
Advanced Algorithms for Multidimensional Sensitivity

Studies of Large-scale Air Pollution Models Based on

Sobol Sequences

I. Dimova,∗, R. Georgievaa, Tz. Ostromskya, Z. Zlatevb

aDepartment of Parallel Algorithms, IICT, Bulgarian Academy of Sciences, Acad. G.
Bonchev 25 A, 1113 Sofia, Bulgaria

bDepartment of Environmental Science - Atmospheric Environment, Aarhus University,
Frederiksborgvej 399, building ATMI, 4000, Roskilde, Denmark

Abstract

In this paper advanced variance-based algorithms for global sensitivity anal-
ysis are studied. We consider efficient algorithms: Monte Carlo, quasi-Monte
Carlo (QMC) and scrambled quasi-Monte Carlo algorithms based on Sobol
sequences. Low discrepancy ΛΠτ Sobol sequences are considered as a basis.
Two other approaches are also analyzed. The first one is an efficient Monte
Carlo (MC) algorithm for multidimensional integration based on modified
Sobol sequences (MCA-MSS) and proposed in an earlier work by some of the
authors [6]. Each random point in d-dimensional domain of integration is
generated in the following way. A Sobol vector of dimension s (ΛΠτ point)
is considered as a centrum of a sphere with a radius ρ. Then a random point
uniformly distributed on the sphere is taken and a random variable is defined
as a value of the integrand at that random point. It is proved that the Monte
Carlo algorithm based on Sobol sequences MCA-MSS has an optimal rate of
convergence for functions with continuous and bounded first derivatives in
terms of probability and mean square error. The second one is a randomized

∗Corresponding author
Email addresses: ivdimov@bas.bg (I. Dimov), rayna@parallel.bas.bg

(R. Georgieva), ceco@parallel.bas.bg (Tz. Ostromsky), zz@dmu.dk (Z. Zlatev)
URL: http://parallel.bas.bg/dpa/BG/dimov/index.html (I. Dimov),

http://parallel.bas.bg/~rayna/ (R. Georgieva), http://parallel.bas.bg/~ceco/
(Tz. Ostromsky), http://www.dmu.dk/AtmosphericEnvironment/staff/zlatev.htm
(Z. Zlatev)

Preprint submitted to Computers & Mathematics with Applications February 13, 2012

QMC algorithm proposed by Art Owen [19]. The procedure of randomization
in the latter case is also known as Owen scrambling.

The chosen algorithms are applied to sensitivity studies of air pollution
levels calculated by the Unified Danish Eulerian Model (UNI-DEM) to some
chemical rate reactions. UNI-DEM is chosen as a case-study since it is a
typical large-scale mathematical model in which the chemical reactions are
strongly and adequately presented. Large number of numerical experiments
is performed. Conclusions about applicability and efficiency of the algorithms
under consideration are drawn.

Keywords: Monte Carlo method, multidimensional integration, Sobol
sequences, Scrambled Sobol sequences
2010 MSC: 60H35, 65R10,65R99

1. Introduction

Sensitivity analysis (SA) is an important issue for large-scale mathemat-
ical models. There are several available sensitivity analysis techniques [25].
Most existing methods for providing SA rely on special assumptions con-
nected to the behavior of the model (such as linearity, monotonicity and ad-
ditivity of the relationship between input factor and model output). Among
quantitative methods, variance-based methods are the most often used [24].
The idea of these methods is to estimate how the variation of an input pa-
rameter or a group of inputs contributes into the variance of model output.
A careful sensitivity analysis is needed in order to decide where and how
simplifications of the model can be made. As a measure of this analysis we
use the total sensitivity indices (TSI) (see, Section 2). We find this measure
more adequate and reliable then other measures [7] when multi-component
analysis is needed. This is very important when one deals with very large
and computationally heavy mathematical models.

The focus of our study is in the area of environmental security (air pollu-
tion transport). Contemporary mathematical models of air pollution trans-
port should include a fairly large set of chemical and photochemical reactions
to be established as a reliable simulation tool [40]. The investigations and the
numerical results reported in this paper have been done by using a large-scale
mathematical model called the Unified Danish Eulerian Model [38, 39, 41].

It is important to analyze the influence of variations of the chemical rates
on the model results in order to make right assumptions about the simplifi-

2

cations which have to be implemented. Such an analysis can give valuable
information about the performance of reliable and reasonable simplifications
or to identify parameters and mechanisms the accuracy of which should be
improved, because the model results are very sensitive to variations of these
parameters and mechanisms. Thus, the goal of our study is to increase the
reliability of the results produced by the model, and to identify processes
that must be studied more carefully, as well as to find input parameters that
need to be measured with a higher precision.

Since TSI are considered as main measure of sensitivity it is important
to have efficient algorithms for estimating TSI. As it is shown in Section 2
the total indices may be presented as multidimensional integrals:

I =

∫

Ω

g(x)p(x) dx, Ω ⊂ Rd, (1)

where g(x) is a square integrable function in Ω and p(x) ≥ 0 is a probability
density function, such that

∫
Ω
p(x) dx = 1.

Some applications lead to high-dimensional integration. That’s why ef-
ficient numerical methods for high-dimensional integration are strongly ap-
preciated.

2. Problem Setting

2.1. Modeling and Sensitivity

It is assumed that the mathematical model can be presented as a model
function

u = f(x), where x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d (2)

is a vector of input parameters with a joint probability density function
(p.d.f.) p(x) = p(x1, . . . , xd). It is also assumed that input variables are in-
dependent (non-correlated input variables) and the density function p(x) =
p(x1, x2, . . . , xd) is known, even if xi are not actually random variables. This
implies that the output u is also a random variable, as it is a function of the
random vector x, with its own p.d.f. The above presentation is quite gen-
eral. One has to take into account that in most cases of large-scale modeling
the function f(x) is not explicitly known. Very often the function f(x) is
a solution of a system of partial differential equations with boundary and
initial conditions. The latter conditions have to ensure the existence of a

3

unique solution of the system. Another point is that for large-scale prob-
lems containing differential equations with many parameters is not easy to
prove existence of a unique solution. Often people assume that the unique
solution exists and then they develop discretization methods. Each method
may have more than one algorithm for its implementation. The choice of the
most efficient algorithm is of great importance for large-scale problems. Ob-
viously, the most efficient algorithm is the algorithm that implements a given
method and solves the problem with a fixed accuracy and smallest computa-
tional complexity. The computational complexity is considered with respect
to the number of arithmetic operations needed to solve the problem with
a given accuracy (given error, in case of deterministic algorithms, or given
probability error in case of stochastic algorithms)1. In such a way the whole
set of differential equations with associated initial and boundary conditions,
numerical methods for discretization, as well as algorithms that implement
numerical methods is considered as a mathematical model. We stress on the
fact that after discretization some large-scale mathematical models may con-
tain billions or trillions of algebraic equations. To run such a model one needs
many days (even months) to get the solution even when high-performance
computers are used. That’s why the development of efficient algorithms is an
important issue. At the same time the large-scale models describe both - im-
portant, as well as not very important phenomenon from the point of view of
the main output of the model. Both sets of phenomenon are treated equally.
It may happen that the treatment of a not important phenomenon in the
model may take large amount of computational resources when the contri-
bution of this phenomenon to the solution is smaller than the computational
error. It also may happen that the output of the model is quite sensitive to
a single input measurable parameter. Such an information may help in the
following way: the above parameter may be measured with a higher accuracy
(it means, by investing money to buy more accurate instruments to measure
such a parameter). That’s why it is reasonable to introduce an indicator
that measures the importance of the influence of a given input parameter
onto the output. The main indicator referred to a given input parameter

1There are some considerations in complexity analysis when both arithmetic and logical
operations are taken into account with some weights [4]; sometimes, the volume of needed
operational memory and the cost of communications are taken into account.

