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CHAPTER 4

Part C: Sensitivity of European Pollution Levels to Changes of
Human-Made Emissions
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Abstract: Systematic changes of the human-made emissions in Europe were simulated by
applying a carefully chosen series of appropriate scenarios and the impact of these changes
on the pollution levels in different parts of the model domain was studied. It was
established that, while the changes of the sulphur pollutants correspond in a nearly perfect
way to the changes of the emissions, for the most of the other pollutants this was not true.
Furthermore, the experiments also indicate that the changes in the different part of Europe
can be rather different although the emissions were reduced with the same factor. The
conclusions are illustrated by many results presented in tables and plots. Several ideas for
future research in this direction are briefly discussed in the end of this chapter.
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INTRODUCTORY REMARKS

The sensitivity of several important chemical species to variations of human-made
(anthropogenic) emissions is studied in this chapter.

The mathematical tool applied in this investigation is UNI-DEM (The Unified
Danish Eulerian Model). The space domain of this model covers the whole of
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Europe together with parts of Africa, Asia, the Atlantic Ocean and some Arctic
areas. In this chapter mainly the version in which this domain is divided in
230400 horizontal (10 km x 10 km) cells will be used. Different features of this
model are fully described in [1, 2, 3, 4, 5]. UNI-DEM was extensively used for
performing different investigations related to air pollution in

e Bulgaria ([6, 7]),

e Denmark ([8-11]),

e England ([12]),

e Europe ([2, 4,5, 8, 13-15]),
e Hungary ([16-18]) and

e The North Sea ([19]).

A previous version of UNI-DEM has also been used in some inter-comparisons of
European large-scale air pollution models ([20, 21]).

Recently the model was extensively used in the efforts to investigate the impact of
future climate changes on pollution levels in Europe as a whole and in different
parts of this continent (see [10, 11, 13, 14, 18, 22]).

The mathematical background and the physical processes united in UNI-DEM are
fully described in [2, 4, 5].

In the present study UNI-DEM is used to quantify the sensitivity of the concentrations
and some related quantities (which can cause damages on plants, animals and human
beings) to variations of the human-made (anthropogenic) emissions.

SCENARIOS USED IN THIS STUDY

The sensitivity of several important chemical species to variations of human-made
(anthropogenic) emissions is studied by designing and applying several
appropriate scenarios.
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First the Basic Scenario for year 1997 is used. The EMEP emission inventories
are applied and the meteorological data are also provided by EMEP (see [23, 24]).
Then four additional runs, in which the meteorological data are kept the same, but
the human-made emissions being successively reduced by 20%, 40%, 60% and
80% respectively, are performed. It is clear that all changes of the pollution levels
are entirely caused by the variations of the emissions (the only parameters, which
are not the same in the different runs). This fact allows us to draw several useful
conclusions.

Minimal and maximal reductions of the concentrations of ten selected chemical
species are given in Table 1 for the cases where the human-made (anthropogenic)
emissions are decreased by 20%, 40%, 60% and 80% (i.e. when the actual
emissions used in the corresponding runs are respectively 80%, 60%, 40% and
20% of the real emissions).

Comparing the minimal and maximal values of the concentrations, which are
given in Table 1, it is clearly seen that the sensitivity of the different chemical
species to variations of the human-made emissions is quite different. While the
changes of the sulphur di-oxide concentrations (and to a certain degree also the
TOTSO, concentrations) are changed nearly by the same factor as that used to
change the emissions, bigger or smaller deviation from this factor can clearly be
detected in the behaviour of the remaining species.

Often the interval formed by the minimal and the maximal values in Table 1 is
rather big. This indicates that for the most of the chemical species the sensitivity
effect is different in the different parts of the studied domain and, therefore,
visualization of the distribution of the changes in Europe is absolutely necessary.

The linear effect for the sulphur di-oxide concentration changes is illustrated in
Figs. 1 and 2 (note the intervals in which the sulphur di-oxide concentrations vary
in the four plots given Fig. 2). The results for all other chemical species that are
mentioned in Table 1 have also been obtained and included in an extended
version, which can be sent to interested readers if requested.
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Table 1: Minimal and maximal values of the selected concentrations registered for different emission
reductions. Only the human-made (anthropogenic) emissions are reduced in these four scenarios.

