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Abstract

In order to simulate quantum N -body systems, stationary and time-dependent den-
sity functional theories rely on the capacity of calculating the single-electron wave-
functions of a system from which one obtains the total electron density (Kohn-Sham
systems). In this paper, we introduce the use of the Wigner Monte Carlo method
in ab-initio calculations. This approach allows time-dependent simulations of chem-
ical systems in the presence of reflective and absorbing boundary conditions. It
also enables an intuitive comprehension of chemical systems in terms of the Wigner
formalism based on the concept of phase-space. Finally, being based on a Monte
Carlo method, it scales very well on parallel machines paving the way towards the
time-dependent simulation of very complex molecules. A validation is performed
by studying the electron distribution of three different systems, a Lithium atom, a
Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from
initial conditions not too far from equilibrium and show that the systems reach a
stationary regime, as expected (despite no restriction is imposed in the choice of
the initial conditions). We also show a good agreement with the standard density
functional theory for the hydrogenic molecule. These results demonstrate that the
combination of the Wigner Monte Carlo method and Kohn-Sham systems provides
a reliable computational tool which could, eventually, be applied to more sophisti-
cated problems.

Key words: Density Functional Theory, Wigner equation, Monte Carlo Methods,
Kohn-Sham systems, Computational Chemistry

1 Introduction

The simulation of quantum N -body systems is a complex task which requires
immense computational resources. It is also an important problem which
touches many aspects of our everyday life. Indeed such simulations can explain
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complex chemical reactions, assist the design of new materials and enable the
development of new technologies, just to mention a few possibilities. Thus it
is not surprising that a very early interest has been shown in this direction
[1], [2]. For decades now, very big efforts have been made to develop reliable
methods and efficient techniques.

Today, in the branch of organic and inorganic computational chemistry, the
density functional theory (DFT) can be considered the most popular and used
tool. It has shown to be successful in simulating and explaining a plethora of
complex quantum systems [3]. DFT relies on our capability of calculating the
wave-function of a single-electron Schrödinger equation. Indeed, in this theory
the quantum N -body problem is reduced to a system of coupled single-electron
equations, known as the Kohn-Sham system. The electron-electron interaction
is taken into account by means of a so-called density functional, in both sta-
tionary and time-dependent regimes [4], [5]. This simplification allows the
simulation of N -body problems in more reasonable computational times. The
price to pay consists in the fact that the exact mathematical expression for the
density functional is known only for simple cases and further approximations
are introduced for more complex systems. Nowadays, one can choose between
different functionals among which the most popular in chemistry are the local
density approximation (LDA) [4], the generalized gradient approximation [6]
and the B3LYP [7].

Despite the approximations introduced, in practical calculations the single-
electron Schrödinger equation cannot be solved analytically and sophisticated
numerical approaches are required which are based on finite difference or fi-
nite element methods. Depending on the complexity of the problem involved,
these techniques can have problems in scaling on parallel machines. From this
perspective, the Wigner Monte Carlo (WMC) method represents a big ad-
vantage. This method is based on the iterative Monte Carlo (MC) method
for solving linear equations (both integral and algebraic) [8], as well as non-
linear equations [9]. Being a MC technique, it is known to scale very well on
parallel machines [10] and, thus, opens the way towards the simulation of com-
plex situations hardly approachable in the context of finite difference or finite
element methods. Furthermore, the Wigner equation is a formulation of quan-
tum mechanics in terms of a phase-space and, as such, can represent a more
convenient approach [11]. Indeed, it is a more intuitive framework to explain
quantum mechanics, totally equivalent to the Schrödinger model, which uses a
quasi-distribution function (see, for example, [12] and [13] for the description
of hydrogen and closed-shell atoms, and [14] for the description of resonant
tunneling diodes). Finally, it is possible to choose different boundary condi-
tions (BCs). For chemical systems, we can apply reflective BCs (equivalent to
the closed-box assumption) or absorbing BCs (which are time-irreversible and
thus in agreement with the requirements in [15]). The case of injecting BCs is
still an open problem [16] but not relevant for the calculations performed in
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this work. The Wigner equation has been already applied to study a variety of
situations ranging from atomic physics [17], [18] to quantum electronic trans-
port [19], [20], [21] but, to the best of our knowledge, has never been utilized
for ab-initio simulations.