4

xi, i = 1, . . . , d (normalised between 0 and 1) is defined as

D[E(u|xi)]

Du

, (3)

where D[E(u|xi)] is the variance of the conditional expectation of u with
respect to xi and Du is the total variance according to u. The total sensi-
tivity index [11] provides a measure of the total effect of a given parameter,
including all the possible joint terms between that parameter and all the
others. The total sensitivity index (TSI) of input parameter xi, i∈{1, . . . , d}
is defined in the following way [11, 31]:

Stot
xi

= Si +
∑

l1 6=i

Sil1 +
∑

l1,l2 6=i,l1<l2

Sil1l2 + . . .+ Sil1...ld−1
, (4)

where Si is called the main effect (first-order sensitivity index) of xi and

Sil1...lj−1
is the j-th order sensitivity index. The higher-order terms describe

the interaction effects between the unknown input parameters xi1 , . . . , xiν , ν ∈
{2, . . . , d} on the output variance. Later on we will show how sensitiv-
ity indices Sl1 ... lν are defined via the variances of conditional expectations
Dl1 = D[fl1(xl1)] = D[E(u|xl1)], Dl1 ... lν , 2 ≤ ν ≤ d.

The method of global SA used in this work is based on a decomposition of
an integrable model function f in the d-dimensional factor space into terms
of increasing dimensionality:

f(x) = f0 +
d∑

ν=1

∑

l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν), (5)

where f0 is a constant. The total number of summands in equation (5) is 2d.
The representation (5) is called ANOVA-representation of the model function
f(x) if each term is chosen to satisfy the following condition

∫ 1

0

fl1...lν (xl1 , xl2 , . . . , xlν)dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , d.

Let us mention the fact that if the whole presentation (5) of the right-hand
site is used, then it doesn’t simplify the problem. The hope is that a trun-
cated sequence

∑dtr
ν=1

∑
l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν), where dtr < d can be
considered as a good approximation to the model function f .

5

The quantities

D =

∫

Ud

f 2(x)dx− f 2
0 , Dl1 ... lν =

∫
f 2
l1 ... lνdxl1 . . . dxlν (6)

are called total and partial variances respectively and have been obtained
after squaring and integrating over Ud the equality (5) on the assumption
that f(x) is a square integrable function (thus all terms in (5) are also square
integrable functions). Therefore, the total variance of the model output is
partitioned into partial variances in the analogous way as the model function,
that is the unique ANOVA-decomposition: D =

∑d
ν=1

∑
l1<...<lν

Dl1...lν . It is
obvious that the use of terms of probability theory is based on the assump-
tion that the input parameters are random variables distributed in Ud that
defines fl1 ... lν (xl1 , xl2 , . . . , xlν) also as random variables with variances (6).
For example fl1 is presented by a conditional expectation:

fl1(xl1) = E(u|xl1)− f0 and respectively Dl1 = D[fl1(xl1)] = D[E(u|xl1)].

Based on the above assumptions about the model function and the output

variance, the following quantities Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d} are

called global sensitivity indices [32]. This formula coincides for ν = 1 with (3)
and the so defined measures correspond to the main effect of input parameters
as well as the interactions effect.

Based on the results discussed above it is clear that the mathematical
treatment of the problem of providing global sensitivity analysis consists in
evaluating total sensitivity indices (4) of corresponding order. And that leads
to computing of multidimensional integrals (1). It means that in general case
one needs to compute 2d integrals of type (6) to obtain Stot

xi
. As we discussed

earlier the basic assumption underlying representation (5) is that the basic
features of the model functions (2) describing typical real-life problems can
be presented by low-order subsets of input variables containing, terms of the
order up to dtr, where dtr < d. Therefore, based on this assumption, one can
assume that the dimension of the initial problem can be reduced. Following
Sobol [32] we consider an arbitrary set of m variables (1 ≤ m ≤ d − 1):
y = (xk1 , . . . , xkm), 1 ≤ k1 < . . . < km ≤ d, and let z be the set of d − m
complementary variables. Thus x = (y, z). Let K = (k1, . . . , km).

The variances corresponding to the subsets y and z can be defined as

Dy =
m∑

n=1

∑

(i1<...<in)∈K
Di1 ... in , Dz =

d−m∑
n=1

∑

(j1<...<jn)∈K̄
Dj1 ... jn , (7)

6

where the complement of the subset K in the set of all parameter indices is
denoted by K̄. The first sum in (7) is extended over all subsets (i1, . . . , in),
where all indices i1, . . . , in belong to K. Then the total variance correspond-
ing to the subset y is Dtot

y = D − Dz and it is extended over all subsets
(i1, . . . , iν), 1 ≤ ν ≤ d, where at least one il ∈ K, 1 ≤ l ≤ ν.

The procedure for computation of global sensitivity indices is based on the

following representation of the variance Dy : Dy =

∫
f(x) f(y, z′)dxdz′−f 2

0

(see [32]). The last equality allows to construct a Monte Carlo algorithms
for evaluating f0,D and Dy, where ξ = (η, ζ):

1

n

n∑
j=1

f(ξj)
P−→ f0,

1

n

n∑
j=1

f(ξj) f(ηj, ζ
′
j)

P−→ Dy + f 2
0 ,

1

n

n∑
j=1

f 2(ξj)
P−→ D+ f 2

0 ,
1

n

n∑
j=1

f(ξj) f(η
′
j, ζj)

P−→ Dz + f 2
0 .

For example, for m = 1, y = {xl1}, l1 ∈ {1, . . . , d} and z = {1, . . . , d}\l1:
Sl1 = S(l1) = D(l1)/D, Stot

l1
= Dtot

l1
/D = 1− Sz.

The computing of higher-order interactions effect can be performed by an
iterative process. For example, S(l1l2) = D(l1l2)/D = Sl1 + Sl2 + Sl1l2 , and
Sl1l2 can be obtained assuming that the corresponding first-order sensitivity
indices have been already computed.

Instead of randomized (Monte Carlo) algorithms for computing the above
sensitivity parameters one can try deterministic quasi-Monte Carlo algo-
rithms, or randomized quasi-Monte Carlo. Randomized (Monte Carlo) al-
gorithms have proven to be very efficient in solving multidimensional inte-
grals in composite domains [4, 27]. At the same time the QMC based on
well-distributed Sobol sequences can be considered as a good alternative to
Monte Carlo algorithms, especially for smooth integrands and not very high
dimensions (up to d = 10) [30]. Sobol ΛΠτ sequences are good candidates
for efficient QMC algorithms. Algorithms based on ΛΠτ sequences mimic
the pseudo-random sequences used in Monte Carlo integration, but actually
they are deterministic. One of the problems with ΛΠτ sequences is that
they may have bad two-dimensional projection. To overcome this problem
randomized QMC can be used. There are several ways of randomization
and the scrambling is one of them. The original motivation of scrambling
[12, 19] aims toward obtaining more uniformity for quasi-random sequences
in high dimensions, which can be checked via two-dimensional projections.

