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Abstract

The Wigner-Boltzmann model is a partial integro-differential equation which
describes the time dependent dynamics of quantum mechanical phenomena in-
cluding the effects of lattice vibration as a second-order approximation. Recently
a Monte Carlo technique exploiting the concept of signed particles has been
developed for its ballistic counterpart, in one and two-dimensional space. In
this work, we introduce an extension to the Wigner-Boltzmann model in three-
dimensional geometries adapted for the treatment of the scattering term. As an
application, we study the dynamics of an electron wave packet in proximity of
a Coulombic potential in the presence of absorbing boundary conditions. This
mimics the presence of a dopant atom burried in a semiconductor substrate.
By using this method, one can observe how the lattice temperature eventually
affects the dynamics of the wave packet.

Keywords: Wigner-Boltzmann equation, Monte Carlo methods, Full
Quantum Transport, Electron Dynamics, Single Dopant Devices

1. Introduction

The continuous miniaturization of semiconductor devices has reached the
point where active lengths are of the order of only several tens of nanometers. At
that scale, quantum effects are dominant and classically designed transistors do
not operate reliably any longer. The post-CMOS (complementary metal-oxide-
semiconductor) era is now a reality. While this represents the end of a very
successful period for the semiconductor industry, it is also an opportunity for
the development of drastically different device architectures [1], [2], [3]. A shift
of design paradigm is now necessary where devices have not to work despite the
presence of quantum effects, but because of them. Recently, a new class of silicon
based devices exploiting single burried phosphorus atoms (single dopants) have
been presented [4], [5]. While the experiments are advancing quickly [6], [7], [8],
going from one single dopant to several dopants placed with atomistic precision
[9], the theoretical comprehension of the electron dynamics in such devices is still
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in its infancy. Indeed the new paradigm comes with incredible challenges. For
meaningful simulations of post-CMOS devices, a model is expected to be time-
dependent, fully quantum, capable of including the lattice vibration and, finally,
able to deal with open leads. From this perspective, the Wigner-Boltzmann
equation represents a promising mathematical tool. It is based on the Wigner
equation [10] augmented by the Boltzmann scattering term [11], a second-order
approximation model for phonon scattering based on the Fermi golden rule. In
this formalism, the evolution of the system is described by an intuitive quasi-
distribution function defined on the phase-space, fW = fW (x,k, t). The price to
pay for such model is the appearance of negative values in fW , a clear signature
of quantum mechanical effects. Furthermore, the resolution of the Wigner-
Boltzmann equation constitutes an incredible numerical challenge [12].

Despite these difficulties, there has been a very early initial interest in using
this formalism for self-consistent calculations based on finite difference tech-
niques [13] which introduce serious problems in the treatment of the diffu-
sion term h̄k

m∗
· ∇xfW . Indeed, the Wigner quasi-distribution function oscil-

lates rapidly in the phase-space causing severe problems in the calculation of
the derivatives [14]. A further severe obstacle has been represented by the
implementation of injecting boundary conditions (BCs) [15], necessary for self-
consistent calculations, a difficult problem not yet solved as recently pointed
out [16]. While one can avoid the use of injecting BCs, when self-consistency is
not required, the treatment of the diffusion term still remains a problem. Re-
cently, several new approaches, based on Monte Carlo (MC) techniques, have
been developed which totally avoid the problem of evaluating the diffusion term.
The first attempts [17], [18], [19], [12] are ensemble MC techniques based on the
concept of particle affinity. Despite the initial success, it has become rapidly
clear that this approach can hardly be applied to multi-dimensional simulations
due to the demand of significant computational resources. In fact, the number
of particle states in the ensemble inevitably increases during the simulation [12].
Then, a second method, based on the concept of signed particles (appearing for
the first time in the context of stationary calculations relying on the ergodic-
ity of the problem determined by the BCs [20]) has been introduced [21], [22].
This method is based on the Iterative MC method for solving linear and non-
linear equations (both integral and algebraic) [23], [24] applied to the Wigner
equation. It is a time-dependent approach which can take into account general
initial conditions along with general BCs. This relatively new technique allows
time dependent, full quantum and multi-dimensional simulations for acceptable
computational time and resources.