The first attempts to simulate quantum phenomena with the Wigner equation
were based on finite difference approaches which were affected by numerical
problems [22], [15], [23] due to the diffusion term of the Liouville operator. In-
deed the Wigner quasi-distribution function is rapidly oscillating in the phase
space, especially where quantum interference is dominant. During the last
decade several MC methods, which avoid the calculation of the diffusion term,
were developed [24], [25], [26], [14], [27]. One of them introduces the concept of
signed particles, generated by the Wigner potential, but needs ergodic condi-
tions and is relevant only for stationary problems [27]. Recently, this approach
has been generalized to the time-dependent regime [28]. This method exploits
the notions of momentum quantization and indistinguishable particles. These
concepts entangled with the notions of Newtonian trajectories, particle ensem-
ble, and particle annihilation allow the implementation of time-dependent, full
quantum, and multi-dimensional simulations.

In this work, we propose a variant of the standard DFT, where the set of cou-
pled single-electron Schrödinger equations in the Kohn-Sham system is sub-
stituted by an equivalent set of single-electron Wigner equations, which are
solved by the WMC method. We validate our proposed approach by applying
it to the study of three different quantum systems: a Lithium atom, a Boron
atom and an hydrogenic molecule in two different configurations (close and far
apart nuclei). Furthermore, in the last system, we perform a comparison with
the standard DFT. For these systems one expects that, starting from well ed-
ucated initial conditions (the only restriction being the Heinsenberg principle
not to be violated), the electron densities should eventually tend to a sta-
tionary solution of the standard Kohn-Sham system. This is what we observe
from our numerical experiments, in excellent (quantitative) agreement with
the standard DFT, paving the way towards scalable simulations of complex
chemical systems in the Wigner formalism.

2 A Wigner Monte Carlo Approach to DFT

The goal of DFT is the simulation of quantum N -body systems. In the time-
dependent framework, the dynamics of such systems is described by the many-
body Schrödinger equation:

ih̄
∂

∂t
Ψ = ĤΨ, (1)
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where the unknown is the (complex) wave-function Ψ = Ψ(r1, . . . , rN), ri =
(xi, yi, zi) represents the position of the i-th particle, and the functional Ĥ,
known as the Hamiltonian of the system, acts on the space of wave-functions
and accounts for the various forces involved in the problem:

Ĥ =

⎡
⎣ N∑
i=1

(
− h̄2∇2

i

2mi

)
−

N∑
i,j=1

Zje
2

|ri − rj| +
1

2

N∑
i�=j

e2

|ri − rj|

⎤
⎦ . (2)

The resolution of (1) represents an incredible mathematical challenge even
when approached by numerical techniques. It is worth to mention that at-
tempts in this direction have been made (direct MC minimization techniques
[29]) but, up to now, they only allow the calculation of the stationary ground
state.

In 1926 a first attempt to simplify the problem (1), altough in the stationary
case, was done by introducing an approximate method to find the electronic
structure in terms of a one-electron ground-state density ρ(r), [1], [2]. The
Thomas-Fermi theory, as it is known today, introduces too many oversimpli-
fications to be of any pratical use but it represents a foundational result for
the development of DFT. Later on, Slater combined the ideas of Thomas and
Fermi with the Hartree’s orbital method [30], [31], introducing for the first
time a local exchange potential. Then the Hohenberg-Kohn theorem proved
that, in principle, an exact method using the one-electron ground-state den-
sity ρ(r) [32] can be depicted and the Kohn-Sham system was introduced
from the homogeneous quantum electron gas theory [4]. The time-dependent
counterpart of the Hohenberg-Kohn theorem was introduced in 1984 which is
known as the Runge-Gross theorem [5]. One should note that this theorem
guarantees the validity of the time-dependent Kohn-Sham system only for
the calculations of the ground-state properties. Nothing is proved about the
excited states. In this work, we anyway use the time-dependent Kohn-Sham
system as a first preliminary step to introduce the use of the single-electron
Wigner MC method in ab-initio calculations (further developments will follow
in the next future to improve this approach).

