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Abstract. Advection equations are an essential part of many mathe-
matical models arising in different fields of science and engineering. It
is important to treat such equations with efficient numerical schemes.
The well-known Crank-Nicolson scheme will be applied. It will be shown
that the accuracy of the calculated results can be improved when the
Crank-Nicolson scheme is combined with the Richardson Extrapolation.
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1 One-dimensional advection equations

Consider the advection equation:

(1)
∂ c

∂ t
= −u

∂ c

∂ x
, x ∈ [a1, b1] ⊂ (−∞, ∞) , t ∈ [a, b] ⊂ (−∞,∞) .

The wind velocity u = u(x, t) is some given function. Equation (1) must always
be considered together with appropriate initial and boundary conditions. The
well-known Crank-Nicolson scheme (see, for example, [2, p. 63]) can be applied
in the numerical treatment of (1). The computations are carried out by the
following formula:

(2)
σi,n+0.5 ci+1,n+1 + ci,n+1 − σi,n+0.5 ci−1,n+1+
+σi,n+0.5 ci+1,n − ci,n − σi,n+0.5 ci−1,n = 0

when the Crank-Nicolson scheme is used. The quantity σi,n+0.5 is defined by

(3) σi,n =
k

4h
u(xi, tn+0.5)

where tn+0.5 = tn + 0.5 k and the increments h and k of the spatial and time
variables are introduced by using two equidistant grids:



(4) Gx =

{
xi, i = 0, . . . , Nx|x0 = a1, xi = xi−1 + h, i = 1, . . . , Nx, h =

b1 − a1
Nx

}

(5) Gt =

{
tn, n = 0, . . . , Nt | t0 = a, tn = tn−1 + k, n = 1, . . . , Nt, k =

b− a

Nt

}

2 Application of the Richardson Extrapolation

Assume that a one-dimensional hyperbolic equation similar to (1) is treated
by an arbitrary numerical method, which is of order p ≥ 1 with regard to the
two independent variables x and t. Let { zi,n+1 }Nx

i=0 be the set of approxima-
tions of the solution of (1) calculated for t = tn+1 ∈ Gt at all grid-points xi,
i = 0 , 1 , . . . , Nx, of Gx (4) by using the numerical method chosen and the

corresponding approximations { zi,n }Nx

i=0 calculated at the previous time-step,
i.e. for t = tn ∈ Gt. Introduce vectors c̄ (tn+1) , z̄n and z̄n+1 the components

of which are { c (xi , tn+1) }Nx

i=0 , { zi,n }Nx

i=0 and { zi,n+1 }Nx

i=0 respectively. Since
the order of the numerical method is assumed to be p with regard both to x and
to t, we can write:

(6) c̄ (tn+1) = z̄n+1 + hpK1 + kpK2 +O
(
kp+1

)
,

where K1 and K2 are some quantities, which do not depend on h and on k. It
is convenient to rewrite the last equality in the following equivalent form:

(7) c̄ (tn+1) = z̄n+1 + kpK +O
(
kp+1

)
, K

def
=

(
h

k

) p

K1 +K2 .

If h and k are sufficiently small, then the sum hpK1 + kpK2 will be a good
approximation of the error in the calculated values of the numerical solution
z̄n+1. If K is bounded, |K | < ∞, then kpK will also be a good approximation
of the error of z̄n+1. This means that if we succeed to eliminate the term kpK
in (7), then we shall obtain approximations of order p + 1. The Richardson
Extrapolation can be applied in an attempt to achieve such an improvement of
the accuracy. In order to apply the Richardson Extrapolation when (1) is treated
by the Crank-Nicolson scheme it is necessary to introduce an additional grid:

(9)
G2

x = {xi , i = 0, 1, . . . , 2Nx | x0 = a1 ,

xi = xi−1 +
h
2 , i = 1, . . . , 2Nx , h = b1−a1

Nx

}
.

Assume that approximations {wi,n } 2Nx

i=0 (calculated at the grid-points of G2
x

for t = tn ∈ Gt) are available and perform two small steps with a stepsize k / 2

to compute {wi,n+1} 2Nx

i=0 . Use only the components with even indices i , i =
0 , 2 , 4 , . . . , 2Nx to form vector w̃n+1. The following equality holds for this
vector when the quantity K is defined as in (7):



(10) c̄ (tn+1) = w̃n+1 +

(
k

2

) p

K +O
(
kp+1

)
.