In this work we generalize the signed particles Wigner MC method to the
Wigner-Boltzmann equation in order to take into account the Boltzmann col-
lision term modelling the scattering with phonons. As a practical example,
we perform three-dimensional (3D) simulations of a wave packet moving in a
semiconductor substrate in the presence of a Coulombic potential. We utilize
only reflective and absorbing BCs (which are time-irreversible and in agreement
with [15]) since no self-consistency is required in this particular numerical exper-
iment. This shows how different lattice temperatures affect the evolution of the
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system. This paves the way towards time dependent, multi-dimensional, full
quantum TCAD (Technology Computer Aided Design) tools, able to include
(yet to some extent) the effects of lattice vibration, for the next generation of
electronic post-CMOS devices.
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Figure 1: Low-field electron mobility calculated for bulk silicon at temperatures ranging from
40 K to 300 K. The ∗ symbols show the mobility calculated using a discretized wave-space,
while the o symbols show the mobility calculated by means of a continuous wave-space. The
impurity scattering is not taken into account.

2. The Wigner-Boltzmann Monte Carlo method

In a continuous phase-space and in the Bloch formalism, theWigner-Boltzmann
equation reads

∂fW

∂t
+

h̄k

m∗
· ∇xfW = QW

[

fW
]

+ CB [fW ] , (1)

where fW = fW (x,k, t) is the unknown pseudo-distribution function defined
over the 7-dimensional phase-space (x,k, t) = (x, y, z, kx, ky, kz, t), m∗ is the
effective mass, QW is a functional defined as

QW

[

fW
]

(x,k, t) =

∫

dk′VW (x,k− k′, t)fW (x,k, t),
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Figure 2: Initial Gaussian wave packet: isosurface corresponding to 50% of finding an electron
(calculated from the normalized Wigner distribution function). The unit for coordinates is
nanometer.

Figure 3: Transversal cut of the Coulombic electrostatic potential due to a phosphorus dopant
(the spheres represent magnified centers of the grid cells).

the Wigner potential is defined as

VW (x,k, t) =
1

ih̄8π3

∫

dx′e−ik·x′[

V (x+
x′

2
, t)− V (x−

x′

2
, t)

]

, (2)
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Figure 4: Longitudinal cut of the Coulombic electrostatic potential due to a phosphorus
dopant (the spheres represent magnified centers of the grid cells).

and the Boltzmann collision term is defined as [11]

CB [fW ] (x,k, t) =
∑

i

∫ +∞

−∞

dk′ [Si(k
′,k)fW (x,k′, t)− Si(k,k

′)fW (x,k, t)] ,

where the kernel Si = Si(k,k
′) takes into account the i− th scattering process

between electrons and phonons (e.g. optical , acoustic, etc). In particular,
the kernel Si(k,k

′) is calculated from the Fermi golden rule [11] and it can be
shown that the Wigner-Boltzmann equation (1) makes perfectly physical sense
under conditions which are not too restrictive [12]. Finally, one should note
that scattering terms beyond the Boltzmann formalism nowadays exist [25],
but in this work, for the sake of simplicity, we use the Boltzmann term limiting
ourselves to a semi-classical treatment of phonon scattering events.

By following the method depicted in [22], the Wigner-Boltzmann model
is rewritten exploiting the semi-discrete nature of the phase-space. Indeed,
on one side, physical considerations show that the simulation domain for the
quantum structure is bounded by an upper limit LC = (Lx

C , L
y
C , L

z
C) known

as the coherence length. On the other side, particle energy comes in quanta.
From these considerations, one can express the k-space in terms of multiples
of a finite quantity ∆k = π

LC
. In other words, a discretization of the k-space

is introduced. Thus, in the rest of the paper, we express the wave vector of
a particle as a set of 3 integers and denote it as M = (Mx,My,Mz). This
corresponds to a wave vector k = M∆k = (Mx ×∆kx,My ×∆ky,Mz ×∆kz).
The Wigner-Boltzmann equation, in a semi-discrete phase-space, reads

∂fW

∂t
(x,M) +

h̄

m∗
M∆k · ∇xfW (x,M)
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Figure 5: Evolution of a wave packet at time 10 fs with initial energy equal to 0.42 eV and
lattice temperature 20 mK. Two isosurfaces are shown corresponding to 50% (external green
surface) and 80% (internal yellow surface).

=

+∞
∑

N=−∞

VW (x, (M−N)) fW (x,N) + CB [fW (x,M)] (3)

and the Wigner potential and the Boltzmann scattering terms are reformulated
accordingly

VW (x,M, t) =
1

ih̄LC

∫ +LC/2

−LC/2

dx′e−i2M∆k (V (x+ x′, t)− V (x− x′, t)) ,

CB [fW ] (x,M, t) =
∑

i

+∞
∑

N=−∞

[Si(N,M)fW (x,N, t)− Si(M,N)fW (x,M, t)] .

