Monte Carlo Estimator for Image Creation with Symmetric Sampling of Phong BRDF Model

Anton A. Penzov*, Ivan Dimov*, Gergana Sirakova* and Vladimir Koylazov†

*Department of Parallel Algorithms, Institute for Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25 A, 1113 Sofia, Bulgaria
†Chaos Software, Alexander Malinov Blvd., bl. 33 entr. B., 1729 Sofia, Bulgaria

Abstract. The paper is directed to the advanced rendering techniques for realistic image creation. We construct and offer a new Monte Carlo estimator for numerical solution of the rendering equation based on Phong BRDF (Bidirectional Reflectance Distribution Function) model. We consider the kernel of Phong rendering equation and present the Monte Carlo solution by a sum of two independent integrals, one for diffuse and one for specular part respectively. The diffuse integral equation is solved by applying Combined Uniform Separation of integration domain to achieve variance reduction. The hemispherical integration domain is symmetrically separated into 8 sub-domains of equal orthogonal spherical triangles and 8 sub-domains of equal spherical quadrangles. All spherical triangles, spherical quadrangles respectively are symmetric each to other as well as have fixed vertices and computable parameters. The symmetric sampling scheme is applied to generate the sampling points and solve the diffuse integral equation. The integration domain of specular integral equation is approximated by conical solid angle of most important region of interest. The normal vector of the conical solid angle is the direction of ideally reflected by the surface viewing vector. We show that the conical solid angle can be successfully approximated with rotation of all orthogonal spherical triangles sub-domains, constructed at solving the diffuse integral equation, being easy to reuse the sampling points.

Keywords: Monte Carlo, Uniform Separation, Rendering Equation, Phong BRDF model, Image Synthesis, Fredholm Integral Equations.

PACS: 02.70.Uu Applications of Monte Carlo methods; 02.60.Cb Numerical simulation, solution of equations; 02.30.Rz Integral equations.

MSC2010: 68U05 Computer graphics; 65C05 Monte Carlo methods; 65C20 Models, numerical methods; 68Q10 Models of computation (nondeterministic, parallel, interactive, probabilistic, etc.); 65R20 Integral equations; 45B05 Fredholm integral equations.

INTRODUCTION

The Monte Carlo methods are proved to be the only effective method for photo-realistic image creation [1], where the global illumination problem must to be solved numerically. The global illumination problem considers the light transport in a closed virtual scene. From mathematical point of view, the solution of global illumination problem is equivalent to the solution of the rendering equation, which is a second kind Fredholm type integral equation [2] and describes the light propagation in a scene (see in Fig. 1(a)). The radiance \(L \), leaving from a point \(x \) on the surface of the scene in direction \(\omega \in \Omega_x \), where \(\Omega_x \) is the hemisphere at point \(x \), is the sum of the self radiating light source radiance \(L' \) and all reflected radiance: \(L(x, \omega) = L'(x, \omega) + \int_{\Omega_x} L(h(x, \omega'), -\omega') f_r(-\omega', x, \omega) \cos \theta' d\omega' \), where \(h(x, \omega') \) is the first point that is hit when shooting a ray from \(x \) into direction \(\omega' \). The radiance \(L' \) has non-zero

![FIGURE 1. The geometry for (a) diffuse part and (b) and specular part of the rendering equation](image-url)
by the surface BRDF (Bidirectional Reflectance Distribution Function) $f_r(-\omega', x, \omega)$ and the projection $\cos \theta'$. The angle θ' is the angle between the surface normal n_x at point x and the direction ω'. The law for energy conservation holds, i.e.: $\int_{\Omega_{\omega}} f_r(-\omega', x, \omega) \cos \theta' \, d\omega' < 1$, because a real scene always reflects less light than it receives from the light sources due to light absorption of the objects.

The kernel of the rendering equation is determined by applied BRDF model. Several BRDF models are designed for Monte Carlo solutions of the rendering equation. One useful and frequently used in image creation is Phong BRDF model, which we consider further in the paper to construct our Monte Carlo estimator. We apply the Uniform Separation Strategy [3] in order to achieve variance reduction and improved the efficiency of Monte Carlo estimator.