It is possible to eliminate the quantity K from (7) and (10) by applying
the following linear combination: multiply (10) by 2p and subtract (7) from the
result. Thus we obtain:

(11) c̄ (tn+1) = c̄n+1 +O
(
kp+1

)
, c̄n+1

def
=

2p w̃n+1 − z̄n+1

2p − 1
.

The approximation c̄n+1, being of order p + 1, will be more accurate than
both z̄n+1 and w̃n+1 when h and k are sufficiently small. The device used to con-
struct c̄n+1 is called Richardson Extrapolation (introduced in [1]). If the partial
derivatives up to order p + 1 exist and are continuous, then one should expect
(11) to produce more accurate results than those obtained by the underlying
numerical method.

Remark 1: The rest terms in the formulae given in this section will in
general depend on both h and k. However, it is clear that h can be expressed as
a function of k by using (7) and (6) and this justifies the use only of k in all rest
terms.

Remark 2: No specific assumptions were made in this section, neither about
the particular partial differential equation, nor about the numerical method used
to solve it. This was done in order to demonstrate that the idea on which the
Richardson Extrapolation is based is very general. However, it must be empha-
sized that in the remaining part of this paper it will always be assumed that
(i) equation (1) is solved under the assumptions made in Section 1 and (ii) the
underlying numerical algorithm used to handle it numerically is the second-order
Crank-Nicolson scheme.

One should expect the combination of the Richardson Extrapolation and
the Crank-Nicolson scheme to be a third-order numerical method. However, the
actual result is much better, because the following theorem holds:

Theorem 1: If c(x, t) from (1) is continuously differentiable up to order five
in both x and t, then the numerical method based on the Richardson Extrapolation
and the Crank-Nicolson scheme is of order four.

The Richardson Extrapolation can be implemented in four different manners
depending on the way in which the computations at the next time-step, step
n+ 2, will be carried out.

1. Active Richardson Extrapolation: Use c̄n+1 as initial value to com-

pute z̄n+2. Use the set of values
{
wi,n+1

} 2Nx

i=0
as initial values to compute{

wi,n+2

}2Nx

i=0
and w̃n+2.



2. Passive Richardson Extrapolation: Use z̄n+1 as initial value to com-

pute z̄n+2. Use the set of values
{
wi,n+1

} 2Nx

i=0
as initial values to compute{

wi,n+2

} 2Nx

i=0
and w̃n+2.

3. Active Richardson Extrapolation with linear interpolation on the
finer spatial grid (9): Use c̄n+1 as initial values to compute z̄n+2. Set
w2i,n+1 = ci,n+1 for i = 0, 1 , . . . , Nx . Use linear interpolation to obtain
approximations of the values of wi,n+1 for i = 1, 3 , . . . , 2Nx−1.Use the up-

dated set of values
{
wi,n+1

} 2Nx

i=0
as initial values to compute

{
w i,n+2

} 2Nx

i=0
and w̃n+2.

4. Active Richardson Extrapolation with third-order interpolation
on the finer spatial grid (9): Use c̄n+1 as initial value to compute
z̄n+2. Set w2i,n+1 = ci,n+1 for i = 0, 1 , . . . , Nx . Use third-order La-
grangian interpolation polynomials to obtain approximations of wi,n+1 for
i = 3, 5 , . . . , 2Nx − 3 and second-order Lagrangian polynomials to obtain
approximations of wi,n+1 for i = 1 and i = 2Nx − 1 (i.e. to calculate w1,n+1

and w2Nx−1,n+1 ). Use the updated set of values
{
wi,n+1

} 2Nx

i=0
as initial

values to compute
{
wi,n+2

} 2Nx

i=0
and w̃n+2.

The improvements obtained by applying (11) are not used in the further
computations when the Passive Richardson Extrapolation is selected. These im-
provements are partly used in the calculations related to the large step (only to
compute z̄n+2) when the Active Richardson Extrapolation is used. An attempt to

exploit the more accurate values also in the calculation of w̄n+2 =
{
wi,n+1

} 2Nx

i=0
is made in the last two implementations.