A time dependent MC method to solve the ballistic part of the semi-discrete
Wigner-Boltzmann equation (3) has been recently presented in [21] and [22]
based on the Iterative MC method presented in [23], [24] All technical details
are reported in the above references and we hereby sketch them only briefly.
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A quantity γ = γ(x), obtained from the Wigner potential, is defined [22] and
a particle generation process is introduced [23], [24]. During its free flight,
an initial signed particle creates a pair of new particles, one positive and the
other negative. If, initially, the parent particle has a sign s, a position x and
a wave-vector M, it generates, with a given rate depending on the Wigner
potential, a pair of new particles with signs s, −s, position x (both are in the
same position of the parent particle) and momenta M′ = M+N, M′ = M−N

respectively. After the creation event, the parent particle continues its free flight
evolution until a given time T and the new pair of particles is evolved in the same
way. One should note that the signed particles evolve over field-less Newtonian
trajectories and contribute to the values of the physical averages only by their
sign. In other words, the action of the Wigner potential on a signed particle
happens only by generation of particles following certain rules. Thus, the time-
dependent evolution of the Wigner quasi-distribution happens only by creation
and annihilation of particles which replace the acceleration due to Newtonian
forces [21], [22]. Finally, we stress on the fact that these Newtonian particles
are only a constructive mathematical tool (sometimes called virtual particles in
the Monte Carlo theory) and, as such, they allow us to apply general boundary
conditions in a natural way. This method has been validated with success
against one-dimensional, two-dimensional benchmark tests and technologically
relevant situations [21], [22], [26], [27].

Now, in order to include the Boltzmann collision term in a full quantum
simulation, one starts from the fact that particles constituting the Wigner MC
method are Newtonian objects. By supposing that the total simulation time
T has been divided in intervals equal to ∆T , our problem consists of including
the phonon scattering events during these intervals. To achieve such goal, we
follow a technique similar to the one implemented in the Boltzmann MC method
[11] but adapted to the discreteness of the wave-space and evolving particles on
free-flight trajectories as signed quantum particles. It is well-known that, in
the semiclassical approach, the system is represented by an ensemble of pseudo-
particles (essentially weighted particles which mimic physical electrons). The
dynamics of such pseudo-particles happens in two phases, i.e. a drift or free-
flight evolution and a scattering event, which are repeated until time ∆T is
reached. Now, in order to include the quantum nature of the problem, the
system is described in terms of signed particles which free-flight evolution strictly
follows the dynamics depicted in the Wigner MC algorithm [22]. In other words,
during every free-flight interval, the particle is evolved as a signed particle, i.e.
it creates new pairs of signed particles and moves in its field-less Newtonian
trajectory. When the parent particle reaches the end of the free flight interval,
its discrete momentum M is updated. Furthermore, being the wave-space now
discrete, the probability P [M(t)] utilized to compute the free-flight duration is
accordingly modified and reads

P [M] =
∑

i

+∞
∑

N=−∞

Si(M,N). (4)
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Finally, the newly created pairs are evolved in the same fashion, i.e. signed par-
ticles, and the process goes ahead until all particles are evolved. An algorithm
is reported below for the sake of clarity.

for particle i

. given the interval DT

. compute the free flight interval dt

for free flight dt

. evolve particle i as a signed particle,

. generate signed particles, etc.

. add the new particles to the existing ensemble of particles

end

. update the momentum of particle i

end

We now proceed with a benchmark test and applications of theWigner-Boltzmann
MC method to practical situations.

3. Electron mobility in bulk silicon

In order to assess the reliability of the proposed Wigner-Boltzmann MC
method, we numerically investigate the use of the probability (4) for the in-
clusion of the phonon scattering events in a discretized wave-space. Indeed, it
is important to show that the discretization does not introduce any spurious
numerical effect such as, for example, artificial heating. To this goal, we per-
form a benchmark test consisting of calculating the electron mobility in bulk
silicon in the presence of non-polar optical and acoustic phonons by means of
a single-particle MC method [11] which, essentially, involves the evolution of
a particle in the wave-space only. In this test, the ionized impurity scattering
event is neglected in order to focus on the effect of the lattice temperature.