7

Owen scrambling [19], called nested scrambling, was developed to provide a
practical error estimate for QMC based on treating each scrambled sequence
as a different and independent random sample from a family of randomly
scrambled quasi-random numbers. Actually, the scrambled algorithms may
be considered as Monte Carlo algorithms with a special choice of the density
function. It’s a matter of definition. Thus, there are two classes of algorithms
we have to compare: deterministic and randomized.

3. Complexity in Classes of Algorithms

We need to find a setting in which one can consider and compare two
classes of algorithms: deterministic algorithms and randomized (Monte Carlo)
algorithms. Usually randomized algorithms reduce problems to the approx-
imate calculation of mathematical expectations. We use the following no-
tation. The mathematical expectation of the random variable (r.v.) θ is
denoted by Eµ(θ) (sometimes abbreviated to Eθ). By x = (x1, . . . , xd) we
denote a point in a closed domain Ω ⊂ Rd, where Rd is d-dimensional Eu-
clidean space. The d-dimensional unit cube is denoted by Ed = [0, 1]d. We
shall further denote the values (realizations) of a random point ξ or r.v. θ
by ξ(i) and θ(i)(i = 1, 2, . . . , n) respectively. If ξ(i) is a d-dimensional ran-
dom point, then usually it is constructed using d random numbers γ, i.e.,
ξ(i) ≡ (γi,1, . . . , γi,d). Let I be the desired value of the integral. Assume for
a given r.v. θ one can prove that Eθ = I. Suppose the mean value of n
values of θ: θ(i), i = 1, . . . , n is considered as a Monte Carlo approximation
to the solution: θ̄n = 1/n

∑n
i=1 θ

(i) ≈ I. One can only state that a certain
randomized algorithm can produce the result with a given probability error.
So, dealing with randomized algorithms one has to accept that the result
of the computation can be true only with a certain (even high) probability.
In most cases of practical computations it is reasonable to accept an error
estimate with a probability smaller than 1.

Consider the following problem of integration:

S(f) := I =

∫

Ed

f(x)dx, (8)

where x ≡ (x1, . . . , xd) ∈ Ed ⊂ Rd and f ∈ C(Ed) is an integrable function
on Ed. The computational problem can be considered as a mapping of func-
tion f : {[0, 1]d → R} to R: S(f) : f → R, where S(f) =

∫
Ed f(x)dx and

f ∈ F0 ⊂ C(Ed). We will call S the solution operator. The elements of F0

8

are the data, for which the problem has to be solved; and for f ∈ F0, S(f)
is the exact solution. For a given f we want to compute (or approximate)
S(f). One may be interested to consider cases when the integrand f has a
higher regularity. It is because in many cases of practical computations f is
smooth and has high order bounded derivatives. If this is the case, then is
it reasonable to try to exploit such a smoothness. To be able to do that we
need to define the functional class F0 ≡ Wk(‖f‖;Ed):

Definition 3.1. Let d and k be integers, and d, k ≥ 1. We consider the class
Wk(‖f‖;Ed) (sometimes abbreviated to Wk) of real functions f defined over
the unit cube Ed = [0, 1)d, possessing all the partial derivatives

∂rf(x)

∂xα1
1 . . . ∂xαd

d

, α1 + . . .+ αd = r ≤ k,

which are continuous when r < k and bounded in sup norm when r = k. The
semi-norm ‖·‖ on Wk is defined as

‖f‖ = sup

{∣∣∣∣
∂rf(x)

∂xα1
1 . . . ∂xαd

d

∣∣∣∣ |α1 + . . .+ αd = k, x ≡ (x1, ..., xd) ∈ Ed

}
.

We will call a quadrature formula any expression

A(f, n) =
n∑

i=1

cif(x
(i)),

which approximates the value of the integral S(f). The real numbers ci ∈ R
are called weights and d dimensional points x(i) ∈ Ed are called nodes. It
is clear that for fixed weights ci and nodes x(i) ≡ (xi,1, . . . xi,d) the quadra-
ture formula A(f, n) may be used to define an algorithm. We call a ran-
domized quadrature formula any formula of the following kind: AR(f, n) =∑n

i=1 σif(ξ
(i)), where σi and ξ(i) are random weights and nodes respectively.

The algorithm AR(f, n) belongs to the class of randomized (Monte Carlo)
algorithms AR.

Definition 3.2. Given a randomized (Monte Carlo) integration formula for
the functions from the space Wk by err(f, AR) we denote the integration
error ∫

Ed

f(x)dx− AR(f, n),

9

by εp(f) the probability error meaning that εp(f) is the least possible real
number with

Pr
(∣∣err(f, AR)

∣∣ < εp(f)
) ≥ P

and by r(f) the mean square error

r(f) =

{
E

[∫

Ed

f(x)dx− AR(f, n)

]2}1/2

.

We assume that one is happy to obtain an εP (f)-approximation to the
solution with a probability 0 < P < 1. If we allow equality, i.e., 0 < P ≤ 1
in Definition 3.2, then one may use εP (f) as an accuracy measure for both
randomized and deterministic algorithms. In such a way it is consistent to
consider a wider class A of algorithms that contains both classes: randomized
and deterministic algorithms.

Definition 3.3. Consider the set A of algorithms A:

A = {A : Pr(εp(f) ≤ ε) ≥ c}

that solve a given problem with a probability error εp(f) such that the proba-
bility that εp(f) is less than a priori given constant ε is bigger than a constant
c < 1.

In such a setting it is correct to compare randomized algorithms with
algorithms based on low discrepancy sequences like Sobol ΛΠτ sequences.

4. The Algorithms

The algorithms we study are based on Sobol ΛΠτ sequences.

4.1. ΛΠτ Sobol Sequences

ΛΠτ sequences are uniformly distributed sequences (u.d.s.) The term
u.d.s. was introduced by Hermann Weyl in 1916 [35]. For practical purposes
an u.d.s. must be found that satisfied three requirements [27, 29]:

(i) the best asymptote as n → ∞;

(ii) well distributed points for small n;

10

(iii) a computationally inexpensive algorithm.

All ΛΠτ -sequences given in [29] satisfy the first requirement. Good distri-
butions like ΛΠτ sequences are also called (t,m, s)-nets and (t, s)-sequences
in base b. To introduce them, define first an elementary s-interval in base

b as a subset of Es of the form
∏s

j=0

[
aj

bdj
,
aj+1

bdj

]
, where aj, dj are inte-

gers and aj < dj for all j ∈ {1, ..., s}. Given 2 integers 0 ≤ t ≤ m,
a (t,m, s)-net in base b is a sequence x(i) of bm points of Es such that
Card P ∩ {x(1), . . . , x(bm)} = bt for any elementary interval P in base b of
hypervolume λ(P) = bt−m.

Given a non-negative integer t, a (t, s)-sequence in base b is an infinite
sequence of points x(i) such that for all integers k ≥ 0,m ≥ t, the sequence
{x(kbm), . . . , x((k+1)bm−1)} is a (t,m, s)-net in base b.

I.M. Sobol defines his Πτ -meshes and ΛΠτ sequences, which are (t,m, s)-
nets and (t, s)-sequences in base 2 respectively. The terms (t,m, s)-nets and
(t, s)-sequences in base b (also called Niederreiter sequences) were introduced
in 1988 by H. Niederreiter [18].