Despite its limitations, the time-dependent Kohn-Sham system greatly reduces
the difficulties involved in (1) and allows practical and useful (but not yet
chemical) simulations of quantum N -body systems. Indeed, we now deal with
a set of N one-electron Schrödinger equations coupled to each other by means
of an artificial density functional veff(r) which is local [3]. One should note
that the locality of this functional introduces severe restrictions to the time-
dependent simulations of strongly correlated electron systems. Anyway, for
the above reasons, we use it as preliminary introduction of the Wigner MC
method in ab-initio calculations.

The time-dependent Kohn-Sham system consists of the following set of equa-
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tions (i = 1 . . . N)

ih̄
∂Φi

∂t
(r, t) =

(
− h̄2∇2

2mi

+ veff (r)

)
Φi (r, t) (3)

from which the one-electron density can be calculated in the following way:

ρ(r) =
∑
i

|Φi(r)|2, (4)

where the sum is performed over the states below the Fermi energy. The N -
body effects are included in the effective potential veff = veff(r) which can be
expressed in terms of an external potential (usually representing the poten-
tial due to the nuclei of a molecule), the Hartree potential and an exchange-
correlation potential

veff(r) = vext(r) + e2
∫
dr′

ρ(r′)
|r− r′| + vxc [ρ] (r). (5)

Finally, one should note that there is no unique way to express the density
functional vxc. Many choices are available (e.g. [4], [6] and [7]). In any case,
given a functional, it is possible to solve the set of equations (3) from which
one obtains the one-electron density ρ(r).

The Wigner formulation of quantum mechanics offers a description of the
electron state in terms of a quasi-distribution function fw = fw(r,p, t), where
r is the position and p the momentum. TheWigner function fw is related to the
Schrödinger wave-function Ψ(r, t) via the following Wigner-Weyl transform:

fw(r,p, t) =
1

ih̄2π

∫
dr′e−ip·r′

h̄ Ψ(r+
r′

2
, t)Ψ∗(r− r′

2
, t). (6)

By applying it to the time-dependent Schrödinger equation, one obtains the
time-dependent evolution of the quasi-distribution function, known as the
Wigner equation [11]

∂fw
∂t

+
p

m
· ∇rfw = Q[fw], (7)

where the functional Q[fw] is defined over the space of pseudo-distribution
functions:

Q[fw](r,p, t) =
∫

dp′Vw(r,p− p′, t)fw(r,p′, t). (8)

The function Vw = Vw(r,p, t) is known as the Wigner potential and reads

Vw(r,p, t) =
1

ih̄2(2π)3

∫
dr′e−ip·r′

h̄

(
V (r+

r′

2
, t)− V (r− r′

2
, t)

)
, (9)
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where the function V = V (r, t) is the potential acting over the spatial domain
and may vary in time.

It is possible to reformulate this model by exploiting a semi-discrete phase-
space [28]. Indeed, by introducing a cut-off length LC = (Lx

C , L
y
C , L

z
C), a dis-

crete Fourier transform can be applied in (9), and the space of momenta
can be expressed in terms of multiples of the finite quantity Δp = h̄π

LC
.

Thus, a momentum vector p can now be described as a triplet of integers
M = (Mx,My,Mz), where p = MΔp = (MxΔpx,MyΔpy,MzΔpz). In the
phase-space (r,M), the semi-discrete Wigner equation reads

∂fw
∂t

(r,M, t)+
MΔp

m
· ∇rfw (r,M, t)

=
+∞∑

N=−∞
Vw (r, (M−N)) fw(r,N, t), (10)

where the Wigner potential is reformulated accordingly

Vw(r,M, t) =
1

ih̄2LC

∫ +LC/2

−LC/2
dr′e−i2MΔp·r′

h̄ (V (r+ r′, t)− V (r− r′, t)) .