The continuous probabilities utilized in our calculations are defined in the
parabolic band approximation. The non-polar optical term reads

Popt(k) =
πD2

iZi

ρωi

[

ni +
1

2
∓

1

2

]

N(
h̄2k2

2m∗
± h̄ωi), (5)

where i = 1, . . . , 6, m∗ = 0.32m0, m0 the electron mass, Di is the optical
deformation potential, Zi is the number of final valleys available for scattering,
h̄ωi is the energy of the optical phonon, ρ is the crystal density, N is the density
of states and ni is the occupation number. The acoustic term reads

Pac(k) =
Ξ2
dkBTL

h̄cL

m∗k

πh̄2 , (6)

where Ξd is the acoustic deformation potential, kB is the Boltzmann constant
and cL is the longitudinal sound velocity. The values for the parameters in (5)
and (6) are taken from [28].
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The calculation of the electron mobility is first carried out utilizing the
continuous probability of the semiclassical Boltzmann MC method (5), (6) and,
then, by means of the discretized probability (4) introduced in the Wigner MC
method. In both calculations, a single particle is evolved in the k-space until
5 ps and the mobility is calculated utilizing the mean carrier velocity. The
temperatures involved are in the range [40; 300] K and, in the Wigner MC case,
the wave-space corresponds to an energy range [0; 0.5] eV discretized over 200
cells.

The comparison between the continuous and discretized wave-space is shown
in Fig. 1 (o continuous and ∗ discrete cases respectively) where a good agreement
is obtained. One should note that this agreement is, of course, achievable only
if a refined enough wave mesh is selected. Indeed, if the wave-space discretiza-
tion is too coarse then the energy difference between two adjacent wave-vectors
quickly becomes too big and phonon scattering is either underestimated or over-
estimated. We can now proceed to apply the Wigner-Boltzmann MC method
to a practical situation.

4. Simulation of single-dopant systems

In this section, we perform two 3D numerical experiments involving the
evolution of an electron wave packet in proximity of a positive Coulombic po-
tential. This mimics the presence of a phosphorus atom embedded in silicon
substrate. We include scattering events with non-polar optical phonons and
acoustic phonons [11] and analyse how the probability of finding an electron
is affected by the lattice temperature at 20 mK (ballistic regime, i.e. scatter-
ing events switched off) and 300 K (room temperature, i.e. scattering events
switched on). In order to simplify the problem, the electron is supposed to enter
from one lead (left-hand side) with a longitudinal component only. If the particle
is absorbed by the second lead (right-hand side) then a peak in the current pro-
file appears. Our aim is to demonstrate that, utilizing the Wigner-Boltzmann
MC method, the development of practical TCAD tools to understand and design
electronic devices exploiting quantum effects is a feasible task.

4.1. Description

The initial conditions for these experiments consist of a Gaussian wave packet
with minimal uncertainty (see Fig.2). The corresponding initial conditions in
the Wigner formalism read:

f0
W (x,m) = ANe−

(x−x0)2

σ2 e−(m∆k−k0)
2σ2

, (7)

where AN , k0, x0 and σ are, respectively, a constant of normalization, the initial
wave vector, the initial position, and the dispersion of the wave packet. The
value for σ is 2 nm while the initial position is 3.5 nm. The electron initial wave
vector k0 corresponds to an energy equal to 0.42 eV. Open BCs, which absorb
particles, are imposed on the left and right-hand side of the domain. They
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are reflective otherwise. The lattice temperature is equal to 20 mK (ballistic
regime) in the first experiment and 300 K (room temperature) in the second one.
The dimensions of the domain are 30nm× 15nm× 5nm. A positive Coulombic
potential is placed at the center which mathematically reads

V (x) =
q

4πǫ0ǫr
(

x2 + 1
2r

2
c

)
1
2

, (8)

where rc is the Bohr radius in silicon (about 1.93 nm, see Fig.3 and Fig.4)
[29]. One expects two kind of processes to happen, i.e. partial reflection and
absorption from the Coulombic potential which behaves as a quantum well, and
absorption of the packet through the left and right-hand side boundaries.

4.2. Ballistic regime

A high energetic electron (corresponding to about 423 meV) is introduced
from the left-hand side of the domain at a temperature equal to 20 mK. The
wave packet proceeds towards the center with practically no interaction with the
lattice (ballistic regime). The evolution of the simulated system is reported in
Fig.5, Fig.6 and Fig.7 for 10 fs, 20 fs and 30 fs respectively. One observes that, in
these conditions, the electron is not trapped by the Coulombic potential. Indeed
it is too energetic. The electron will, eventually, be absorbed by the right-hand
side boundary with a high probability. Indeed, Fig.7 clearly shows that the
wave packet is in proximity of the right-hand side lead at 30 fs already. This
experiment shows that, in this situation, the wave packet is barely influenced
by the presence of the Coulombic potential.