To generate the j-th component of the points in a Sobol sequence, we
need to choose a primitive polynomial of some degree sj over the Galois field
of two elements GF(2) Pj = xsj + a1,jx

sj−1 + a2,jx
sj−2 + . . . + asj−1,jx + 1,

where the coefficients a1,j, . . . , asj−1,j are either 0 or 1. A sequence of positive
integers {m1,j,m2,j, . . .} are defined by the recurrence relation

mk,j = 2a1,jmk−1,j ⊕ 22a2,jmk−2,j ⊕ . . .⊕ 2sjmk−sj ,j ⊕mk−sj ,j,

where ⊕ is the bit-by-bit exclusive-or operator. The values m1,j, . . . ,msj ,j

can be chosen freely provided that each mk,j, 1 ≤ k ≤ sj, is odd and less than

2k. The so-called direction numbers {v1,j, v2,j, . . .} are defined by vk,j =
mk,j

2k
.

Then the j-th component of the i-th point in a Sobol sequence, is given by
xi,j = i1v1,j ⊕ i2v2,j ⊕ . . . , where ik is the k-th binary digit of i = (. . . i3i2i1)2.

Subroutines to compute these points can be found in [2, 28]. The work
[15] contains more details.

4.2. The Monte Carlo Algorithm based on Modified Sobol Sequences - MCA-
MSS

The algorithm was proposed recently by the first two authors of this
paper in [6]. The general idea is that we take a Sobol ΛΠτ point (vector) x
of dimension d. Then x is considered as a centrum of a sphere with a radius

11

ρ. A random point ξ ∈ Ed uniformly distributed on the sphere is taken.
Consider a random variable θ defined as a value of the integrand at that
random point, i.e. θ = f(ξ). Consider random points ξ(i)(ρ) ∈ Ed. Assume

ξ(i)(ρ) = x(i) + ρω(i), where ρ is relatively small ρ <<
[

aj

2dj
,
aj+1

2dj

]
, such that

ξ(i)(ρ) is still in the same elementary j-interval Ed
i =

∏d
j=0

[
aj

2dj
,
aj+1

2dj

]
, where

the pattern ΛΠτ point x(i) is. We use a subscript i in Ed
i to indicate that the

i-th ΛΠτ point x(i) is in it. So, we assume that if x(i) ∈ Ed
i , then ξ(i)(ρ) ∈ Ed

i

too.
In [6] was proven that the mathematical expectation of the random vari-

able θ = f(ξ) is equal to the value of the integral (8), that is

Eθ = S(f) =

∫

Ed

f(x)dx.

This result allows to define a randomized algorithm. One can take the
Sobol ΛΠτ point x

(i) and shake it a little bit. Shaking means to define random
points ξ(i)(ρ) = x(i) + ρω(i) according to the procedure described above.

Let us now analyse the probability error of the algorithm. Let us assume
that n = md, m ≥ 1. We divide the unit cube Ed into md disjoint cubes, such
that they coincide with the elementary sub-cubes (or subintervals) defined

in Subsection 4.1 Ed =
⋃md

j=1Kj, where Kj =
∏d

i=1[a
j
i , b

j
i), with bji − aji =

1
n

for all i = 1, . . . , d.
In such a way in each d-dimensional sub-cube Ki there is exactly one ΛΠτ

point x(i). Assuming that after shaking, the random point stays inside Ki,
i.e. ξ(i)(ρ) = x(i) + ρω(i) ∈ Ki one may try to exploit the smoothness of the
integrand. Indeed, let us consider the case when the integrand has continuous
and bounded first derivatives: f ∈ F0 ≡ W1(L;Ed), where L = ‖f‖.

Then, if p(x) is a probability density function, such that
∫
Ed p(x)dx = 1,

then ∫

Kj

p(x)dx = pj ≤ c1
n
,

where c1 is a constant. If dj is the diameter of Kj, then

dj = sup
x1,x2∈Kj

|x1 − x2| ≤ c2
n1/d

,

where c2 is another constant.

12

In the particular case when the subintervals are sub-cubes with edge 1/m
we have: c1 = 1 and c2 =

√
d.

Suppose according to our procedure, we select a random points ξ(j) from
each cube Kj, and calculate all function values f(ξ(j)), j = 1, . . . ,md.

We approximate the value of the integral in the following way:

I(f) ≈ 1

md

n∑
j=1

f(ξ(x(j)).

We prove the following

Theorem 4.1. The quadrature formula constructed above satisfies

ε(f, d) ≤ c
′
d ‖f‖n

− 1
2− 1

d

and

r(f, d) ≤ c
′′
d ‖f‖n

− 1
2− 1

d ,

where the constants c
′
d and c

′′
d do not depend on n.

Proof 4.1. One can see that

E

{
1

md

n∑
j=1

f(ξ(x(j)))

}
=

∫

Ed

f(x)dx.

For the fixed ΛΠτ point x(j) ∈ Kj we have:

f(ξ(j)) = f(x(j)) +
d∑

s=1

f ′(ηjs)(ξ
(j)
s)− x(j)

s),

where ηj ∈ Kj.
Since f ∈ W1(L;Ed), f ′(ηjs) ≤ Lj and L = ‖f‖ is the majorant for all

Lj, i.e. Lj ≤ L for j = 1, . . . , d.
Obviously, we have

Df(ξ(j)) ≤ Ef 2(ξ(j)) ≤ L2
jE(ξ(j)s)− x(j)

s)2

≤ L2
j sup
x
(j)
1 ,x

(j)
2

∣∣∣x(j)
1 − x

(j)
2

∣∣∣
2

≤ L2
j(c

(j)
2)2n−2/d.

13

Now the variance Dθn can be estimated:

Dθn =
n∑

j=1

p2jDf(ξ(j)) ≤
n∑

j=1

((c
(j)
1)2n−2L2

j(c
(j)
2)2n−2/d

≤
(
Ljc

(j)
1 c

(j)
2

)2

n−1−2/d. (9)

Therefore

r(f, d) ≤ c
′′
d ‖f‖n

− 1
2− 1

d .

The application of the Tchebychev’s inequality to the variance (9) yields

ε(f, d) ≤ c
′
d ‖f‖n

− 1
2− k

d

for the probable error ε, where c′d =
√
2d, which concludes the proof.

One can see that the Monte Carlo algorithm based on Sobol sequences
MCA-MSS has an optimal rate of convergence for functions with continuous
and bounded first derivative [4]. This means that the rate of convergence

(n− 1
2
− 1

d) can not be improved for the functional class W1 in the class of the
randomized algorithms AR.

4.3. Owen Nested Scrambling Algorithm

Owen scrambling [19], called nested scrambling, was developed to provide
a practical error estimate for QMC based on treating each scrambled sequence
as a different and independent random sample from a family of randomly
scrambled quasi-random numbers. Moreover, scrambling gives us a simple
and unified way to generate quasi-random numbers for parallel, distributed,
and grid-based computational environments.

After Niederreiter sequences [18] were proposed, Owen [19] and Tezuka
[34] in 1994 independently developed two powerful scrambling methods for
(t, s)-sequences. Owen also explicitly pointed out that scrambling can be
used to provide error estimates for QMC. Although many other methods for
scrambling (t, s)-sequences have been proposed, most of them are really mod-
ified or simplified Owen and Tezuka schemes. Owen scheme is theoretically
powerful for (t, s)-sequences. Tezuka algorithm was proved to be efficient
for (0, s)-sequences. Most proposed scrambling methods randomize a single
digit at a time. In contrast, the scheme proposed in [3] randomizes many

14

digits in a single point at a time, and is very efficient when using standard
pseudo-random number generators as scrambler.

