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Abstract. Sensitivity Analysis of the Danish Eulerian Model requires
an extensive amount of output data from computationally expensive nu-
merical experiments with a specially adapted for the purpose version
of the model, called SA-DEM. It has been successfully implemented and
run on the most powerful parallel supercomputer in Bulgaria - IBM Blue-
Gene/P. A new enhanced version, capable of using efficiently the full ca-
pacity of the mashine, has recently been developed. It will be described
in this paper together with some performance analysis and numerical
results. The output results are used to construct some mesh-functions of
ozone concentrations ratios to be used further in sensitivity analysis of
the model by using Monte Carlo algorithms.

1 Introduction

The Unified Danish Eulerian Model (UNI-DEM) is a powerful air pollution
model, used to calculate the concentrations of various dangerous pollutants and
other species over a large geographical region (4800 × 4800 km), covering the
whole of Europe, the Mediterranean and some parts of Asia and Africa. It takes
into account the main physical, chemical and photochemical processes between
the studied species, the emissions, the quickly changing meteorological condi-
tions. This large and complex task is not suitable for direct numerical treatment.
For the purpose of numerical solution it is split into submodels, which represent
the main physical and chemical processes. The sequential splitting [5] is used in
the production version of the model, although other splitting methods have also
been considered and implemented in some experimental versions [1,4]. Spatial
and time discretization makes each of the above submodels a huge computational
task, challenging for the most powerful supercomputers available nowadays. That
is why the parallelization has always been a key point in the computer implemen-
tation of DEM since its very early stages. A coarse-grain parallelization strategy
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based on partitioning of the spatial domain appears to be the most efficient and
well-balanced way on widest class of nowadays parallel machines (with not too
many processors), although some restrictions apply. Other parallelizations are
also possible and suitable to certain classes of supercomputers [7,8].

In the chemical submodel there is a number of parameters for control on
the speed of the corresponding chemical reactions. By introducing some regular
perturbations in these parameters we produce the necessary data to be used later
in a new adaptive Monte Carlo approach to variance-based sensitivity analysis.
In general, sensitivity analysis can help us to find out which simplifications can
be done without significant loss of accuracy. It is also important to analyze the
influence of variations of the chemical rate coefficients (and other parameters on
a later stage), as there is always a certain level of uncertainty for their values.
This knowledge can show us which parameters are most critical for a certain set
of output results.

A special parallel version (SA-DEM) of the UNI-DEM has been created for
this purpose [2,6] and efficiently implemented on the IBM BlueGene/P, the most
powerful parallel machine in Bulgaria. Nevertheless, the sensitivity analysis task
remains a huge computational problem, which requires enormous resources of
storage and CPU time. Essential improvements of this version are made by intro-
ducing two new levels of parallelism (top-level(MPI) and bottom-level(OpenMP)
respectively) in SA-DEM. They allow us to shorten many times the necessary
computing time for obtaining the sensitivity analysis results and to use efficiently
the IBM BlueGene/P machine up to its full capacity.

The general concept of sensitivity analysis and our utilization for the above
problem is described briefly in Section 2. The mathematical background of Dan-
ish Eulerian Model and the scheme of its numerical solution are described in
Section 3. Some details on parallelization of the improved SA-DEM version, per-
formance and scalability results obtained on the IBM BlueGene/P are presented
in the rest of this paper.

2 Sensitivity Analysis Concept — Sobol’s Approach

Sensitivity analysis (SA) is the study of how much the uncertainty in the input
data of a model (due to any reason: inaccurate measurements or calculation,
approximation, data compression, etc.) is reflected in the accuracy of the output
results [9]. Two kinds of sensitivity analysis are present in the existing literature,
local and global. Local SA studies how much some small variations of inputs
around a given value can change the value of the output. Global SA takes into
account all the variation range of the input parameters, and apportions the
output uncertainty to the uncertainty in the input data. Subject to our study in
this paper is the global sensitivity analysis.

Several sensitivity analysis techniques have been developed and used through-
out the years [9]. In general, these methods rely heavily on special assumptions
connected to the behaviour of the model (such as linearity, monotonicity and ad-
ditivity of the relationship between input and output parameters of the model).
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Among the quantitative methods, variance-based methods are most often used.
The main idea of these methods is to evaluate how the variance of an input or
a group of inputs contributes to the variance of model output.

Assume that a model is represented by the following model function: u = f(x),
where the input parameters x = (x1, x2, . . . , xd) ∈ Ud ≡ [0, 1]d are independent
(non-correlated) random variables with a known joint probability distribution
function. In this way the output u becomes also a random variable (as it is a
function of the random vector x) and let E be its mathematical expectation. Let
D[E(u|xi)] be the variance of the conditional expectation of u with respect to
xi and Du - the total variance according to u. This indicator is called first-order
sensitivity index by Sobol [10] or sometimes correlation ratio.