Information about the actual application of the third-order Lagrangian inter-
polation is given below. Assume that w2i,n+1 = ci,n+1 for i = 0 , 1 , . . . , Nx, i.e.
the improved (by the Richardson Extrapolation) solution on the coarser grid (4)
is projected at the grid-points with even indices 0 , 2 , . . . , 2Nx of the finer grid
(9). The interpolation rule used to get better approximations at the grid-points
of (9) which have odd indices can be described by the following formula:

(12)
wi,n+1 = − 3

48 wi−3,n+1 +
9
16 wi−1,n+1 +

9
16wi+1,n+1 − 3

48wi+3,n+1 ,
i = 3 , 5 , . . . , 2Nx − 3 .

Formula (12) is obtained by using a third-order Lagrangian interpolation for
the case where the grid-points are equidistant and when an approximation at the
mid-point xi of the interval [xi−3 , xi+3] is to be found. Only improved values
are involved in the right-hand-side of (12).
Formula (12) cannot be used to improve the values at the points x1 and xNx−1.
It is necessary to use second-order interpolation at these two points:

(13)
w1,n+1 = 3

8 w0,n+1 +
3
4 w2,n+1 − 1

8w4,n+1 ,
wNx−1,n+1 = 3

8 wNx,n+1 +
3
4 wNx−2,n+1 − 1

8wNx−4,n+1 .



3 Introduction of three numerical examples

An oscillatory example (EXAMPLE 1). Assume that the following rela-
tionships hold:

(14)
a = a1 = 0 , b = b1 = 2π , u(x, t) = 0.5 ,
f(x) = [100 + 99 sin(10x)] ∗ 1.4679 ∗ 1012 .

The exact solution of the problem defined by (14) is c(x, t) = f(x − ut) .
Function f(x) can be seen in Figure 1 a.

a) EXAMPLE 1 b) EXAMPLE 2 c) EXAMPLE 3

Fig. 1. The initial value conditions in the three examples. It is assumed that (i) there
are 161 grid-points in the spatial interval and (ii) the initial values are ozone concen-
trations.

A discontinuous example (EXAMPLE 2). Another example is defined
by the following relationships:

(15) x ∈ [0 , 50 000 000] , t ∈ [43 200 , 129 600] , u(x, t) = 320 cm/s.

The distance is measured in centimetres, which means that the length of the
spatial interval is 500 kilometres. The time is measured in seconds (starting in
the mid-night). This means that the calculations are started at 12 o’clock and
finished at the same time in the next day. The initial values are given by

(16) f(x) = 1.4679 ∗ 1012 for x ≤ 5000000 or x ≥ 15000000 ,

(17) f(x) =

[
1 + 99 ∗ x− 5000000

5000000

]
∗ 1.4679 ∗ 1012 , 5000000 ≤ x ≤ 10000000 ,

(18) f(x) =

[
1 + 99 ∗ 15000000− x

5000000

]
∗ 1.4679∗1012 , 10000000 ≤ x ≤ 15000000 .



The exact solution of the problem defined by (15) – (18) is given by c(x, t) =
f(x − u(t − 43200)). The variation of function f(x) defined by (16) – (18) can
be seen in Figure 1 b.

A smooth example with a sharp gradient (EXAMPLE 3). Assume
that (15) holds and introduce:

(19) f(x) =
(
1 + e−ω(x−10 000 000)2

)
∗ 1.4679 ∗ 1012 , ω = 10−12 .

The exact solution of the problem defined by (15) and (19) is given by c(x, t) =
f(x− u(t− 43200)). Function f(x) from (19) can be seen in Figure 1 c. Similar
example was used in [4].

Similar advection module is a part of the large-scale air pollution model UNI-
DEM [3,5] and the quantities used in this section are either the same or very
similar to the corresponding quantities in this model.

4 Numerical results

In each experiment the first run is performed by using Nt = 168 and Nx = 160.
Ten additional runs are performed after the first one. When a run is finished,
both h and k are halved (this means that Nt and Nx are doubled) and a new
run is started. Thus, in the eleventh run we have Nt = 172032 and Nx = 163840.
Note too, that the ratio h/k is kept constant and, therefore K from (7) remains
bounded as required in (9).

