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• We study the dynamics of a wave packet in the presence of the ordered and disordered arrays of dopants.
• We utilize the signed particle Wigner Monte Carlo method.
• We show how the particle current is affected by the disorder in the dopant positions.
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a b s t r a c t

We study the evolution of a Gaussian wave packet in the presence of the ordered and
disordered arrays of dopants, described by means of Coulombic potentials. As a first
step, we investigate the dynamics of the packet in three different ordered configurations
consisting of two, three and four-columns arrays. Then, random but controlled disorder is
introduced and increased constantly by perturbing the initial position of the dopants by a
given amount of noise. The effects over the dynamics of an electronwave packet are clearly
observable in the simulation results. After a detailed investigation for different values of
perturbation, 20%, 40% and 60%, on three different dopant arrays, one concludes that the
best performance, in terms of conductance and current, is achieved for ordered arrays of
dopants, in perfect agreement with the available experimental results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor device active lengths are now of the order of only several tens of nanometers due to the continuous
process of miniaturization. At that scale, many of the common assumptions such as classical particles, and homogeneous
dopant distribution, are not justifiable any longer. Furthermore, quantum effects are now dominant and classically designed
transistors do not operate reliably in that regime. We are now in the so-called post-CMOS (complementary metal-oxide-
semiconductor) era. This opens opportunities for the development of novel device architectures, most likely to be drastically
different from what we have seen in CMOS technologies. It is highly plausible that, in order to be successful, a new design
paradigm will be required which exploits in some way typical phenomena of quantum mechanics.

Among the new post-CMOS devices recently proposed, the Silicon based devices exploiting single buried dopants seem
to be in a very promising direction [1]. Such class of devices are also considered to be good candidates for realistic quantum
computing building blocks [2,3]. It is now possible to build prototypes of such devices in laboratories, experiments are
advancing quickly [4–6] and, today, single dopants can be placed even with atomistic precision [7]. While the experiments
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Fig. 1. Ordered arrays of dopants consisting of, respectively, 3 × 2, 3 × 3 and 3 × 4 matrices of Phosphorus atoms buried in Silicon.

Fig. 2. Disordered arrays of dopants (40%).

are already advancing quickly, the theoretical comprehension of the experimental results is still very basic. Indeed, from a
theoretical perspective, this new design paradigm comes with incredible challenges.

In order to achieve reliable and predictive simulations, the new models have to be full quantum and time dependent.
Indeed, in nanometer scaled devices the wave-particle duality is a well pronounced phenomenon that cannot be simulated
by first-order quantum corrections. Furthermore, in these novel devices, it is not known if a stationary regime eventually
can be reached or even exists. Finally, the doping as a continuum is not a realistic hypothesis anymore. It now consists of
a discrete number of dopants scattered in some area of the device. A very promising model that seems to cope with the
mentioned (and necessary) above requirements is the Wigner equation, an intuitive formulation of quantum mechanics
in terms of a phase–space. This approach is equivalent to the Schrödinger equation but has some advantage over it. For
example, it allows the inclusion of absorbing (open) boundary conditions in a natural way, allowing the presence of leads
attached to the device.

In thisworkwe apply the signedparticleWignerMCmethod [8–11] to simulate the two-dimensional and timedependent
evolution of an electron wave packet in the presence of arrays of dopants in different configurations and absorbing only
boundary conditions. For simplicity, we restrict ourselves to the ballistic regime and no injecting boundaries are taken into
account in this paper, thus avoiding the problems mentioned in Ref. [12].

We start with ordered configurations consisting of 3 × 2, 3 × 3 and 3 × 4 matrices of dopants (Coulombic potentials)
reported in Fig. 1. Leads are attached to the bottom and the top of the devices, i.e. wave packets are free to eventually leave.
We then proceed with introducing noise in the position of the dopants by a given amount, i.e. 20%, 40% and 60%. As an
example, Fig. 2 reports the distribution of dopants in the case of 40% noise around the initial configuration. We observe how
the dynamics of the wave packet is affected by the increasing disorder. From these numerical experiments, by comparing
ordered against disordered array results, it is clear that the best performances, in terms of conductance and current, are
reached for highly ordered arrays, in accordance with available physical experiments [13]. This shows how the Wigner MC
method is reliable and can be used to support, if not to predict, experimental results.