The idea of Owen nested scrambling is based on randomization of a sin-
gle digit at each iteration. Let xn = (x

(1)
n , x

(2)
n , . . . , x

(s)
n) be a quasi-random

number in [0, 1)s, and let zn = (z
(1)
n , z

(2)
n , . . . , x

(s)
n) be the scrambled ver-

sion of the point xn. Suppose each x
(j)
n can be represented in base b as

x
(j)
n = (0.x

(j)
n1 x

(j)
n2 . . . x

(j)
nK . . .)b with K being the number of digits to be scram-

bled. Then nested scrambling proposed by Owen [19, 21] can be defined as

follows: z
(j)
n1 = π•(x

(j)
n1), and z

(j)
ni = π•x(j)

n1x
(j)
n2 ...x

(j)
ni−1

(x
(j)
ni), with independent per-

mutations π•x(j)
n1x

(j)
n2 ...x

(j)
ni−1

for i ≥ 2. Of course, (t,m, s)-net remains (t,m, s)-

net under nested scrambling. However, nested scrambling requires bi−1 per-
mutations to scramble the i-th digit. Owen scrambling (nested scrambling),
which can be applied to all (t, s)-sequences, is powerful; however, from the
implementation point-of-view, nested scrambling or so-called path dependent
permutations requires a considerable amount of bookkeeping, and leads to
more problematic implementation.

There are various versions of scrambling methods based on digital permu-
tation, and the differences among those methods are based on the definitions
of the πi’s. These include Owen nested scrambling [19, 21], Tezuka’s gener-
alized Faure sequences [34], and Matousek’s linear scrambling [17].

The rate for scrambled net Monte Carlo is n−3/2(log n)(s−1)/2 in probabil-
ity while the rate for unscrambled nets is n−1(log n)s−1 or n−1(log n)s along
(t, s) sequences [20]. The first rate is an average case result for a fixed func-
tion f , taken over random permutations. The other results describe the worst
case over functions, for a fixed set of integration points. Because scrambled
nets remain nets, the worst-case bounds also apply to them [20].

Certain scrambling techniques do not affect the asymptotic discrepancy of
these sequences [19]. Although scrambled quasi-random sequences improve
the quality of quasi-random sequences, that improvement cannot be seen
directly in the calculation of L2 discrepancy.

Although scrambling does not change the theoretical bounds on discrep-
ancy of these sequences, scrambling methods do improve the measures of
two-dimensional projections and evaluation of high-dimensional integrals. In
addition, theoretically it is impossible to prove that one of scrambled quasi-
random sequences has better performance than the others so far.

15

5. Case-study: Variance-based Sensitivity Analysis of the Unified
Danish Eulerian Model

The input data for sensitivity analysis has been obtained during runs
of a large-scale mathematical model for remote transport of air pollutants
(Unified Danish Eulerian Model, UNI-DEM, [38, 39]). The model gives
the possibility to study concentration variations in time of a high number
of air pollutants and other species over a large geographical region (4800
× 4800 km), covering the whole of Europe, the Mediterranean and some
parts of Asia and Africa which is important for environmental protection,
agriculture, health care. It takes into account the main physical, chemical
and photochemical processes between the studied species, the emissions, the
quickly changing meteorological conditions. Both non-linearity and stiffness
of the equations are mainly introduced by the chemistry [39]. The chemical
scheme used in the model is the well-known condensed CBM-IV (Carbon
Bond Mechanism). Thus, the motivation to choose UNI-DEM is that it is
one of the models of atmospheric chemistry, where the chemical processes
are taken into account in a very accurate way.

This large and complex task is not suitable for direct numerical treat-
ment. For the purpose of numerical solution it is split into submodels, which
represent the main physical and chemical processes. The sequential splitting
[16] is used in the production version of the model, although other splitting
methods have also been considered and implemented in some experimen-
tal versions [5, 8]. Spatial and time discretization makes each of the above
submodels a huge computational task, challenging for the most powerful su-
percomputers available nowadays. That is why the parallelization has always
been a key point in the computer implementation of DEM since its very early
stages.

Our main aim here is to study the sensitivity of the ozone concentration
according to the rate variation of some chemical reactions. We consider the
chemical rates to be input parameters and the concentrations of pollutants
to be output parameters.

6. Numerical Results and Observations

A number of numerical experiments have been performed to study nu-
merically properties of the algorithms. Our expectations based on theoretical
results and a large number of numerical experiments are that for non-smooth

16

functions our Monte Carlo algorithm outperforms the QMC even for rela-
tively low dimensions. It was interesting to see how behave the randomized
QMC based on scrambled Sobol sequences.

Here we present some tests run for the following non-smooth integrand:

f1(x1, x2, x3, x4) =
4∑

i=1

|(xi − 0.8)−1/3|,

for which even the first derivative does not exist. Applications like that
appear in some important problems in financial mathematics. The referent
value of the integral S(f1) is approximately equal to 7.22261.

To make a comparison we also consider an integral with a smooth inte-
grand:

f2(x1, x2, x3, x4) = x1 x2
2 ex1x2 sinx3 cosx4. (10)

The second integrand (10) is an infinitely smooth function with a referent
value of the integral S(f2) approximately equal to 0.10897. The integration
domain in both cases is E4 = [0, 1]4. The results from the numerical inte-
gration tests with non-smooth and smooth integrand are presented in Table
1 and Table 2 respectively. Relative error (defined as the absolute error di-
vided by the referent value) and computational time are chosen to be major
numerical indicators of algorithm efficiency.

In this work the algorithm with Gray code implementation [1] and sets of
direction numbers proposed by Joe and Kuo [10] for generating Sobol quasi-
random sequences are used. Our Monte Carlo algorithm (MCA) [6] involves
generating random points uniformly distributed on a sphere with a radius
ρ. One of the best available random number generators, SIMD-oriented Fast
Mersenne Twister (SFMT) [22, 37] 128-bit pseudo-random number generator
of period 219937 − 1 has been used to generate the required random points.
The radius ρ depends on the integration domain, number of samples and
minimal distance between Sobol deterministic points δ. On the other hand,
we observed experimentally that the behaviour of the relative error of nu-
merical integration is significantly influenced by the fixed radius of spheres.
That is why the values of the radius ρ are presented according to the number
of samples n used in our experiments, as well as to a fixed coefficient, radius
coefficient κ = ρ/δ. The latter parameter gives the ratio of the radius to the
minimal distance between Sobol points.

The code of scrambled quasi-random sequences used in our studies is
taken from the collection of NAG C Library [36]. This implementation of

17

Table 1: Relative error and computational time for numerical integration of a non-smooth
function (S(f1) ≈ 7.22261).

n SFMT Sobol quasi Scrambled Sobol MCA-MSS

MC algorithm sequences

Rel. Time Rel. Time Rel. Time ρ Rel. Time

error (s) error (s) error (s) ×103 error (s)

102 0.0040 0.001 0.0037 0.001 0.0214 0.001 3.9 0.0069 0.001

13 0.0026 0.001

5.102 0.0007 0.005 0.0032 0.001 8e-05 0.001 2.1 0.0006 0.010

6.9 0.0001 0.011

103 0.0010 0.011 0.0027 0.001 0.0021 0.002 1.9 0.0024 0.020

6.4 0.0004 0.025

3.103 0.0005 0.030 0.0016 0.005 8e-05 0.005 1.2 0.0008 0.037

4.1 0.0008 0.043

7.103 0.0009 0.072 0.0013 0.009 0.0003 0.011 1.0 0.0004 0.110

3.4 0.0005 0.114

104 0.0012 0.102 0.0004 0.012 0.0006 0.014 0.8 8e-05 0.145

2.8 0.0002 0.148

3.104 0.0005 0.304 0.0003 0.032 0.0003 0.041 0.6 0.0001 0.440

1.9 0.0002 0.480

5.104 0.0007 0.513 0.0002 0.053 2e-05 0.066 0.4 7e-05 0.775

1.4 0.0001 0.788

18

Table 2: Relative error and computational time for numerical integration of a smooth
function (S(f2) ≈ 0.10897).