Chemical 20% Reduction 40% Reduction 60% Reduction 80% Reduction
species Minimal |Maximal |Minimal |Maximal |Minimal |Maximal |Minimal | Maximal
FORM 81.7 97.9 63.9 93.7 48.4 90.0 29.0 86.5

NH; 59.1 93.2 8.4 78.0 2.0 57.7 0.9 30.4
NO 75.0 99.4 52.4 98.0 331 94.6 16.7 85.6
NO, 80.6 95.7 61.5 89.2 417 79.9 213 64.1
O, 89.6 99.6 78.6 99.2 68.2 98.8 50.7 98.1
OH 84.1 95.6 67.4 89.4 49.2 80.8 26.3 67.3
SO, 78.5 82.1 58.6 62.3 38.8 41.4 19.2 205

TOTNH, 65.3 86.0 38.3 60.3 20.8 40.2 8.4 20.0

TOTNO; 68.9 85.9 40.1 68.7 231 50.4 9.3 28.9

TOTSO, 735 83.9 55.3 64.0 37.6 43.0 18.4 315

sulphur di—oxide concentrations

in different parts of Eurcpe
Resulls cbtained by UNI-DEM (3B species)
(480x480) grid / 10 km x 10 km surfare cells

Emissicna and metecrclogy for 1887 5 Ab?’; _ :g
UNITZ: pphb, Basic Scenario — 240 — 3
Maximal walue in lhe domain: B1.5 || 10 - 24
Minimal value in the domain: 0.0 [ 8elow 10

Figure 1: Distribution of the sulphur di-oxide concentrations in the different parts of Europe
(these results are obtained by using the Basic Scenario for year 1997).
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Figure 2: Changes, in percentages, of the sulphur di-oxide concentrations in Europe that are
obtained for different reductions of the human-made emissions.
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STUDYING SENSITIVITY AT SELECTED SITES

The sensitivity of the concentration levels to variations of the human-made
(anthropogenic) emissions at selected sites was also studied. Eight European cities
(London, Madrid, Paris, Berlin, Moscow, Milan, Sofia and Copenhagen) were
chosen so that as many as possible parts of the continent are represented in these
experiments. The results obtained at these cities are shown in Table 2a — 2j. Plots,
which are corresponding to the numbers presented in Table 2a — 2j, are given in
Fig. 3a—3J.

Several conclusions can be drawn from the results which are presented in Table
2a - 2J:

e It would be very easy for the policy-makers to control the pollution
levels if a reduction of the human-made (anthropogenic) emissions
with p% results in a reduction of the corresponding concentration
levels with p% too. If this was true, then it will be very
straightforward to prescribe a relevant reduction of the human-made
emissions in the efforts to keep the pollution levels under some
prescribed in advance critical limits. The results presented in Table 2a
—2j and in Fig. 3a — 3j indicate that this convenient dependence of the
sensitivity of the pollution levels on the variation of the human-made
emissions holds perfectly only for the sulphur pollutants (which is
clearly seen from the plots shown in Fig. 2). It should be mentioned
here that this relationship holds to a certain degree also for NH3, NO,
and TOTHN,.

e For FORM, O3 and OH, a reduction of the human-made
(anthropogenic) emissions with p%o results for all eight cities in a
reduction of the corresponding concentration levels which is in
general less than p%o.

e For TOTNO; a reduction of the human-made (anthropogenic)
emissions with p%o results, again for all eight cities, in a reduction of
the corresponding concentration levels which is greater than p%o .
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e The results are rather irregular for NO. This means that a reduction of
the human-made (anthropogenic) emissions with p% results in a
reduction of the corresponding concentration levels which can be

either greater than p% or less than p% .

The above conclusions are confirmed in the plots shown in Fig. 3a — 3;j.