4.3. Room temperature

The aim of this numerical experiment is to show how the lattice temperature
greatly affects the dynamics of an electron wave packet even though the involved
lenghts and evolution times are very small. We start from the same conditions
as the previous experiment where the lattice temperature is now equal to 300 K
(corresponding to an energy of about 387 meV). The results of this experiment
are shown in Fig.8, Fig.9 and Fig.10 again for times equal to 10 fs, 20 fs and
30 fs respectively. One clearly observes that the wave packet is now feeling the
Coulombic potential. In fact, at room temperature, phonon scattering is not a
rare event any longer. The electron energy is influenced by the lattice vibration
which pushes it to equilibrium. Eventually the electron becomes low energetic
and feels the Coulombic potential, indeed the wave packet is now shaped by
the presence of the dopant. The electron dynamics is clearly much slower than
compared to the previous experiment, as it can be seen by a comparison between
Fig.7, where the wave packet is already approaching the right-hand side lead,
and Fig.10, where the wave packet still holds in the first half of the device.
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5. Computational aspects

The simulator used to obtain the results presented in this paper is a modified
version of Archimedes, the GNU package for the simulation of carrier transport
in semiconductor devices [30]. This code was first released in 2005, and, since
then, users have been able to download the source code under the GNU Public
License (GPL). Many features have been introduced in this package. In this
particular project, our aim has been to develop a full quantum time-dependent
nanodevice simulator including phonon scattering effects. The code is entirely
developed in C and optimized to get the best performance from the hardware.
It can run on parallel machines using the OpenMP standard library. The results
of the present version are posted on the nano-archimedes website, dedicated to
the simulation of nanodevices [31].

The results have been obtained using the HPC cluster deployed at the Insti-
tute of Information and Communication Technologies of the Bulgarian Academy
of Sciences. This cluster consists of two racks which contain HP Cluster Plat-
form Express 7000 enclosures with 36 blades BL 280c with dual Intel Xeon
X5560 @ 2.8 Ghz (total 576 cores), 24 GB RAM per blade. There are 8 storage
and management controlling nodes 8 HP DL 380 G6 with dual Intel X5560 @
2.8 Ghz and 32 GB RAM. All these servers are interconnected via non-blocking
DDR Infiniband interconnect at 20Gbps line speed. The theoretical peak per-
formance is 3.23 Tflops.

6. Conclusions

In this paper we introduced a Monte Carlo approach for the three-dimensional
Wigner-Boltzmann equation based on the concept of signed particles. We ap-
plied it to the simulation of a wave packet in proximity of a Coulombic potential.
This is similar to a single dopant system consisting of a phosphorus atom bur-
ried in a silicon substrate. We have shown how the lattice temperature plays an
important role even for very small structures and time scales. We have shown
that at room temperature the lattice vibration tends to reduce the electron en-
ergy and even relatively high energetic electron wave packets can eventually be
shaped by the Coulombic potential. These experiments show that full quantum,
time dependent, multi-dimensional TCAD tools for next generation nanoscaled
devices exploiting quantum effects are now a reachable task.
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Figure 6: Evolution of a wave packet at time 20 fs with initial energy equal to 0.42 eV and
lattice temperature 20 mK. Two isosurfaces are shown corresponding to 50% (external green
surface) and 80% (internal yellow surface).

Figure 7: Top view of the evolution of a wave packet at time 30 fs with initial energy equal
to 0.42 eV and lattice temperature 20 mK. Two isosurfaces are shown corresponding to 50%
(external green surface) and 80% (internal yellow surface). The wave packet is now moving
towards the second lead (right-hand side).

15



Figure 8: Evolution of a wave packet at time 10 fs with initial energy equal to 0.42 eV and
lattice temperature 300 K. Two isosurfaces are shown corresponding to 50% (external green
surface) and 80% (internal yellow surface).

Figure 9: Evolution of a wave packet at time 20 fs with initial energy equal to 0.42 eV and
lattice temperature 300 K. Two isosurfaces are shown corresponding to 50% (external green
surface) and 80% (internal yellow surface).
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Figure 10: Evolution of a wave packet at time 30 fs with initial energy equal to 0.42 eV and
lattice temperature 300 K. Two isosurfaces are shown corresponding to 50% (external green
surface) and 80% (internal yellow surface).
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