n SFMT Sobol quasi Scrambled Sobol MCA-MSS

MC algorithm sequences

Rel. Time Rel. Time Rel. Time ρ Rel. Time

error (s) error (s) error (s) ×103 error (s)

102 0.0562 0.002 0.0365 < 0.001 0.0280 0.001 3.9 0.0363 0.001

13 0.0036 0.001

103 0.0244 0.004 0.0023 0.001 0.0016 0.001 1.9 0.0038 0.010

6.4 0.0019 0.010

104 0.0097 0.019 0.0009 0.002 0.0003 0.003 0.8 0.0007 0.070

2.8 0.0006 0.065

3.104 0.0032 0.047 6e-05 0.005 0.0002 0.006 0.6 0.0004 0.210

1.9 0.0008 0.215

5.104 0.0032 0.082 9e-05 0.009 5e-05 0.007 0.4 2e-05 0.330

1.4 0.0006 0.340

scrambled quasi-random sequences is based on TOMS Algorithm 823 [12]. In
the implementation of the scrambling there is a possibility to make a choice of
three methods of scrambling: the first is a restricted form of Owen scrambling
[19], the second based on the method of Faure and Tezuka [9], and the last
method combines the first two (it is referred as a combined approach).

Let us briefly discuss the information shown on Table 1 and Table 2. The
results obtained using SFMT pseudo-random number generator have been
denoted by SFMT. The results obtained using Sobol quasi-random sequences
- by Sobol quasi MC algorithm; the results for scrambled Sobol quasi-random
sequences - by Scrambled Sobol sequences, as well as the results corresponding
to the Monte Carlo algorithm have been denoted by MCA-MSS.

Table 1 contains the results computed for the relative error (in abso-
lute value) and the computational time for different radius coefficients κ
(κ = 0.03 and κ = 0.1) for numerical integration of the non-smooth inte-
grand f1. For the smooth integrand f2 the same parameters are presented in
Table 2. Numerical tests with all the above mentioned algorithms have been

19

provided in both cases of smooth and non-smooth integrand. Comparing
results presented on Table 1 and Table 2 one may observe that

• trends are similar - the relative error decreases with an increase of
number of points;

• all three algorithms are efficient and converge with the expected rate
of convergence;

• SFMT is better for relatively small samples (n) than the Sobol algo-
rithm in case of non-smooth function, which was expected;

• in case of non-smooth function our Monte Carlo algorithm MCA-MSS
gives similar results as scrambled QMC; for several values of n we can
observe advantages for MCA-MSS;

• both MCA-MSS and scrambled QMC are better in case of non-smooth
functions;

• in case of smooth functions Sobol algorithm is better than SFMT, but
the scrambled QMC and MCA-MSS are much better than the classical
Sobol algorithm; in many cases our MCA-MSS gives a higher accuracy
than the scrambled algorithm.

New random points for our algorithm have been generated using original
Sobol sequences and modeling a random direction in d-dimensional space.
The computational time of the calculations with pseudo-random numbers
generated by SFMT (see columns labeled as SFMT and MCA-MSS in Table
1 and Table 2) has been estimated for all 10 algorithm runs. In the case of
modified Sobol points when a new generated pseudo-random point is outside
the integration domain, this point is rejected and a new random direction is
chosen while the new random point gets into the domain. For this reason
an additional computational time is needed to generate random points inside
the integration domain. The computational time needed for generating the
original Sobol sequences and computing the minimal distance between ΛΠτ

points in Ed is not included in the total time of the corresponding Monte
Carlo algorithm since the same quasi-random points can be used for any
integrand. The total computational complexity of the algorithm based on
modified Sobol sequences does not increase essentially when the number of
points n is not too large in comparison with the case when Sobol sequences

20

are used. For large values of n the complexity increases mainly because of
the algorithm for finding the minimal distance between ΛΠτ points in Es.
This algorithm requires O(n2) operations.

The algorithm based on modified Sobol sequences follows the relative
error tendency of the original algorithm as one can expect. The numerical
tests show certain advantages of this Monte Carlo algorithm according to the
estimated error in comparison to the original one, as well as to the algorithm
using pseudo-random numbers generated by SFMT generator.

One may also observe that for the integrands chosen here the scrambling
algorithm do not outperform the algorithm with the original Sobol points,
but the scrambled algorithm and Monte Carlo algorithm MCA-MSS are more
stable with respect to relative errors for small values of n.

There is not universal pseudo-random number generators and it is reason-
able to find the most proper generator for a given problem; for example, the
convergence rate in numerical tests with the smooth integrand (10) is com-
paratively slow - we do not obtain an essential improvement of the relative
error even for 70000 points.

After testing the algorithms under consideration on the smooth and non-
smooth functions we studied the efficiency of the algorithms on real-life func-
tions obtained after running UNI-DEM. Polynomials of 4-th degree with 35
unknown coefficients is used for data approximation of the mesh functions
containing model outputs as it is described in our previous paper [7].

We use various values of the number of points that corresponds to sit-
uations when one needs to compute the sensitivity measures with different
accuracy. We have computed results for g0 (g0 is the integral over the inte-
grand g(x) = f(x)−c, f(x) is the approximate model function of UNI-DEM,
and c is a constant obtained as a Monte Carlo estimate of f0, [33]), as well
as the total variance D, first order sensitivity indices Si, i = 1, 2, 3, and total
sensitivity indices Stot

i , i = 1, 2, 3. The above mentioned parameters are pre-
sented in Table 3, Table 4, and Table 5. Table 3 presents the results obtained
for a sample size n = 2500, Table 4 presents results for n = 6600, and Table 5
shows results for n = 15200. The last table differs from the previous ones by
showing results for two different kinds of scrambling, i.e. restricted form of
Owen scrambling and combined scrambling. The idea was to compare results
for two different types of scrambling for relatively high value of n.

One can notice that the combined scrambling approach leads to smaller
relative errors in comparison of the other algorithms for a number of points
larger than 10000. That is why this algorithm has been chosen to be pre-

21

Table 3: Relative error (in absolute value) and computational time for estimation of
sensitivity indices of input parameters using various Monte Carlo and quasi-Monte Carlo
approaches (n = 2500, c ≈ 0.51365, δ ≈ 0.08).

Estimated Sobol quasi Scrambled MCA-MSS
quantity MC algorithm Sobol sequences ρ Rel. error

g0 0.0002 0.0002 0.0007 0.0003
0.002 0.0003

D 0.0006 0.0076 0.0007 0.0017
0.002 0.0044

S1 0.0009 0.0041 0.0007 0.0034
0.002 0.0006

S2 0.0004 0.0088 0.0007 0.0039
0.002 0.0008

S3 0.2005 0.0047 0.0007 0.0566
0.002 0.0851

Stot
1 0.0012 0.0074 0.0007 0.0037

0.002 0.0007
Stot
2 0.0006 0.0055 0.0007 0.0041

0.002 0.0009
Stot
3 0.1152 0.1658 0.0007 0.0251

0.002 0.0865
Time (s) 0.003 0.004 0.042

22

Table 4: Relative error (in absolute value) and computational time for estimation of
sensitivity indices of input parameters using various Monte Carlo and quasi-Monte Carlo
approaches (n = 6600, c ≈ 0.51365, δ ≈ 0.08).