2. The Wigner Monte Carlo method

The Wigner equation is an intuitive formulation of quantum mechanics in terms of a phase–space [14]. It is equivalent
to the Schrödinger equation. Indeed a transform, known as the Wigner–Weyl transform, and its inverse operator exist that
convert a solution fromone formalism to the other (under themathematical condition that the operator is non-singular) [14,
15]. In a two-dimensional space (2D), in ballistic regime and parabolic energy band, with x = (x, y) and k =


kx, ky


, the

model reads
∂ fW
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where V = V (x, t) is the (eventually time dependent) potential involved in the problem and m∗ is the effective mass.
By exploiting the semi-discrete nature of the phase–space, in accordance to the principles of quantum mechanics [9], it is
possible to rewrite the Wigner equation in a semi-discrete form

∂ fW
∂t

(x,M) +
h̄
m∗

M∆k · ∇xfW (x,M) =

+∞
N=−∞

VW (x, (M − N)) fW (x,N) (3)

and the Wigner potential is reformulated accordingly

VW (x,M, t) =
1
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where LC = (LxC , L
y
C ) is the coherence length [9],M = (Mx,My) and N = (Nx,Ny) are two couples of integers (pseudo-wave

vectors can be described in terms of integers in a semi-discrete phase–space), and ∆k =


π
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, π
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
.

The semi-discrete reformulation of Wigner equation (3) allows the development of a Monte Carlo algorithm [8–11].
Indeed, this equation can be rewritten in terms of a Fredholm integral equation of second kind [8,10]

fW (x,M, t) = f 0W (x,M) +

  
dt ′dM′dx′K(x,M, t, x′,M′, t ′)fW (x′,M′, t ′) (5)

where f 0W (x,M) is the initial conditions of the problem and the unknown is the Wigner quasi-distribution function fW =

fW (x,M, t). The solution of problem (5) can be expressed in terms of a Liouville–Neumann series [10] which can be used to
calculate the expectation value ⟨A⟩(t) of a macroscopic variable A = A(x,M) expressed as an iterative series [9]

⟨A⟩ =


∞

0
dt ′


dxi
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f 0W (xi,M′)e−
 t′
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with

x′(y) = xi(y) = xi +
h̄M′∆k
m∗

y; x′
= x′(t ′) = xi(t ′); dx′

= dxi.

The function gW = gW (x,M, t) is the solution of the adjoint equation [8] and the quantity γ = γ (x) is defined as

γ (x) =

∞
M=−∞

V+

w (x,M) (7)

where V+
w takes the values of Vw if Vw > 0 and 0 otherwise. The technical details of the analytical calculations are given in

Ref. [10] as well as in Ref. [11].
Now, a physical interpretation can be given. The quantity γ = γ (x) can be considered as a normalization factor and a

generation process is introduced. An initial signed particle creates a pair of newparticles, one positive and the other negative.
If, initially, the parent particle has a sign s and a wave-vectorM, it generates, with a rate V+(N), a pair of new particles with
signs s,−s andmomentaM′

= M+N,M′
= M−N, respectively. Then, the original particle continues its free flight evolution

until a given time T . The new pair of particles is evolved in the sameway. The signed particles evolve over field-less Newton
trajectories and contribute to the values of the physical averages only by their sign. The action of the Wigner potential on a
signed particle happens only by generation of particles with opposite sign, in the same position of the parent particle, and
following certain rules in the momentum component of the phase space. Thus, the time-dependent evolution of theWigner
quasi-distribution happens only by creation and annihilation of particles which replace the acceleration due to Newtonian
forces [9].

This Monte Carlo technique is relatively easy to include in already existing semi-classical MC device simulators as it is
shown in the GNU package Archimedes [16] and its quantum counter-part [17].

3. Simulation results

In this sectionwe report the results of several numerical experiments aiming to explain the dynamics of an electronwave
packet in the presence of arrays of dopants (ionized Phosphorus atoms) buried in a Silicon box. The spatial domain consists of
a 2D Silicon box with dimensions Lx = 50 nm× Ly = 50 nm. The boundaries at the top and the bottom are absorbing, while
the left and right boundaries are reflective. The wave packet is initially Gaussian and has only a longitudinal component in
its wave-vector (i.e. directed from the bottom to the top of the domain). The system is evolved from its initial conditions till
200 fs when the packet starts to leave the device through the top lead. We explore several type of arrays of dopants. The
first ones are highly ordered arrays (or matrices) of dopants of which dimensions are, respectively, 3 × 2, 3 × 3 and 3 × 4
(see Fig. 1). We then introduce some noise to perturb the initial position of the dopants. This introduces some level of chaos
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Fig. 3. Evolution of a wave packet in ordered arrays of dopants consisting of, respectively, 3 × 2 (top row), 3 × 3 (middle row) and 3 × 4 (bottom row)
matrices of dopants buried in a Silicon substrate. The times reported are, respectively 50 fs (left column), 100 fs (middle column) and 150 fs (right column).
The (black) × symbols represent the position of the dopants.