We can now reformulate the semi-discrete Wigner equation (10) in an adjoint
integral form having a solution which can be expressed in terms of a series. In
particular, the expection value of a macroscopic physical quantity A = A(r,p)
can be written as the following series

〈A〉=
∫ ∞

0
dt′

∫
dri

∞∑
M′=−∞

f 0
w(ri,M

′)

e−
∫ t′
0

γ(ri(y))dyg(ri(t
′),M′, t′), (11)

where f 0
w = f 0

w(r,M) represents the initial conditions, the function g =
g(r,M, t) is the solution of the adjoint equation containing the quantity A =
A(r,p), and the function γ = γ(r) is defined as

γ(r) =
+∞∑

M=−∞
V +
w (r,M), (12)

with V +
w the positive part of Vw [28].

In order to depict a MC method for the resolution of (10), we report the first
two terms of the series and give a physical interpretation. The zeroth term
reads:
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〈A〉0(τ) =
∫ ∞

0
dt′

∫
dri

∞∑
M′=−∞

f 0
w(ri,M

′)

e−
∫ t′
0

γ(ri(y))dyA(ri(t
′),M′)δ(t′ − τ) (13)

From a MC mathematical perspective, the integrand can be considered as a
product of conditional probabilities. Indeed, assuming that f 0

w is normalized,
one can generate random points (ri,M

′) at a given initial time. This can be
interpreted as the initialization of particle trajectories ri(y) and the exponent
of the integrand can be seen as the probability for a particle to remain in its
trajectory where the rate is given by the function γ(r). A out-of-trajectory
time (less than τ) can be generated randomly and the probability acts as a
filter to the particles: if a particle remains in its initial trajectory until time
τ , it contributes to < A >0 (τ) with the value f 0

w(ri,M
′)A(ri(τ),M′). At that

point, if N particles remain in the trajectory, < A >0 (τ) is estimated by using
their initial mean value. Otherwise, if the particle does not stay in its initial
trajectory, it does not contribute to < A >0 (τ) but to the term < A >1 (τ):

〈A〉1(τ) =
∫ ∞

0
dt′

∫
dri

∞∑
M′=−∞

f 0
w(ri,M

′)

{
γ(ri(t

′))e−
∫ t′
0

γ(ri(y))dy
}
× θD(r1)

∫ ∞

t′
dt

∞∑
M=−∞

{
Γ (r1,M,M′)

γ(ri(t′))

}
{
e−

∫ t

t′ γ(r1(y))dy
}
A((r1(t),M, t)δ(t− τ), (14)

where

Γ(r,M,M′) = V +
w (r,M−M′)

−V +
w (r,−(M−M′))

+ γ(r)δM,M′ . (15)

This time a particle is initialized at (ri,M
′, 0) and follows the trajectory until

time t′ (which is the out-of-trajectory time given by the probability density in
the first curly brackets). It is easy to see that the exponent is the probability
to stay in the initial trajectory until time t′, while γ(ri(t

′))dt′ is the proba-
bility to leave the trajectory in the interval [t′, t′ + dt′]. The particle is now
in the phase-space position (r1 = ri(t

′),M′, t′) and the evolution continues as
long as the particle remains in the simulation domain. Otherwise the domain
indicator θD = θD(r) changes the value from 1 to 0 and the contribution is
zero. The term in the next curly bracket can be interpreted as a source of
momentum variation from M′ to M (locally in space at point r1 and time t′).
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Thus, at moment t′ the particle initializes the trajectory (r1,M) and, with
the probability given by the exponent in the last curly brackets, remains over
the trajectory until time τ is reached: t is set to τ by the δ function provided
that t′ < τ , otherwise the contribution is zero. In the same way, a physical
interpretation of the other terms of the series can be given.