INTEGRATION DOMAIN APPROXIMATION FOR PHONG BRDF MODEL

Usually, the BRDF is modeled like a sum of two independent components: diffuse and specular. The diffuse part integrates all the light incoming from all directions $-\omega'$ and reflected in direction ω as shown in Fig. 1(a). The specular component (see in Fig. 1(b)) accounts for the light incoming from and around a particular direction $-\omega$, which is ideal-mirror reflected direction to ω. Note that the directions $-\omega$ and the normal vector n_x are in the plane (\hat{Y}, \hat{Z}) of a Descartes coordinate system or with simple rotation on a certain angle ϕ to fulfill this condition.

In Phong BRDF model $f_r(-\omega', x, \omega) = \rho_d + \rho_s \cos^\theta'_{\omega'}$, where ρ_d and ρ_s are constants, $\rho_d + \rho_s \leq 1$ preserves the energy conservation law and θ' is the angle between ω and ω' directions. Therefore the rendering equation with Phong BRDF is

$$L(x, \omega) = L'(x, \omega) + \int_{\Omega_{\omega}} L(h(x, \omega'), -\omega')(\rho_d + \rho_s \cos^\theta'_{\omega'}) \cos \theta' \, d\omega',$$

and let for simplification we assume that $L'(x, \omega) = 0$ for Eq. (1) we obtain $L(x, \omega) = L_1 + L_2$, where

$$L_1 = \int_{\Omega_{\omega}} L(h(x, \omega'), -\omega') \rho_d \cos \theta' \, d\omega' \quad \text{and} \quad L_2 = \int_{\Omega_{\omega}} L(h(x, \omega'), -\omega') \rho_s \cos^\theta'_{\omega'} \cos \theta' \, d\omega'.$$

Since we have two independent integrals we can solve them separately with Monte Carlo methods. Consider the kernel of integral L_2, one can see that $\cos^\theta'_{\omega'}$ term has very poor or negligible contribution for big values of θ' or when $\theta'_{\omega'} \rightarrow \frac{\pi}{2}$ respectively. Practically, only a part of the light incoming at point x from a solid angle surrounding the direction $-\omega$ takes the influence at specular component computations. This fact gives us the possibility to approximate the integration domain Ω_{ω} with a conical solid angle Ω_{ω} centered around ω direction, which is of most important computational interest. Let for simplification denote $L(h(x, \omega'), -\omega') = L_{\Omega_{\omega}}$, we can approximate the integral L_2 as:

$$L_2 = \int_{\Omega_{\omega}} L(h(x, \omega'), -\omega') \rho_s \cos^\theta'_{\omega'} \cos \theta' \, d\omega' \approx \int_{\Omega_{\omega}} L_{\Omega_{\omega}} \rho_s \cos^\theta'_{\omega'} \cos \theta' \, d\omega'.$$

MONTE CARLO ESTIMATOR

We shall use symmetric sampling to construct and design our Monte Carlo estimator. The symmetric sampling points are generated according to the Uniform Separation of integration domain strategy. Uniform Separation strategy is introduced for first time by us in [3], further developed and extended in [4]. The variance reduction achieved with Uniform Separation is considered, analyzed and proved in [5], [6] and [7].

Let us consider the diffuse part of Eq. (1) for which we apply Combined Uniform Separation of integration domain Ω_{ω} in a manner described in [4] and shown in Fig.2(a). The hemispherical integration domain Ω_{ω} is symmetrically separated into 16 parts, $\Omega_{\omega} = \bigcup_{i,j=0}^{15} \Omega_{i,j} \bigcup \Omega_{\omega}$ where for each i, j : $\Omega_{i,j} \cap \Omega_{i,j} = \Omega_{i,j} \cap \Omega_{j,i} = \Omega_{i,j} \cap \Omega_{\omega}$. First 8 sub-domains are equal size of orthogonal spherical triangle $\Omega_{i,j}$. They are symmetric each to other and grouped with a common vertex around the normal vector to the surface. The hemispherical integration domain is completed with more 8 sub-domains of equal size spherical quadrangle Ω_{ω}, also symmetric each to other. All sub-domains have fixed vertices and computable parameters. The bijections $F(u, v) : [0, 1]^2 \rightarrow \Omega_{\omega}$ and $F(u, v) : [0, 1]^2 \rightarrow \Omega_{\omega}$ map the uniformly distributed in $[0, 1]$ random variables u and v into the sampling points on the spherical quadrangle Ω_{ω} and on orthogonal spherical triangle Ω_{ω}, respectively. The symmetric property allows us to calculate in parallel the coordinates of the symmetric points. Once a sampling point $P_0(x_0, y_0, z_0)$ is generated in Ω_{ω} or Ω_{ω}, the coordinates of all symmetric point from the other sub-domains can be obtained by simple change of the signs and/or places of x_0 and y_0, while z_0 is not affected. For example, $P_1(y_0, x_0, z_0)$, $P_2(y_0, -x_0, z_0)$, \cdots, and $P_7(x_0, -y_0, z_0)$, same at P points.
We can solve (see [3]) the orthogonal spherical triangle Ω_{Δ_0} and the spherical quadrangle Ω_{\square_0} in Fig. 2(a) to derive the necessary transformation. We obtain for both bijections $F(u,v) : [0,1]^2 \to \Omega_{\Delta_0}$ and $F(u,v) : [0,1]^2 \to \Omega_{\square_0}$, the transformations:

$$\begin{align*}
\phi_0 &= \frac{\pi}{4} \theta'_{\Delta_0} = \arctan \frac{v}{\cos \phi_0} = \arctan \frac{v}{\cos \phi_0} \quad \text{and} \\
\phi_0 &= \frac{\pi}{4} \theta'_{\square_0} = \arctan \frac{v}{\cos \phi_0} = \arctan \frac{v}{\cos \phi_0},
\end{align*}$$

where $u, v \in [0,1]$; $\phi_0 \in [0, \pi/4]$ and $\theta'_{\Delta_0} \in [0,\arctan 1/\cos \phi_0)$ and $\theta'_{\square_0} \in [\arctan 1/\cos \phi_0, \pi/2]$. Consider the equation

$$L_1 = \int_{\Omega} L(h(x, y), \omega) \, d\omega' = \int_{\Omega} \rho_2 \cos \theta' \, d\omega'$$

by rotating on angle θ', applying the Uniform Triangle Separation of integration domain Ω (see [8]) model (see [8]) with a density function $\rho_2 \cos \theta' \, d\omega'$, applying the partition of Ω_3 into non-overlapping sub-domains Ω_{Δ_i} and Ω_{\square_i} for $i = 0, 1, \ldots, 7$. It can be rewritten as:

$$L_1 = \rho_2 \sum_{i=0}^7 \left(\int_{\Omega_{\Delta_i}} L_{\Delta_i} \cos \theta' \, d\omega' + \int_{\Omega_{\square_i}} L_{\square_i} \cos \theta' \, d\omega' \right),$$

where the symbols Δ_i and \square_i indicate the relevant functions or directions in $\Omega_{\Delta_i} = \frac{1}{\Omega} \Omega \approx \frac{\pi}{4}$ and $\Omega_{\square_i} = \frac{1}{\Omega} \Omega \approx \frac{\pi}{4}$ for $i = 0, 1, \ldots, 7$. We can transform Eq. (3) by the bijections $F(u,v) : [0,1]^2 \to \Omega_{\Delta}$ and $F(u,v) : [0,1]^2 \to \Omega_{\square}$ in the following form $L_1 = \frac{\pi \rho_2}{4} \sum_{i=0}^7 \int (\Omega_{\Delta_i} + \Omega_{\square_i}) \left(\frac{\sin^2 \frac{\pi}{4} (v^2 + \cos^2 \frac{\pi}{4})^2} \right) \, d\nu$.

We generate N independent sampling points $Q_j(u_j, v_j) \in [0,1]^2$, $j = 1, 2, \ldots, N$ and sample each sub-domain by N' random points with a density function $p(\omega')/\rho_2 \Delta_0$ in Ω_{Δ_i} or $p(\omega')/\rho_2 \square_i$ in Ω_{\square_i}. One can see [4] the probability $p = \int_{\Omega_{\Delta_i}} p(\omega') \, d\omega' = \sum_{i=0}^7 \int_{\Omega_{\Delta_i}} p(\omega') \, d\omega' = \sum_{i=0}^7 \rho_2 \Delta_i = \frac{1}{\pi}$ and $p_{\square_i} = \int_{\Omega_{\square_i}} p(\omega') \, d\omega' = \frac{1}{\pi}$ for $i = 0, 1, \ldots, 7$. We obtain the Monte Carlo $\langle L_1 \rangle$ estimator for Eq. (3) as $\langle L_1 \rangle \approx L_1$.