Total Sensitivity Index (TSI) [10] of an input parameter xi, i ∈ {1, . . . , d}
is the sum of the complete set of mutual sensitivity indices of any order (main
effect, two-way interactions (second order), three-way interactions (third order),
etc.):

Stot
xi

= Si +
∑

l1 �=i

Sil1 +
∑

l1,l2 �=i,l1<l2

Sil1l2 + . . .+ Sil1...ld−1
, (1)

where Sil1...lj−1 – jth order sensitivity index for the parameter xi (1 ≤ j ≤ d),
j = 1 : Si – the ”main effect” of xi. According to the values of their to-
tal sensitivity indices, the input parameters are classified in the following way:
very important (0.8 < Stot

xi
), important (0.5 < Stot

xi
< 0.8), unimportant (0.3 <

Stot
xi

< 0.5), irrelevant (Stot
xi

< 0.3). In most practical problems the high di-
mensional terms can be neglected, thus reducing significantly the number of
summands in (1).

The Sobol’s method is one of the most often used variance-based methods.
It is based on a unique decomposition of the model function into orthogonal
terms (summands) of increasing dimension and zero means. Its main advantage
is computing in a uniform way not only the first order indices, but also the higher
order indices (in quite a similar way as the computation of the main effects).
The total sensitivity index can then be calculated with just one Monte Carlo
integral per factor.

The Sobol’s method for global SA, applied here, is based on the so-called
HDMR1 (2) of the model function f (integrable) in the d-dimensional factor
space:

f(x) = f0 +

d∑

s=1

∑

l1<...<ls

fl1...ls(xl1 , xl2 , . . . , xls), (2)

where f0 is a constant. The representation (2) is not unique. Sobol has proven
that under the conditions (3) for the right-hand-side functions

∫ 1

0

fl1...ls(xl1 , xl2 , . . . , xls) dxlk = 0, 1 ≤ k ≤ s, s = 1, . . . , d (3)

1 High Dimensional Model Representation.
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the decomposition (2) is unique and is called ANOVA2-HDMR of the model
function f(x). Moreover, the functions of the right-hand side can be defined in
a unique way by multidimensional integrals [11].

3 The Danish Eulerian Model

In this section we describe shortly the Danish Eulerian Model (DEM) [13] and
its current production version UNI-DEM [12]. It is mathematically represented
by the following system of partial differential equations, in which the unknown
concentrations of a large number of chemical species (pollutants and other chem-
ically active components) take part. The main physical and chemical processes
(advection, diffusion, chemical reactions, emissions and deposition) are repre-
sented in that system.

∂cs
∂t

= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
+

+
∂

∂x

(
Kx

∂cs
∂x

)
+

∂

∂y

(
Ky

∂cs
∂y

)
+

∂

∂z

(
Kz

∂cs
∂z

)
+ (4)

+ Es +Qs(c1, c2, . . . cq)− (k1s + k2s)cs, s = 1, 2, . . . q .

where

– cs – the concentrations of the chemical species;
– u, v, w – the wind components along the coordinate axes;
– Kx, Ky, Kz – diffusion coefficients;
– Es – the emissions;
– k1s, k2s – dry / wet deposition coefficients;
– Qs(c1, c2, . . . cq) – non-linear functions describing the chemical reactions be-

tween species under consideration.

The above rather complex system (4) is split (by using the most straightfor-
ward sequential splitting scheme) according to the major physical and chemical
processes. Finaly, the following 3 submodels are formed:
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2 ANalysis Of VAriances.
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Spatial and time discretization of the above submodels on the EMEP3 grid or
its refinements (see Table 1) makes each of them a huge computational task.
Thus the high performance and parallel computing become vital for the real-
time numerical solution of the model.

The following methods are used in the numerical solution of the submodels:

– Advection-diffusion part: Finite elements, followed by predictor-corrector
schemes with several different correctors.

– Chemistry-deposition part: An improved version of the QSSA (Quazi
Steady-State Approximation)

– Vertical transport: Finite elements, followed by theta-methods.

4 UNI-DEM, the Improved Sensitivity Analysis Version
SA-DEM and Their Parallel Implementation Features

The development and improvements of DEM throughout the years has lead
to a variety of different versions with respect to the grid-size/resolution, ver-
tical layering (2D or 3D model respectively) and the number of species in the
chemical scheme. The most prospective of them have been united in the packege
UNI-DEM. The available up-to-date versions, the selecting parameters and their
optional values are shown in Table 1.