From the previous observations, a MC approach for the semi-discrete Wigner
equation can now be depicted (see [8], [9] for all details). By considering the
quantity γ = γ(r) in (12) as a normalization factor, the expression (15) de-
scribes the generation process of two particles, with a positive and a negative
sign respectively, and the surviving initial particle with its sign due to the
δ function. More specifically, an initial particle with sign s and momentum
N generates, with a rate V +(L), two primary particles with signs s, −s and
momenta N′ = N + L, N′ = N − L, and continues its free flight evolution
until a given time T . The created pair, in turn, generates new pairs, etc., and
the number of particles increases exponentially. By noting that particles are
indistinguishable and that two particles in the same spatial cell with the same
momentum M and opposite signs do not contribute to the Wigner distribu-
tion function, an annihilation technique can be implemented to reduce the
number of particles during the simulation [28]. The time-dependent evolution
of the Wigner quasi-distribution happens only by creation and annihilation of
particles which replace the acceleration due to Newtonian forces [28].

By applying the Wigner-Weyl transform (6) to every Schrödinger equation
of the set (3), where V (r) = veff(r), it is possible to obtain a new time-
dependent Kohn-Sham system expressed in terms of the corresponding N
Wigner equations

∂f i
w

∂t
+

p

m
· ∇rf

i
w = Q[f i

w], (16)

where the Wigner potential is expressed in terms of an effective potential

Vw(r,p, t) =
1

ih̄2(2π)3

∫
dr′e−ip·r′

h̄

(
veff(r+

r′

2
, t)− veff(r− r′

2
, t)

)
. (17)

Given an adequate effective potential veff(r) which, in turn, depends on the
choice of the exchange-correlation functional, the quantum N -body problem
now consists of solving the set of coupled equations (16). This system, of
course, being based on the same assumptions, is affected by the same prob-
lems of standard DFT. The choice of the exchange-correlation potential is not
unique and difficult to select, there is no guarantee that the excited states are
correct, etc. This approach, if applied to any computational quantum problem,
will essentially give the same answers given by the standard DFT. Neverthe-
less, two important advantages must be underlined in this new model. First,
the Wigner formalism is based on the concept of a quasi-distribution function
and, as such, can give a much more intuitive representation of the simulated
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system. For example, one can discuss the system in terms of single-electron
distribution functions and visualize the time-dependent energy distribution
which can give profound insights about the dynamics involved. Second, the
WMC method, based on the Iterative MC method, is known to be highly scal-
able outperforming other numerical approaches (the parallelization scheme is
trivial) [10]. This opens the way towards simulations of very complex struc-
tures.

3 Numerical Experiments

In this section, we present four numerical experiments to validate our proposed
method. For all simulations, we utilize the modified time-dependent Kohn-
Sham system (16) based on the WMC method. In particular, the first two
experiments consist of calculating the stationary configuration of electrons
for Lithium and Boron atoms starting from non-stationary initial conditions.
These are two important initial experiments since we test the capability of the
method to stay in a stationary regime. These are non-trivial experiments since
one should remind that the WMC method is based on Newtonian particles
constantly moving in free-field trajectories. Reaching a stationary regime and
keeping it for a long simulation time is a clear indication of the robustness and
reliability of the method. We first simulate the Lithium atom, considered to
be a relatively simple case since all orbitals are expected to have a spherical
symmetry. Then, we proceed with a Boron atom where this symmetry is not
valid anymore for the 2p orbital. Numerically speaking, this represents a more
difficult situation to handle. The last two experiments consist of a system
constituted of two hydrogen atoms (two fixed positive nuclei and two electrons)
and we focus on two different configurations. In the first one the two nuclei are
far apart, in the second one they are relatively closer (distance comparable to 1
Angstrom). Eventually both systems evolve towards a stationary regime and,
in particular, the apperance of a chemical bond is observable in the second
case. Finally, we compare the WMC-DFT solutions with the standard DFT.
A good (quantitative) agreement is reached.