Table 2a: Sensitivity results (measured in percent) for FORM concentrations to variations of

human-made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 82.62 65.39 48.33 31.26
Madrid 94.78 89.55 82.84 74.28
Paris 85.89 71.78 57.66 42.94
Berlin 87.33 74.66 61.25 46.50
Moscow 91.81 82.92 73.31 61.92
Milan 85.76 71.52 57.49 42.61
Sofia 91.61 82.57 73.03 61.35
Copenhagen | 89.18 77.92 66.45 53.42

Table 2b: Sensitivity results (measured in percent) for NH; concentrations to variations of human-
made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 81.48 62.63 42.42 21.45
Madrid 80.49 60.46 40.48 20.25
Paris 81.75 62.72 42.67 21.52
Berlin 81.08 61.35 41.33 20.97
Moscow 80.75 60.56 40.49 20.37
Milan 81.16 61.74 41.75 21.19
Sofia 80.95 60.56 40.49 20.79
Copenhagen | 81.00 61.37 41.43 20.90

Remark: The particular choice of the eight sites, which was made in this study, is
probably not optimal. The problem is that all eight sites are big European cities.
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This fact implies that they are located in highly polluted areas of the continent
and, thus, the sensitivity of the concentrations to human-made (anthropogenic)
emission changes was studied only in highly polluted areas in this chapter. We are
nevertheless convinced that this is a good choice, because precisely the high
pollution levels might cause different damages and a lot of people in the selected
eight sites are exposed to potential damaging effects caused by highly polluted air.

Table 2c: Sensitivity results (measured in percent) for NO concentrations to variations of human-
made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 80.10 61.26 43.31 24.76
Madrid 87.29 72.88 55.93 34.70
Paris 84.11 67.95 50.51 30.64
Berlin 84.48 68.79 51.90 32.24
Moscow 76.10 53.96 34.15 16.86
Milan 86.45 71.83 55.16 34.73
Sofia 88.42 74.92 58.84 37.94
Copenhagen | 83.12 66.50 49.62 30.23

Table 2d: Sensitivity results (measured in percent) for NO, concentrations to variations of human-
made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 81.82 62.47 42.73 22.08
Madrid 82.77 64.53 45.61 24.90
Paris 82.21 63.80 44.42 23.80
Berlin 82.17 63.79 44.44 23.73
Moscow 81.73 63.00 43.19 22.29
Milan 82.84 64.85 45.69 271.77
Sofia 84.09 67.42 49.24 28.03
Copenhagen | 81.89 63.22 43.99 23.48
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Table 2e: Sensitivity results (measured in percent) for O3 concentrations to variations of human-
made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 91.45 81.77 70.66 56.98
Madrid 91.58 81.78 71.15 58.35
Paris 90.91 80.81 69.19 54.80
Berlin 91.13 81.57 70.65 57.34
Moscow 95.30 90.17 84.19 77.35
Milan 90.07 79.23 66.82 51.69
Sofia 92.78 84.41 74.52 62.74
Copenhagen | 92.71 84.26 74.93 63.56

Table 2f: Sensitivity results (measured in percent) for OH concentrations to variations of human-
made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 84.91 68.79 50.96 29.94
Madrid 86.33 71.16 54.12 33.29
Paris 85.43 69.84 52.13 31.28
Berlin 86.50 71.39 54.01 32.62
Moscow 84.62 67.92 49.93 28.88
Milan 86.13 71.09 53.80 32.85
Sofia 87.42 73.03 56.40 35.73
Copenhagen | 86.19 70.92 53.35 32.22

Table 2g: Sensitivity results (measured in percent) for SO, concentrations to variations of human-
made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 79.28 59.94 40.06 20.00
Madrid 79.91 59.92 39.93 20.00
Paris 79.77 60.12 40.00 20.00
Berlin 80.00 60.00 40.00 20.03
Moscow 79.72 59.79 39.93 19.91
Milan 80.00 60.00 40.00 20.00
Sofia 79.78 60.11 40.00 20.00
Copenhagen | 80.30 60.08 40.07 20.00
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Table 2h: Sensitivity results (measured in percent) for TOTNH; concentrations to variations of

human-made (anthropogenic) emissions at eight European cities.