We are mainly interested in the behavior of the numerical error. The error
is evaluated at the end of every hour (i.e. 24 times in each run) at the grid-
points of the coarsest spatial grid in the following way. Assume that run number
r , r = 1 , 2 , . . . , 11 , is to be carried out and let R = 2r−1. Then the error
is calculated by

(20)
ERRm = max

j=0,1,...,160

( ∣∣∣cĩ,ñ−cexact
ĩ,ñ

∣∣∣
max (

∣∣∣cexact
ĩ,ñ

∣∣∣ , 1.0)

)
,

m = 0 , 1 , . . . , 24 , ĩ = j R , ñ = 7mR ,

where cĩ,ñ and cexact
ĩ,ñ

are the calculated value and the reference solution at the

end of hour m and at the grid-points of coarsest grid.

The global error made during the computations is estimated by using the fol-
lowing formula:

(21) ERR = max
m=1,2,..., 24

(ERRm) .

Numerical results obtained in the runs of the above three examples are given
in Table 1 – Table 3.



C-N Richardson Extrapolation [ error (conv. rate) ]

No NT NX only Active Passive Lin. interp. 3rd order interp.

1 168 160 7.85E-01 2.04E-01 2.79E-01 3.83E-01 1.56E-02

2 336 320 2.16E-01 4.95E-02 7.14E-02 1.19E-01 1.23E-03 (12.7)

3 672 640 5.32E-02 1.25E-02 1.76E-02 2.47E-02 1.07E-04 (11.4)

4 1344 1280 1.33E-02 3.15E-03 4.33E-03 6.25E-03 1.15E-05 ( 9.3)

5 2688 2560 3.32E-03 7.87E-04 1.07E-03 1.57E-03 1.19E-06 ( 9.6)

6 5376 5120 8.30E-04 1.97E-04 2.67E-04 3.92E-04 1.48E-07 ( 8.1)

7 10752 10240 2.08E-04 4.92E-05 6.66E-05 9.81E-05 1.62E-08 ( 9.1)

8 21504 20480 5.19E-05 1.23E-05 1.66E-05 2.45E-05 1.96E-09 ( 8.2)

9 43008 40960 1.30E-05 3.08E-06 4.15E-06 6.13E-06 2.39E-10 ( 8.2)

10 86016 81920 3.24E-06 7.96E-07 1.04E-06 1.53E-06 3.24E-11 ( 7.4)

11 172032 163840 8.10E-07 1.92E-07 2.60E-07 3.83E-07 1.27E-11 ( 2.7)

Table 1: Running the oscillatory advection example (EXAMPLE 1) by using
the Crank-Nicolson Scheme directly and in combination with four versions of
the Richardson Extrapolation. The convergence rate is given in brackets for the
last method.

C-N Richardson Extrapolation [ error (conv. rate) ]

No NT NX only Active Passive Lin. interp. 3rd order interp.

1 168 160 1.34E-01 7.67E-02 7.93E-02 1.17E-01 4.98E-02

2 336 320 7.69E-02 4.42E-02 4.57E-02 6.66E-02 2.76E-02 (1.80)

3 672 640 4.42E-02 2.55E-02 2.56E-02 3.99E-02 1.55E-02 (1.78)

4 1344 1280 2.55E-02 1.64E-02 1.57E-02 2.45E-02 8.57E-03 (1.81)

5 2688 2560 1.64E-02 1.06E-02 1.07E-02 1.51E-02 4.59E-03 (1.87)

6 5376 5120 1.06E-02 5.80E-03 5.89E-03 9.68E-03 2.32E-03 (1.98)

7 10752 10240 5.80E-03 3.40E-03 4.09E-03 5.51E-03 1.19E-03 (1.95)

8 21504 20480 3.40E-03 2.35E-03 2.48E-03 3.23E-03 6.58E-04 (1.81)

9 43008 40960 2.35E-03 1.33E-03 1.10E-03 2.26E-03 2.38E-04 (2.75)

10 86016 81920 1.33E-03 9.29E-04 9.45E-04 1.14E-03 1.50E-04 (1.59)

11 172032 163840 9.36E-04 4.08E-04 2.99E-04 8.88E-04 2.79E-05 (4.94)

Table 2: Running the example with discontinuous derivatives (EXAMPLE 2)
by using the Crank-Nicolson Scheme directly and in combination with four ver-
sions of the Richardson Extrapolation. The convergence rate is given in brackets
for the last method.