For the sake of simplicity, in all experiments the nuclei are modeled as non-
screened Coulombic charges. In order to avoid singularities in the numerical
treatment of the nuclei, we introduce the following modified potential: [33]:

Vi(r) =
q

4πε0
(
(r− ri)

2 + 1
2
a20

) 1
2

, (18)

where a0 is the Bohr radius a0 =
4πε0h̄

2

me2
(about 0.0529nm) and ri is the position

of the center of the i-th nucleus. One should note that the choice of this
modified Coulombic potential does not represent a restriction for the method.
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Indeed one can use any other available mathematical model for nuclei, such as
pseudo-potential models, etc. For all experiments, the initial conditions for the
Wigner quasi-distribution functions are represented by non-stationary states
which are directly proportional in space to the electron density of a hydrogenic
state and Gaussian in energy (around a specified energy E0). For example, for
a Lithium atom (2 electrons in 1s state and 1 electron in 2s state), the initial
conditions for the 3 electrons are:

f 1s
w (r,p, 0) = A1se

−
(

p2

2m−E0

)
σ2
E e

−|r−ri|
a0 (19)

(two times) and

f 2s
w (r,p, 0) = A2se

−
(

p2

2m−E0

)
σ2
E e

−|r−ri|
a0

(
1− |r− ri|

a0

)
, (20)

where A1s and A2s are normalization constants (the density corresponding to
every Wigner quasi-distribution is normalized to unity, i.e. one electron per
equation) and σE is the dispersion in energy. Again for the sake of simplicity,
we choose the following (LDA) exchange-correlation functional taken from [32]
(in atomic units):

vxc [ρ] (r) = − 1

π

[
3π2ρ(r)

] 1
3 . (21)

One should note that our method is not limited to the choice of any particular
exchange-correlation functional. Indeed other (more advanced and reliable)
expressions for vxc [ρ] are available and can be utilized when necessary.

Finally in the last two experiments, involving an hydrogenic molecule, we
perform a comparison with the standard DFT. The benchmark system used is
the standard time-dependent Kohn-Sham system for two interacting electrons

ih̄
∂Φ1

∂t
(r, t) =

(
− h̄2∇2

2m
+ veff (r)

)
Φ1 (r, t)

ih̄
∂Φ2

∂t
(r, t) =

(
− h̄2∇2

2m
+ veff (r)

)
Φ2 (r, t) , (22)

where the effective potential veff is given by (5), vxc is the LDA functional in
(21), and the nuclei potentials are expressed by (18). This allows a fair com-
parison since we use the same exchange-correlation functional and potential
model for the nuclei. The method to simulate each of the equations in (22) is
based on the implicit in time finite difference scheme proposed in [34].

The Lithium atom. A Lithium atom consists of one nucleus with charge +3e
and 3 electrons with negative charge −e, interacting with the nucleus and each
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other. The system is started from a non-stationary state. Two electrons have
initial conditions (19) and one electron have initial conditions (20). The sys-
tem is evolved in time until a stationary solution is reached. The results of this
experiment are reported in Fig.1, Fig.2, Fig.3 and Fig.4. In particular, Fig.1
shows the potential generated by the nucleus and Fig.2 shows the correspond-
ing γ(r) function. It is clear from this last figure how the dynamics of the
wave packet is affected in proximity of the nucleus. Indeed a zero node can be
observed in the position of the nucleus. In other words, no couple of particles
is generated in that area. Finally, Fig.3 and Fig.4 show the electron densities
corresponding to time equal to 50 attoseconds, for the 1s and 2s states re-
spectively. The system has eventually relaxed toward a stationary state and
do not evolve anymore (despite the WMC method is based on continuously
evolving Newtonian particles). This is a first indication of the robustness of
the method.

The Boron atom. A Boron atom represents a relatively more complex situa-
tion since one of his orbitals (2p) does not have spherical symmetry. It consists
of one nucleus with charge +5e and 5 electrons with charge −e. The system
is started from non-stationary initial conditions consisting of two electrons in
(19), two electrons in (20) and one electron in the following conditions (density
directly proportional to a 2p state):

f2p
w (r,k, 0) = A2pe

−
(

h̄2k2

2m −E0

)
σ2
E e

−|r−ri|
a0 (r− ri)

2 . (23)

The whole system is evolved until the stationary regime is reached. The re-
sults are reported in Fig.5, Fig.6, Fig.7 and Fig.8. In particular, Fig.5 shows
the γ(r) function at 50 attoseconds corresponding to the nucleus and the
electrons. Fig.6, Fig.7 and Fig.8 show the electron densities corresponding to
time equal to 50 attoseconds, for the 1s, 2s and 2p states respectively. Even
in this numerical experiment, the system converges to a stationary regime as
expected. In particular, the 2p orbital remains stationary in time. This is a
further indication of the robustness of the method.