Zlatev et al.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 77.62 56.03 35.98 17.63
Madrid 78.67 57.99 38.04 18.72
Paris 75.62 52.98 33.33 15.91
Berlin 78.30 57.61 37.41 18.32
Moscow 78.95 58.41 38.44 18.99
Milan 76.73 54.82 34.91 16.73
Sofia 78.66 57.90 37.83 18.71
Copenhagen | 77.04 55.62 35.95 17.01

Table 2i: Sensitivity results (measured in percent) for TOTNO; concentrations to variations of

human-made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 74.92 51.27 29.82 11.84
Madrid 75.93 53.36 3251 13.78
Paris 75.01 51.96 30.69 12.37
Berlin 75.69 52.39 31.30 13.13
Moscow 7743 55.98 35.57 16.45
Milan 74.96 51.10 30.05 11.97
Sofia 76.08 53.86 33.02 14.33
Copenhagen | 77.37 55.91 35.06 15.69

Table 2j: Sensitivity results (measured in percent) for TOTSO, concentrations to variations of

human-made (anthropogenic) emissions at eight European cities.

City 20% Reduction 40% Reduction 60% Reduction 80% Reduction
London 80.06 59.98 39.96 19.98
Madrid 80.13 60.11 40.08 20.04
Paris 80.00 60.02 40.06 19.96
Berlin 79.94 59.91 39.83 19.97
Moscow 80.01 59.98 39.99 20.02
Milan 80.13 60.05 39.99 20.05
Sofia 79.99 60.02 39.96 20.05
Copenhagen | 79.90 60.02 39.94 19.99
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Figure 3a: Sensitivity of the FORM concentrations to changes of human-made (anthropogenic)
emissions.
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Figure 3b: Sensitivity of the NH; concentrations to changes of human-made (anthropogenic)
emissions.
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Figure 3c: Sensitivity of the NO concentrations to changes of human-made (anthropogenic)

emissions.
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Figure 3d: Sensitivity of the NO, concentrations to changes of human-made (anthropogenic)

emissions.
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Figure 3e: Sensitivity of the Oz concentrations to changes of human-made (anthropogenic)
emissions.
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Figure 3f: Sensitivity of the OH concentrations to changes of human-made (anthropogenic)
emissions.
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Figure 3g: Sensitivity of the SO, concentrations to changes of human-made (anthropogenic)

emissions.
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Figure 3h: Sensitivity of the TOTNH, concentrations to changes of human-made (anthropogenic)

emissions.
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Figure 3i: Sensitivity of the TOTNO; concentrations to changes of human-made (anthropogenic)

emissions.
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Figure 3j: Sensitivity of the TOTSO, concentrations to changes of human-made (anthropogenic)

emissions.
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SENSITIVITY EFFECTS RELATED TO QUANTITIES WHICH MAY
HAVE DAMAGING EFFECTS

It is even more important to investigate the sensitivity to emission changes of
some quantities that may have damaging effects on plant, animal and human
beings when certain critical levels are exceeded. Three such quantities, AOT40
for crops, AOT40 for forest trees and bad days, will be used here. All these
three quantities are related to the ozone concentrations. The relationship is
explained in the following three sub-sections.

Definition of AOT40 For Crops

The AOT40 values for crops, which will be shortened as AOT40C in this section,
are related to ozone concentrations in the following way (more details can be
found, for example, in [5, 10, 18]):

AOT40C=§: max(c, —40,0),
€

where

e N is the number of day-time hours in the period from the beginning
of May to the end of July

and

e , is the ozone concentration (measured at a given station or
calculated by a model at a given grid-square) at hour i, where
ie{l,2,..,N}.

If AOT40C exceeds 3000 ppb.hours, then this fact may lead to losses from crops
for the area where this critical level is exceeded. This is why it is desirable to
prevent the situations where the AOT40C values exceed 3000 ppb.hours. This is
emphasized in several official documents of the European Union (EU); see, for
example, [25].
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Definition of AOT40 For Forest Trees

The AOT40 values for forest trees, which will be shortened as AOT40F in this
section, are related to ozone concentrations in a very similar way as the AOT40C
values (see also [5, 13, 25]):

AOT40F=ZN:max(ci —40,0),
@)

where

e N isthe number of hours in the period from the beginning of April to
the end of September,

and

e c, Is the ozone concentration (measured at a given station or
calculated by a model at a given grid-square) at hour i, where
ie{l,2,..,N}.

If AOT40F exceeds 10000 ppb.hours, then this fact may lead to damages of forest
trees and, therefore, such situations should be avoided. This critical level is
imposed in [25].