C-N Richardson Extrapolation [ error (conv. rate) ]

No NT NX only Active Passive Lin. interp. 3rd order interp.

1 168 160 7.37E-01 3.99E-01 3.78E-01 6.41E-01 1.45E-01

2 336 320 4.00E-01 1.27E-01 1.00E-01 3.34E-01 1.74E-02 ( 8.4)

3 672 640 1.25E-01 3.08E-02 1.28E-02 1.09E-01 1.22E-03 (14.2)

4 1344 1280 3.08E-02 7.76E-03 9.07E-04 2.67E-02 1.73E-05 (15.8)

5 2688 2560 7.77E-03 1.95E-03 5.37E-05 6.84E-03 4.84E-06 (16.0)

6 5376 5120 1.95E-03 4.89E-04 3.30E-06 1.72E-03 3.03E-07 (16.0)

7 10752 10240 4.89E-04 1.22E-04 2.07E-07 4.30E-04 1.89E-08 (16.0)

8 21504 20480 1.22E-04 1.23E-05 1.29E-08 1.07E-04 1.18E-09 (16.0)

9 43008 40960 3.09E-05 7.65E-06 8.09E-10 2.69E-05 7.61E-11 (15.5)

10 86016 81920 7.65E-06 1.91E-07 5.06E-11 6.72E-06 9.85E-12 ( 7.7)

11 172032 163840 1.91E-06 4.78E-07 1.68E-07 4.97E-12 ( 2.0)

Table 3: Running the smooth advection example (EXAMPLE 3) by using the
Crank-Nicolson Scheme directly and in combination with four versions of the
Richardson Extrapolation. The convergence rate is given in brackets for the last
method.

Conclusions drawn by studying the results presented in Table 1:

– The Crank-Nicolson Scheme leads to second-order of accuracy when it is
applied directly. This should be expected.

– The first three implementations of the Richardson Extrapolation (Active
Richardson Extrapolation, Passive Richardson Extrapolation and Richard-

son Extrapolation with linear interpolation of the values of
{
wi,n+1

} 2Nx

i=0
on the grid-points of the finer spatial grid) lead also to second-order accu-
racy (instead of the fourth-order accuracy which should be expected). On
the other hand, these three methods give more accurate results than those
obtained by using directly the Crank-Nicolson Method.

– The combination of the Crank-Nicolson Scheme with the Richardson Ex-
trapolation performs as a third-order numerical method when it is enhanced
with third-order Lagrangian interpolation polynomials for improving the ac-

curacy of the values of
{
wi,n+1

} 2Nx

i=0
on the finer spatial grid. Theorem 1 tells

us that the combined method should be of order four. The lower accuracy
achieved here is probably due to the use of interpolation of lower degree in
formula (13).

Conclusions drawn by studying the results presented in Table 2:

– All five numerical methods (the direct implementation of the Crank-Nicolson
Scheme and the four implementations of the Richardson Extrapolation) lead



to first-order of accuracy. This probably should be expected (because of the
presence of discontinuities).

– The four implementations of the Richardson Extrapolation give more ac-
curate results than those obtained by using directly the Crank-Nicolson
Scheme.

– The combination of the Crank-Nicolson Scheme with the Richardson Extrap-
olation performs best when it is enhanced with third-order Lagrangian inter-

polation polynomials for improving the accuracy of the values of
{
wi,n+1

} 2Nx

i=0
on the finer spatial grid. However, the improvements achieved are very mod-
est also in this case.

Conclusions drawn by studying the results presented in Table 3:

– The direct application of the Crank-Nicolson Scheme leads to quadratic con-
vergence.

– The active Richardson Extrapolation and the Richardson Extrapolation based
on the use of linear interpolation behave as second order methods, but give
slightly better accuracy than that obtained when the Crank-Nicolson scheme
is applied directly.

– The Passive Richardson Extrapolation behaves as method of order four for
this example.

– The fourth implementation of the Richardson Extrapolation behaves as a
numerical method of order four. This result is in agreement with the state-
ment of Theorem 1. We should mention that the interpolation formula (13)
for the spatial boundary grid-points gives very accurate approximations for
this particular example.
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