and the dynamics of the wave packet is affected accordingly. We utilize a homogeneous random generator and perturb the
initial position in a box of which dimensions are [−Lx/2; +Lx/2] × [−Ly/3; +Ly/3], [−Lx/3; +Lx/3] × [−Ly/3; +Ly/3] and
[−Lx/4; +Lx/4] × [−Ly/3; +Ly/3], depending on the dimensions of the dopant matrix involved in the problem. The noise
introduced in our numerical experiments is of an amount of 20%, 40% and 60%. The case for 40% of noise, as an example, is
reported in Fig. 2. The Coulombic potential, representing the presence of the ith dopant, is of the following shape:

Vi(x) =
q

4πϵ0ϵr

(x − xi)2 +

1
2a

2
0

 1
2
, (8)

where a0 is the Bohr radius in Silicon a0 =
4πϵ0ϵr h̄2

m∗e2
[18] and xi is the position of the center of the ith dopant. This model has

been extensively validated against BoltzmannMC benchmark tests [18] and is extended to theWignerMCmethod based on
particle signs (since bothmethods utilize Newtonian particles). One should note that the choice of this truncated Coulombic
potential does not represent a restriction for the method.

Figs. 3 and 4 report the results of our simulations by means of the Wigner MC method based on signed particles. Both
figures show the evolution of a wave packet in arrays of dopants consisting of, respectively, 3 × 2 (top row), 3 × 3 (middle
row) and 3 × 4 (bottom row) matrices of dopants buried in a Silicon substrate. The times reported are, respectively 50 fs
(left column), 100 fs (middle column) and 150 fs (right column). For clarity the position of dopants are shown in (black) ×

symbols.
It is clear from these figures that the dynamics of the wave-packet is profoundly affected by the position and number of

dopants. Indeed, in the case of perfectly ordered arrays the evolution is axially symmetric. In the case of 3×2 array (top part
of Fig. 3) one can observe how the initially Gaussian wave packet splits eventually into three parts. This splitting appears
as soon as the first encounter with the first row of dopants happens. It occurs before the direct contact with the dopants,
a clear signature of non-locality, typical of quantum mechanical effects. Once splitted, highest probability of finding an
electron travels along three longitudinal directions, i.e. along the 2 columns of dopants and theirmiddle axis. In a similarway,
the symmetry is maintained in the 2 remaining highly ordered configurations (middle and bottom of Fig. 1). In particular,
the wave packet collapses in the energy valley created by the first Coulombic potential encountered (in the middle) and
proceeds along that column jumping from one dopant to the next one. One should note, finally, how for all ordered arrays of
dopants the parts of the wave packet are always traveling in longitudinal direction, which, in other words, maximizes the
current through the top contact (the Ramo–Shockley formula applied to the Newtonian signed particles). In the case of the
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Fig. 4. Evolution of a wave packet in disordered arrays of dopants (40%) consisting of, respectively, 3× 2 (top row), 3× 3 (middle row) and 3× 4 (bottom
row) matrices of dopants buried in a Silicon substrate. The times reported are, respectively 50 fs (left column), 100 fs (middle column) and 150 fs (right
column). The (black) × symbols represent the position of the dopants.

introduction of 20% of noise, things are very similar to the ordered cases. Indeed the position is not very much perturbed
and the wave-packet dynamics continues to be almost symmetric. In the case of highly disordered arrays (40% and 60%), the
evolution is drasticallymodified. The symmetry is broken and the velocity component of the packet is not purely longitudinal
any longer. This can be clearly seen in Fig. 4 for the case 40%. This minimizes the current eventually measured at the top
contact (the current is directly proportional to the perpendicular direction of the velocity with respect to a given surface).
This is in accordance with the experiments performed in Ref. [13].

4. Conclusions

In this paperwe reported the study of the dynamics of an initially Gaussianwave-packet in the presence of several dopant
arrays by means of the full quantum, time dependent and multi-dimensional Wigner MCmethod based on signed particles.
We studied three different ordered configurations (see Fig. 1), with dimensions 3×2 (top row), 3×3 (middle row) and 3×4
(bottom row), respectively. We have, then, introduced some noise in the initial position of the dopants by an amount of 20%,
40% and 60%. The results for several numerical experiments are reported in Figs. 3 and 4. One observes that while in the
ordered case (Fig. 3) the wave packet develops an axial symmetry, this does not happen in the disordered arrays (Fig. 4 for
example). Eventually, the packet gets an additional transversal component which reduces the performances of the device
in terms of measured current and conductance at the top (absorbing) contact, in agreement with the experimental results
reported in Ref. [13].
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