Definition of Bad Days

Assume that C,,, is the maximum of the eight-hour averages of the calculated by
some model or measured at some station ozone concentrations in a given day at
some site A. If the condition C,, > 60 ppb is satisfied at least once during the
day under consideration, then the expression a bad day will be used for such a
day at site A.

Bad days can have damaging effects on some groups of human beings (people
who suffer from asthmatic diseases). Therefore, the number of such days should
be reduced as much as possible. Two important aims are stated in the Ozone
Directive issued by the EU Parliament in year 2002 [25]:
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e Target Aim: The number of "bad days” in any site of the European
Union should not exceed 25 after year 2010.

e Long-term Aim: No "bad day” should occur in the European Union
(the year after which the long-term aim has to be satisfied is not
specified in the EU Ozone Directive).

Presentation of the Results

The distribution of the AOT40C levels, the AOT40F levels and the bad days in
Europe is shown in Fig. 4a — 4c. The reductions obtained by the four scenarios are
presented in Fig. 5a — 5c.

Scaled AOT40C (AOT40 for crops) levels

when the Basic Scenario is used
Meteorological data: May ~ July, 1997
Emisssions: 1997 @R rbove 400

{480x480) grid / (10 km x 10 km) cells 8 oA

AOT40C values in percentages: 100(A0T40C/3000) @B s0 - 100
Maximal value in the domain: 1400 O Bolow 50
Minimal value in the domain: 0 @8 water areas

Figure 4a: Distribution of the AOT40C (AOT40 for crops) values for 1997 in Europe.
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Scaled AOT40F (AOT40 for forest trees)
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Figure 4b: Distribution of the AOT40F (AOT40 for forest trees) values for 1997 in Europe.
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Figure 4c: Distribution of the bad days (days with the eight-hour ozone averages greater than 60
ppb).
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Figure 5a: Sensitivity of the AOT40C (AOT40 for crops) values in Europe to variations of the

human-made (anthropogenic) emissions.
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Figure 5b: Sensitivity of the AOT40F (AOT40 for forest trees) values in Europe to variations of

the human-made (anthropogenic) emissions.
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Figure 5c: Sensitivity of the numbers of bad days in Europe (days in which the eight-hour
averages of the ozone concentrations exceed 60 ppb) to variations of the human-made

(anthropogenic) emissions.
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It is seen that the most polluted areas are in Central Europe, Nothern Italy and
England and, thus, reductions are mostly needed there. The ratios 100A/B, where
A is the quantity calculated by reduced emissions and B is the corresponding
quantity obtained by the Basic Scenario for year 1997, are given in Fig. 5a — 5c. A
careful study of the plots in Fig. 5a — 5c indicates that the reductions in the most
polluted areas are in fact smallest.

SOME CONCLUDING REMARKS

Results from a comprehensive study related to the sensitivity of pollution levels
are presented in this chapter. It is worthwhile to continue this study in several
directions:

It will be useful to investigate the sensitivity of the pollution levels to changes of
the human-made emissions only in some parts of Europe (say, only in the most
polluted areas). In this way some information of the sensitivity of the pollution
levels on the combined effect of reductions of human-made emissions in highly
polluted areas and long-range transport of pollutants to neighbouring areas will be
obtained.

All human-made (anthropogenic) emissions were simultaneously varied. It would
be appropriate to examine the effect of varying only one or two of these
emissions. In this way, it would be possible to understand which species are not
sensitive to the variation of the chosen emissions and which of the other species
are most sensitive.

Only human-made emissions are varied in the scenarios that are used in this
chapter. It will also be interesting to study the sensitivity of the pollution levels on
natural (biogenic) emissions. This seems to be relevant in connection with the
climate changes. The biogenic emissions depend on the temperature. Therefore,
the future increase of the temperature will probably lead to some changes of the
natural emissions.

The effect of the variations of human-made emissions on the pollution levels is
studied in this chapter by using emission scenarios. Some other approaches, as for
example those used in [26, 27], can also be applied. It would be applied. It would



324 Advanced Numerical Methods for Complex Environmental Models Zlatev et al.

be interesting to compare the results obtaining by other approaches with the
results presented in this chapter.
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