A coarse-grain parallelization strategy based on partitioning of the spatial
domain in strips or blocks is currently used in UNI-DEM. For the purpose of this
study, the strip-based distributed memory parallelization of the model via MPI
is used [3,7,14]. It is based on partitioning of the horizontal grid, which implies
certain restrictions on the number of MPI tasks and requires communication on
each time step. Improving the data locality for more efficient cache utilization
is achieved by using chunks to group properly the small tasks in the chemistry-
deposition and vertical exchange stages. Additional pre-processing and post-
processing stages are needed for scattering the input data and gathering the
results, causing some overhead.

SA-DEM is a modification of UNI-DEM, specially adjusted to be used in the
first stage of our sensitivity analysis concept (see [2]). There are additional input

Table 1. User-determined parameters for selecting an appropriate UNI-DEM version

Parameter Description Optional values

NX = NY Grid size 96× 96 288× 288 480× 480
(Grid step) (50 km) (16.7 km) (10 km)

NZ # layers (2D/3D) 1 or 10

NEQUAT # chem. species 35, 56 or 168

3 European Monitoring and Evaluation Programme.
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parameters in the main program, allowing the user to set some changes of the
parameters subject to sensitivity analysis deeply in the code. These are constants
in the original model and normaly there is no direct user access to their values.
In our particular sensitivity analysis study regular perturbations have to be done
on some chemical rate coefficients in the chemistry submodel. These coefficients
must be modified on the course of the SA experiments, either separately or in
groups in dependence with the dimension of the particular sensitivity analysis
study. That is a typical SIMD4 task, if considering the coarsest possible level of
the strusture of our algorithm. By using it we introduce a new, higher level of
parallelism in SA-DEM on the top of the grid-partitioning level, the basis for
distributed-memory MPI parallelization in UNI-DEM.

Our target hardware can optionally offer a limited amount of shared memory
parallelism. In order to exploit it efficiently, we introduced an additional (finer-
grain) level of parallelism in our algorithm by using OpenMP standard directives.

All three levels of parallelism can be used efficiently in the calculations of the
necessary data for sensitivity analysis on a powerful Blue Gene/P computing
system. This is shown by experiments in the next section. Finally, for extract-
ing the ozone mean monthly concentrations and computing the necessary mesh
functions an additional program was developed. The last task is much simpler
and not computationally intensive, so currently we left it beyond the scope of
our highly parallel supercomputer implementation.

5 Numerical Experiments on the IBM Blue Gene/P

In this section we present some execution times and speed-ups in order to show
the scalability of SA-DEM on the Bulgarian IBM Blue Gene/P , the main com-
puting platform used in our sensitivity analysis study. The IBM Blue Gene/P
is a state-of-the-art high-performance system with 8192 CPU in total and the-
oretical peak performance more than 23 TFLOPS. It consists of 2048 compute
cards (nodes), each of them being a quard core PowerPC 450 (4 CPU, 850 MHz,
2 GB RAM). A single compute card is in fact a 4-CPU shared-memory compu-
tational unit with possible multithreading support via OpenMP. It can be used
in 3 different modes: VN, DUAL and SMP. With respect to the MPI parallelism
there are 4 MPI processes per node in VN mode, 2 - in DUAL mode, and one
in VN mode. Thus, in the last two cases the machine offers limited, but natural
from hardware viewpoint shared memory parallelism, exploited on the lowest
(finer-grain) level in the new implementation of SA-DEM, as mentioned above.
There is 8 MB L3 cache per node, 32 KB L1 cache per CPU (private).

The results of 20-sample one-year experiments with the SA-DEM (on the 2D
medium resolution spatial grid (96 x 96 x 1)), executed on the Blue Gene/P are
presented in Table 2 below.

The load managing policy of this huge parallel system is based on allocating
whole number of planes per job (a multiple of 128 nodes). Therefore it does
not encourage submission of long jobs that use considerably less nodes, as this

4 Single Instruction Multiple Data, according to Flynn’s taxonomy (1966).
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Table 2. Time (T) in seconds and speed-up (Sp) of SA-DEM with MPI parallelism
on the Bulgarian IBM Blue Gene/P (in VN mode)

Time and speed-up of SA-DEM on the IBM Blue Gene/P
(96× 96× 1) grid, 35 species, CHUNKSIZE=48

# Advection Chemistry Comm. I/O TOTAL

CPU time [s] (Sp) time [s] (Sp) time [s] time [s] time [s] (Sp) E [%]