Estimated Sobol quasi Scrambled MCA-MSS
quantity MC algorithm Sobol sequences ρ Rel. error

g0 1e-05 0.0001 0.0007 0.0001
0.007 6e-05

D 0.0007 0.0013 0.0007 0.0003
0.007 0.0140

S1 0.0045 4e-05 0.0007 0.0001
0.007 0.0031

S2 0.0041 0.0007 0.0007 0.0012
0.007 0.0014

S3 0.0647 0.0217 0.0007 0.0193
0.007 0.1066

Stot
1 0.0036 0.0006 0.0007 0.0009

0.007 0.0013
Stot
2 0.0049 6e-05 0.0007 2e-05

0.007 0.0034
Stot
3 0.0259 0.0102 0.0007 0.0099

0.007 0.0211
Time (s) 0.006 0.008 0.114

sented in Table 5. In the case of the smooth integrand - the rates of relative
errors achieved applying these three scrambling approaches are the same
(similar) for comparatively small number of points In the case of the non-
smooth integrand - there are more essential differences of the relative errors of
the approaches. For the integrands chosen here - one can point to number of
points when scrambling algorithm(s) do not outperform the algorithm with
the original Sobol points. But the scrambled algorithm (in particular, Owen
scrambling modification) and Monte Carlo algorithm based on quasi-random
sequences are more stable according to relative errors for comparatively small
number of points in computing global sensitivity indices (see Table 3).

In case of smooth integrands (see Table 2, Table 3, Table 4, and Table 5)
smaller or almost equal estimated computational complexity (time) appear
for the corresponding scrambling algorithm in comparison to Sobol QMC
algorithm. The reason is that the computational time needed for computing

23

Table 5: Relative error (in absolute value) and computational time for estimation of
sensitivity indices of input parameters using various Monte Carlo and quasi-Monte Carlo
approaches (n = 15200, c ≈ 0.51365, δ ≈ 0.08).

Estimated Sobol quasi Modified Owen Combined MCA-MSS
quantity MC algorithm scrambling scrambling ρ Rel. error

g0 2e-05 7e-05 6e-05 0.0007 3e-05
0.007 0.0002

D 6e-05 0.0003 7e-05 0.0007 0.0013
0.007 0.0099

S1 0.0001 0.0006 0.0002 0.0007 0.0002
0.007 0.0013

S2 0.0003 0.0013 9e-05 0.0007 0.0003
0.007 0.0013

S3 0.0006 0.0517 0.0188 0.0007 0.0486
0.007 0.0125

Stot
1 0.0002 0.0008 6e-05 0.0007 0.0002

0.007 0.0011
Stot
2 9e-05 0.0009 0.0002 0.0007 0.0005

0.007 0.0014
Stot
3 0.0119 0.0776 0.0088 0.0007 0.0388

0.007 0.0210
Time (s) 0.015 0.018 0.017 0.253

of a value of the integrand in this case is much shorter than the computational
time needed for points generation.

The results about relative error in computing second-order sensitivity in-
dices applying MC algorithm using modified Sobol’s points, modified Owen
scrambling approach of Sobol’s points, and quasi-Monte Carlo algorithm us-
ing ΛΠτ points are presented on Figure 1. The reference values for these
indices are respectively S12 ≈ 0.00537, S13 ≈ 0.000096, and S23 ≈ 0.00018.
The algorithm proposed in [23] has been applied to compute the approximate
values of second-order sensitivity indices of inputs of UNI-DEM. The esti-
mated quantities are small in values and a loss of accuracy appears following
its definition. It explains different rate of relative value in computations of
S12 and the other indices S13 and S23 using the same sample size. The results
presented on Figure 1 demonstrate that MCA-MSS leads to smaller relative
error for fixed moderate values of sample size (from n = 5000 to n = 25000).

24

200 1020 5600 10500 25000 70000
a) sample size

0.001

0.01

0.1

1

|r
el

at
iv

e
er

ro
r|

MCA-MSS

Owen’s scrambling

Sobol’ quasi-MCA

200 1020 5600 10500 25000 70000
b) sample size

0.01

0.1

1

10

|r
el

at
iv

e
er

ro
r|

MCA-MSS

Owen’s scrambling

Sobol’ quasi-MCA

200 1020 5600 10500 25000 70000
c) sample size

0.1

0.01

20

1

|r
el

at
iv

e
er

ro
r|

MCA-MSS

Owen’s scrambling

Sobol’ quasi-MCA

Figure 1: Relative errors (in absolute value) for numerical approximation of second-order
sensitivity indices: a) S12; b) S13; c) S23.

On the other hand, one can see that Owen approach gives worst results for
most of the chosen sample sizes.

7. Discussion

One can clearly observe that the algorithm based on modified Sobol se-
quences improves the error estimates for non-smooth integrands when the
radius ρ is smaller than the minimal distance between ΛΠτ points δ. Strongly
speaking this approach is applicable if ρ is much smaller than δ. The imple-
mentation of the algorithm shows that this requirement is not very strong.
Even for relatively large radiuses ρ the results are good. The reason is that
centers of spheres are very well uniformly distributed by definition. So that,
even for large values of radiuses of shaking the generated random points
continue to be well distributed.

It should be mentioned here that for relatively low number of points
(< 1000) the algorithm based on modified Sobol sequences gives results with

25

a high accuracy. The relative error is approximately equal to 0.0038 for n =
100. For the same sample size the Sobol algorithm gives more than 10 times
higher error. For n = 1000 our algorithm gives relative error 0.0004− 0.0016
depending on the parameter κ while the Sobol algorithm gives 0.0114. This
is an important fact because one has a possibility to estimate the value of
the integral with a relatively high accuracy using a small number of random
points.

If one deals with smooth functions, then the algorithm based on modified
Sobol sequences is definitely better than the Monte Carlo algorithm based
on SFMT generator, but it is not better than Sobol algorithm based on ΛΠτ

points. Actually the results are very close to each other. This result is not
unexpectable since the Sobol algorithm is known to be very good for smooth
functions (especially, for not very high dimensions).

8. Conclusion

A comprehensive theoretical and empirical study of the Monte Carlo al-
gorithm based on modified Sobol sequences has been done. The algorithm
combines properties of two of the best available approaches - Sobol quasi-
Monte Carlo integration and a high quality SFMT pseudo-random number
generator. It has been proven that the Monte Carlo algorithm based on Sobol
sequences MCA-MSS has an optimal rate of convergence for functions with
continuous and bounded first derivative in terms of probability and mean
square error.

A comparison with several scrambling approaches as well as with the
Sobol quasi-Monte Carlo algorithm and the algorithm using SFMT genera-
tor has been provided for numerical integration of non-smooth and smooth
integrands. The algorithms mentioned above are tested numerically also for
computing sensitivity measures for UNI-DEM model to study sensitivity of
ozone concentration according to variation of chemical rates. All algorithms
under consideration are efficient and converge with the expected rate of con-
vergence. It is important to notice that the Monte Carlo algorithm based on
modified Sobol sequences gives similar rates of the relative error in compari-
son with scrambling approaches. But there are many cases when MCA-MSS
has essential advantages. It holds especially for small in values sensitivity
indices. The latter case is crucial to provide reliable sensitivity analysis.

26

Acknowledgment

The research reported in this paper is partly supported by the Bulgarian
NSF Grants DTK 02/44/2009, DCVP 02/1, and DO 02-215/2008.