Two distant hydrogenic atoms. Two hydrogenic atoms, far apart from
each other, create a superposition of two Coulombic potentials in which two
electrons interact with each other. The results of this experiment are reported
in Fig.9, Fig.11, Fig.13, Fig.15 and Fig.17. In particular, Fig.17 also shows
a comparison with the standard DFT method. The initial electron density is
shown in Fig.13 while the potential is shown in Fig. 9. The corresponding
function γ(r) is depicted in Fig.11. Three nodes are clearly visible where no
particle is created. These points correspond to the geometric center between
the two nuclei and their positions. The system is evolved in time until 50 at-
toseconds and a stationary solution is already reached at about 4 attoseconds.
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The electron density at 50 attoseconds is shown in Fig.15. It is possible to
see how the solution is basically tending towards a couple of non-interacting
s-shape orbitals which is qualitatively in accordance with the expectation that
the system should reach stationary regime if reasonable initial conditions are
imposed (in our case not too far from equilibrium). Finally, the cuts for the
various densities at 50 attoseconds are shown in Fig.17 along with a compari-
son with standard DFT results obtained from the system (22). From this plot,
it is clear that the two single-electron densities are essentially s-shape non-
interacting orbitals. Furthermore, the solution for the total density is (quan-
titatively) in agreement with the standard DFT. Indeed, the resemblance is
striking especially because the methods used for the WMC-DFT and the stan-
dard DFT are very different (MC vs. finite differences).

Two close hydrogenic atoms. Two hydrogenic atoms are relatively close
to each other (compared to the previous experiment) and two electrons are
evolved in the resulting superposition of the nuclei Coulombic potentials. The
electron-electron interactions are taken into account by means of the LDA
exchange-correlation term (21). In this experiment, these interactions are ex-
pected to be important due to the proximity of the nuclei. The system is
evolved in time until 50 attoseconds and a stationary solution is already
reached at about 5 attoseconds. The results of this experiment are reported
in Fig.10, Fig.12, Fig.14, Fig.16 and Fig.18. Fig.14 shows the initial electron
density in the total potential of Fig.10. The corresponding γ(r) function is
depicted in Fig.12. This time one observes only one hole corresponding to the
center between the two nuclei and the dynamics is more pronounced in prox-
imity of the two nuclei. This is due to the fact that now interactions are more
pronounced. The corresponding electron density is shown in Fig.16. A bond is
formed between the two atoms, indeed part of the electron density is spread
in the area between the two nuclei. This is clearly shown in Fig.18 where the
two single electron densities (dotted curves) and the total density (o− curve)
are reported along with the total density obtained from the standard DFT
(22) (.− curve). The single-electron densities peaks are centered around one
of the two nuclei and spread towards the other nucleus. When combined to
form the total density, one observes a chemical bond forming between the two
hydrogenic atoms (continuous curve). This is in (qualitative) agreement with
our expectations. Furthermore, even for this experiment involving stronger
electron-electron interactions, the solution for the total density is (quantita-
tively) in agreement with the standard DFT. Even in this case, the resem-
blance is striking showing that our proposed WMC-DFT is reliable and gives
reasonable results.
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4 Software and Hardware

The results presented in this section have been obtained using the HPC cluster
deployed at the Institute of Information and Communication Technologies
(IICT) of the Bulgarian Academy of Sciences. This cluster consists of two
racks which contain HP Cluster Platform Express 7000 enclosures with 36
blades BL 280c with dual Intel Xeon X5560 @ 2.8Ghz (total 576 cores), 24GB
RAM per blade. There are 8 storage and management controlling nodes 8 HP
DL 380 G6 with dual Intel X5560 @ 2.8Ghz and 32GB RAM. All these servers
are interconnected via non-blocking DDR Infiniband interconnect at 20Gbps
line speed. The theoretical peak performance is 3.23Tflops.