40 3410 ( 40) 15925 ( 40) 94 1116 20733 ( 40) 100%

80 1715 ( 79) 7948 ( 80) 99 1151 11000 ( 75) 94%

120 1154 (118) 5291 (120) 138 1051 7664 (108) 90%

160 870 (157) 3983 (160) 137 1076 6204 (134) 84%

240 586 (233) 2643 (241) 140 1107 4562 (182) 76%

320 464 (294) 1974 (323) 153 1131 3810 (218) 68%

480 344 (396) 1321 (482) 221 1651 3659 (227) 47%

640 283 (482) 985 (647) 176 1973 3473 (239) 37%

960 206 (662) 656 (971) 172 1972 3114 (266) 28%

Table 3. Time (T) in seconds and speed-up (Sp) of SA-DEM with both MPI and
OpenMP parallelism on the Bulgarian IBM Blue Gene/P

Time and speed-up of SA-DEM (MPI+OpenMP) on the IBM Blue Gene/P
(96× 96× 1) grid, 35 species, CHUNKSIZE=48

# MPI p-s × Advection Chemistry TOTAL

CPU OMP thr. MODE T [s] (Sp) T [s] (Sp) T [s] (Sp) E [%]

40 40 × 1 VN 3410 ( 40) 15925 ( 40) 20733 ( 40) 100%

80 40 × 2 DUAL 1778 ( 77) 7972 ( 80) 11295 ( 73) 92%

160 80 × 2 DUAL 889 (153) 3960 (161) 6153 (135) 84%

240 120 × 2 DUAL 647 (211) 2655 (240) 4712 (176) 73%

320 160 × 2 DUAL 502 (271) 1978 (322) 4006 (207) 65%

480 240 × 2 DUAL 358 (381) 1329 (479) 3418 (243) 51%

640 160 × 4 SMP 223 (612) 997 (639) 2768 (300) 47%

960 480 × 2 DUAL 218 (626) 659 (967) 2684 (309) 32%

960 240 × 4 SMP 158 (863) 667 (955) 2292 (362) 38%

1280 320 × 4 SMP 122 (1118) 499 (1277) 2109 (393) 31%

1920 480 × 4 SMP 99 (1378) 338 (1885) 2568 (323) 17%

2560 640 × 4 SMP 83 (1643) 332 (1919) 2182 (380) 15%

3840 960 × 4 SMP 58 (2352) 168 (3792) 1653 (502) 13%

would be a waste of resourse. In our experiments the runs start from 40 CPU.
In order to obtain comparable figures and correct scalability results we calculate
the speed-up in the next tables by using the following formula (assuming that
the speed-up on 40 processors is 40):

Sp(n) = 40
T (n)

T (40)
(5)
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where n is the number of processors (given in the first column). The time and
the speed-up (Sp) of the main computational stages and in total are given
in separate columns. The last column contains also the total efficiency E (in
percent), where E = 100 Sp(n)/n%.

The total time includes also the MPI communication time as well as the time
for some I/O procedures, which are not parallelizable. Moreover, the larger the
number of MPI tasks, the more I/O device conflicts arise, which results in a
significant drop-down in the total efficiency. I/O device access appear to be the
performance bottleneck in this case, partially avoided by using the lowest level
OpenMP parallelisation (see Table 3). On the other hand, the computational
stages scale pretty well, even the speed-up of the chemistry stage tends to be
slightly superlinear (due to the cache memory effects).

6 Conclusions and Plans for Future Work

We consider a 3-stage variance-based sensitivity analysis method. For the pur-
pose of sensitivity analysis of the Danish Eulerian Model with respect to vari-
ation of certain chemical rate coefficients, a special version of the model has
been developed and implemented efficiently on the IBM Blue Gene/P (called
SA-DEM). Experiments, showing its scalability and efficiensy on a huge parallel
system (IBM Blue Gene/P) are presented in this paper.

The first stage of our 3-stage sensitivity analysis method is completed by
extracting from the output results some mean monthly concentrations of the
ozone and producing the necessary mesh functions. The second stage of this
sensitivity analysis research includes approximation of the mesh functions by
polynomials of 3-rd / 4-th degree or by cubic B-spline functions. A Monte Carlo
integration method is furtherly applied to these functions on the third stage.
The results of the last two stages are presented in another paper.

Our near future plans include:

– Optimization of the I/O operations in order to overcome the bottleneck,
causing a significant efficiency dropdown;

– Extending the abilities of SA-DEM (including experiments with more chem-
ical species and on finer resolution grids (storage-permitting);

– Extending the scope of the sensitivity analysis study with respect to the
emission levels and the boundary conditions.
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