[1] I. Antonov, V. Saleev, An Economic Method of Computing LPτ -
sequences, USSR Comput. Math. Phy. 19, 1979, 252-256.

[2] P. Bradley, B. Fox, Algorithm 659: Implementing Sobol’s Quasi Random
Sequence Generator. ACM Trans. Math. Software 14(1), 1988, 88-100.

[3] H. Chi, P. Beerli, D. Evans, M. Mascagni, On the scrambled Sobol’
sequences. V.S. Sunderam et al. (eds.), ICCS 2005, LNCS 3516, 2005,
775-782.

[4] I. T. Dimov, Monte Carlo Methods for Applied Scientists. World Scien-
tific, London, Singapore (2008).

[5] I. T. Dimov, I. Farago, A. Havasi, Z. Zlatev, Operator Splitting and
Commutativity Analysis in the Danish Eulerian Model, Math. Comp.
Sim. 67, 2004, 217233.

[6] I. T. Dimov, R. Georgieva, Monte Carlo Method for Numerical Integra-
tion based on Sobol’ Sequences, Springer, LNCS 6046, 2011, 50-59.

[7] I. T. Dimov, R. Georgieva, S. Ivanovska, Tz. Ostromsky, Z. Zlatev,
Studying the Sensitivity of Pollutants’ Concentrations Caused by Vari-
ations of Chemical Rates, Journal of Computational and Applied Math-
ematics 235, 2010, 391 - 402.

[8] I. Dimov, Tz. Ostromsky, Z. Zlatev, Challenges in using splitting tech-
niques for large-scale environmental modeling, in: Advances in Air Pol-
lution Modeling for Environmental Security (Farago, I., Georgiev, K.,
Havasi, A. - eds.) NATO Science Series 54, 2005, Springer, 115132.

[9] H. Faure, S. Tezuka, Another Random Scrambling of Digital (t, s)-
sequences Monte Carlo and Quasi-Monte Carlo Methods, Springer-
Verlag, Berlin, Germany (K. Fang, F. Hickernell, H. Niederreiter, eds.),
2000.

[10] S. Joe, F. Kuo, Constructing Sobol’ Sequences with Better Two-
dimensional Projections. SIAM J. Sci. Comput. 30, 2008, 2635-2654.

27

[11] T. Homma, A. Saltelli, Importance Measures in Global Sensitivity Anal-
ysis of Nonlinear Models, Reliability Engineering and System Safety 52,
1996, 1-17.

[12] H. Hong, F. Hickernell, Algorithm 823: Implementing Scrambled Digital
Sequences ACM Trans. Math. Software 29:2, 2003, 95-109.

[13] P. L’Ecuyer, C. Lecot, B. Tuffin, A Randomized Quasi-Monte Carlo Sim-
ulation Method for Markov Chains. Operations Research 56(4), 2008,
958-975.

[14] P. L’Ecuyer, C. Lemieux, Recent Advances in Randomized Quasi-Monte
Carlo Methods. In: Dror, M., L’Ecuyer, P., Szidarovszki, F. (eds.) Mod-
eling Uncertainty: An Examination of Stochastic Theory, Methods, and
Applications, 2002, 419-474, Kluwer Academic Publishers, Boston.

[15] Y. Levitan, N. Markovich, S. Rozin, I. Sobol’, On Quasi-random Se-
quences for Numerical Computations, USSR Comput. Math. and Math.
Phys. 28(5), 755-759 (1988).

[16] G. I. Marchuk, Mathematical Modeling for the Problem of the Environ-
ment, Studies in Mathematics and Applications, No. 16, North-Holland,
Amsterdam, 1985.

[17] J. Matousek, On the L2-discrepancy for Anchored Boxes. Journal of
Complexity, 14: 527-556, 1998.

[18] H. Niederreiter, Low-Discrepancy and Low-Dispersion Sequences. Jour-
nal of Number Theory 30, 51-70 (1988).

[19] A. Owen, Randomly Permuted (t, m, s)-nets and (t, s)-sequences. Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 106 in
Lecture Notes in Statistics: 299-317, 1995.

[20] A. Owen, Scrambled Net Variance for Integrals of Smooth Functions.
Ann. Statist., 25, 1541-1562, 1997.

[21] A. Owen, Variance and Discrepancy with Alternative Scramblings. ACM
Trans. on Computational Logic., V: 1-16, 2002.

28

[22] M. Saito, M. Matsumoto, SIMD-oriented Fast Mersenne Twister: a
128-bit Pseudorandom Number Generator. In: Keller, A., Heinrich, S.,
Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods
2006, 607-622. Springer (2008).

[23] A. Saltelli, Making best use of model evaluations to compute sensitivity
indices, Computer Physics Communication 145, 2002, 280-297.

[24] A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis, John Wiley and
Sons publishers, Probability and Statistics series (2000).

[25] A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis
in Practice: A Guide to Assessing Scientific Models, Halsted Press, New
York, 2004.

[26] I. Sobol, Multidimensional Quadrature Formulae and Haar functions (in
Russian). Nauka, Moscow (1969).

[27] I. Sobol, Monte Carlo Numerical Methods (in Russian). Nauka, Moscow
(1973).

[28] I. Sobol, On the Systematic Search in a Hypercube. SIAM J. Numerical
Analysis 16, 790-793 (1979).

[29] I. Sobol, On Quadratic Formulas for Functions of Several Variables Sat-
isfying a General Lipschitz Condition. USSR Comput. Math. and Math.
Phys. 29(6), 936-941 (1989).

[30] I. Sobol, Quasi - Monte Carlo Methods. In: Sendov, Bl., Dimov, I.T.
(eds.) International Youth Workshop on Monte Carlo Methods and Par-
allel Algorithms 1989, 75-81. World Scientific, Singapore (1990).

[31] I. M. Sobol, Sensitivity estimates for nonlinear mathematical models.
Mathematical Modeling and Computational Experiment 1 (1993), 407-
414.

[32] I. M. Sobol, Global sensitivity indices for nonlinear mathematical mod-
els and their Monte Carlo estimates, Mathematics and Computers in
Simulation, 55 (1-3) (2001) 271-280.

[33] I. Sobol, E. Myshetskaya, Monte Carlo estimators for small sensitivity
indices, Monte Carlo Methods and Applications 13(5-6), 2007, 455-465.

29

[34] S. Tezuka, Uniform Random Numbers, Theory and Practice. Kluwer
Academic Publishers, IBM Japan, 1995.

[35] H. Weyl, Ueber die Gleichverteilung von Zahlen mod Eins. Math. Ann.
77(3), 313-352 (1916).

[36] www.nag.co.uk/numeric/CL/CLdescription.asp

[37] www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/SFMT/index.html

[38] Z. Zlatev, Computer treatment of large air pollution models, KLUWER
Academic Publishers, Dorsrecht-Boston-London, 1995.

[39] Z. Zlatev, I. T. Dimov, Computational and Numerical Challenges in
Environmental Modelling, Elsevier, Amsterdam, 2006.

[40] Z. Zlatev, I. T. Dimov, K. Georgiev, Modeling the Long-range Transport
of Air Pollutants, IEEE Computational Science and Engineering, 1 (3)
(1994), 45-52.

[41] Z. Zlatev, I. T. Dimov, K. Georgiev, Three-dimensional version of the
Danish Eulerian Model, Zeitschrift für Angewandte Mathematik und
Mechanik, 76 (1996) S4, 473-476.

30