The simulator used to obtain the results presented in this paper is a modified
version of Archimedes, the GNU package for the simulation of carrier transport
in semiconductor devices [35]. This code was first released in 2005, and, since
then, users have been able to download the source code under the GNU Public
License (GPL). Many features have been introduced in this package. In this
particular project, our aim is to develop a full quantum simulator. The code
is entirely developed in C and optimized to get the best performance from the
hardware. The results of the new version will be posted on the nano-archimedes
website (see [36]).

5 Conclusions

In this work, we introduced a novel approach to DFT based on the WMC
method. The standard time-dependent Kohn-Sham system (3), exploiting
single-electron Schrödinger equations, is modified by applying the Wigner-
Weyl transform (6) to every equation such that an equivalent set of coupled
Wigner equations is obtained (16) [11]. The new model comes with the very
same drawbacks that affect the standard DFT, e.g. there is no unique way
to choose the exchange-correlation term, the excited states are not guaran-
teed to be correct, etc. But it has two main advantages over the standard
approach which are worth to be mentioned and could, eventually, have impor-
tant implications. Firstly, it is based on the Wigner formalism which means
that a more intuitive picture can be obtained from simulations in terms of
a quasi-distribution function defined over the phase-space [12]. Secondly, it
exploits a MC method to solve integro-partial differential equations which, in
practice, means trivial and extremely efficient scalability [10]. For validation
purposes, we applied our new approach to the simulation of a Lithium atom,
a Boron atom and a system consisting of two hydrogenic atoms in two differ-
ent configurations. The aim of the first two experiments is to show that the
WMC method can reach a stationary regime and keep the solution in that
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state for very long simulation times. This proves that the method is stable
and robust. In particular, this is valid even for the Boron atom which has one
atom in a non-trivial 2p state. In the last two experiments involving a hydro-
genic molecule, we performed a comparison with standard DFT calculations.
The two models, despite they are solved by very different numerical methods
(MC vs. finite difference), are in very good (quantitative) agreement, showing
that our method is reliable in the range of applicability of DFT. These results
pave the way towards highly scalable simulations for computationally complex
chemical systems.
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Fig. 1. Nucleus potential created by a Lithium nucleus.

Fig. 2. γ function corresponding to a Lithium atom.
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Fig. 3. Density of an electron in Lithium 1s orbital.

Fig. 4. Density of an electron in Lithium 2s orbital (logarithmic scale).
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Fig. 5. γ function corresponding to a Boron atom.

Fig. 6. Density of an electron in Boron 1s orbital.
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Fig. 7. Density of an electron in Boron 2s orbital (logarithmic scale).

Fig. 8. Density of an electron in Boron 2p orbital (logarithmic scale).
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Fig. 9. Nuclei potential created by two distant Hydrogenic atoms.

Fig. 10. Nuclei potential created by two close Hydrogenic atoms.
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Fig. 11. γ function corresponding to the potential of two distant Hydrogenic nuclei.

Fig. 12. γ function corresponding to the potential of two close Hydrogenic nuclei.
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Fig. 13. Initial electron density corresponding to two Gaussian wave packets in
proximity of two distant Hydrogenic nuclei.

Fig 14 Initial electron density corresponding to two Gaussian wave packets in
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Fig. 15. Electron density at 0.05fs. The two packets tends to two separated s-shape
orbitals.

Fig. 16. Electron density at 0.05fs. A bond is formed between the two atoms.
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Fig. 17. Cut along the nuclei axis of the electron density at 0.05fs. The two pack-
ets (dotted curves) tends to two separated s-shape orbitals. A good agreement is
achieved between our proposed model based on WMC, (black) o− line, and the
standard DFT, (red) .− line.

Fig. 18. Cut along the atoms direction of the electron density at 0.05fs. The two
packets form a bond between the two Hydrogenic atoms. A good agreement is
achieved between our proposed model based on WMC, (black) o− line, and the
standard DFT, (red) .− line. 25


