain B(x));

– calculating one value of functions: pf ; pπ, pϕ or pk, pP ;
– calculating one sample of the random variable: 4 arithmetic operations;
– calculating the distance from the current point to the boundary ∂Ω: γA arithmetic

and γL logical operations (depends on the dimension d of the domain Ω);
– verification if the current point belongs to the chosen δ-strip ∂Ωδ.

The following logarithmic estimate for the average number Ei of spheres on a single
trajectory holds for a wide class of boundaries [5]:

E i ≤ const |ln δ|, const > 0, (7)

where const depends on the boundary ∂Ω.
Calculating the linear functional with a preliminary given accuracy ε and attainment

of a good balance between the statistical and the systematic error is a problem of interest
to us.

Let us to restrict our investigation of the statistical error to the domain Ω ≡ [a, b].
To ensure a statistical error ε, it is necessary to do i transitions in the Markov process,
where i is chosen from the inequality:

i > ln−1 α (ln ε + ln (1 − α) − ln F (0)) − 1 (assuming F (0) > ε (1 − α)),

where α = |λ| VB(x) K, K = max
x,t

|k(x, t)| and the initial approximation is chosen to

be the right-hand side f(x). On the other hand, the estimate (7) depending on the chosen
ε-strip of the boundary is done. Then, an expression for δ according to the number
of transition i is obtained from these two estimates: δ ≈ e −i/const. Therefore, the
following estimate holds for the mathematical expectation of the time required to obtain
an approximation with accuracy ε using the considered grid-free MCA:

ET (GFMCA) > τ [(n kA + pnext + pf + pπ + pϕ + γA + 4) lA

+(n kL + γL + 1) lL + ((R n kA + pnext + pf + pk + pP + 4 + γA) lA

+(R n kL + γL + 1) lL) × (ln ε + ln (1 − α) − ln3 F (0)

ln3 α
]

[cβ σ(ξSj [h])]2

ε2 .

Obtained expressions for coefficients in computational complexity for MCAs under
consideration allow us to define some conditions when the GMCA is preferable to the
GFMCA:

– the functions that define the integral equation (2) (k(x, t), f(x), ϕ(x)) have com-
paratively small maximum norm in the corresponding domain and their values can
be calculated with a low complexity
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– the initial and transition probability are complicated for modeling (acceptance-
rejection method)

– large dimension of the integration domain

It has to be noted the fact that the grid MCAs under consideration are admissible
only for integral equations with smooth functions, but some techniques of avoiding
singularities of this kind exist (see [1]).

5 Concluding Discussion

In this paper we deal with performance analysis of a class of Markov chain grid Monte
Carlo algorithms for solving Fredholm integral equations of second kind. We compare
this class of algorithms with a class of grid-free algorithms. Grid-free Monte Carlo uses
the so-called spherical process for computing of the corresponding linear functional.
Obviously, the grid approach assumes higher regularity of the input data since it in-
cludes an approximation procedure described in Section 4.1. The (grid-free) approach
does not need additional approximation procedure and directly produces a bias approx-
imation to the solution. But the grid-free algorithm is more complicated and its imple-
mentation needs more routine operations (like checking the distance from a given point
to the boundary) that decrease the efficiency of the algorithm. Analyzing the regularity
of the problem one may chose either grid or grid-free algorithm is preferable. Espe-
cially, if the input data has higher regularity (k(x, t), f(x), ϕ(x) have comparatively
small maximum norm) than the grid algorithm should be preferred.
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