Similarly, we consider Eq. (2) to be numerically solved in a conical solid angle Ω_i centered around ω_0 direction (see in Fig.2(b)). We sample Eq. (2) with a probability density function proportional to the specular lobes of Phong BRDF model (see [8]) $p(\omega') = \frac{\cos \theta'_\omega}{\rho_2 \cos \theta'_\omega \, d\omega'}$, where $\theta'_\omega \in [0, \theta'_{\max}]$ and $\int_{\Omega_{\Delta}} \cos \theta'_\omega \, d\omega' = \frac{2\pi(1 - \cos \theta'_{\max})}{n + 1}$. Therefore Eq.(2) is

$$L_2 = \rho_2 \left(\int_{\Omega_{\Delta}} \cos^n \theta'_\omega \, d\omega' + \int_{\Omega_{\square}} \cos^n \theta'_\omega \, d\omega' \right) \approx \frac{\rho_2 2\pi (1 - \cos^{n+1} \theta'_{\max})}{(n+1)} \int_{\Omega_{\Delta}} \cos \theta'_\omega \, d\omega'.$$

One can see in Fig. 2(c) that the domain Ω_i is very similar by form to the domain $\Omega_{\square} = \bigcup_{i=0}^7 \Omega_{\square_i}$. We can approximate Ω_i by rotating on angle θ'_ω domain $\Omega_{\Delta} = \bigcup_{i=0}^7 \Omega_{\Delta_i}$ due to the directions ω_0, ω_i and the normal vector $\vec{n}_{(x, y, z)}$ are in the plane $\{ \vec{Y}, \vec{Z} \}$ condition (see in Fig. 1(b) and Fig. 2(c)), where $\Omega_i \approx \Omega_{\Delta_i} = \bigcup_{i=0}^7 \Omega_{\Delta_i}$ and $\cos \theta'_{\max} = \frac{1}{\sqrt{3}}$. This is equivalent to applying the Uniform Triangle Separation of integration domain $\Omega_i \approx \Omega_{\Delta_i}$ and Eq. (5) is rewritten as:

$$L_2 \approx \frac{\rho_2 2\pi (1 - \cos^{n+1} \theta'_{\max})}{(n+1)} \int_{\Omega_{\Delta}} \cos \theta'_\omega \, d\omega' = \frac{\rho_2 2\pi}{n + 1} \left(1 - \frac{\sqrt{3}}{3} \right)^{n+1} \sum_{i=0}^7 \int_{\Omega_{\Delta_i}} \cos \theta'_\omega \, d\omega'.$$

FIGURE 2. (a) Ω_3 partition into Ω_{Δ} and Ω_{\square} (b) conical solid angle Ω_3 (c) approximation of Ω_3 with Ω_{Δ}
We reuse already generated sampling points in \(\Omega_\Delta \) to find the sampling directions in \(\Omega_\Delta^Z \). Each sampling point \(P(X, Y, Z) \in \Omega_\Delta \) is rotated on angle \(\theta_s \) around \(\vec{X} \) to obtain the sampling direction \(P'(X', Y', Z') \in \Omega_\Delta^Z \) by the rotation:

\[
\begin{bmatrix}
X' \\
Y' \\
Z'
\end{bmatrix} = R_X(\theta_s) \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta_s & -\sin \theta_s \\
0 & \sin \theta_s & \cos \theta_s
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix},
\]

where \(R_X(\theta_s) \) is the rotation matrix. This rotation also allows us to calculate at once \(Z' = Z \cos \theta_s + Y \sin \theta_s \) term or \(Z' = \cos \theta \cos \theta_s + \sin \theta \sin \theta_s = \frac{\cos(\frac{\pi}{4})}{\sqrt{\cos^2(\frac{\pi}{4}) + \sin^2(\frac{\pi}{4})}} \cos \theta + \frac{v}{\sqrt{\cos^2(\frac{\pi}{4}) + \sin^2(\frac{\pi}{4})}} \sin \frac{\pi}{4} \sin \theta_s \) after applying the bijections \(F(u, v) : [0, 1]^2 \rightarrow \Omega_\Delta \). Finally, for \(N' \) independent sampling points \(\Omega_i(u_j, v_j) \in [0, 1]^2 \), \(j = 1, 2, \ldots, N' \), we obtain \(\Omega = 8N' \) sampling points in \(\Omega_\Delta^Z \). In general case \(\cos \theta_{i,j} = Z'_{i,j}(u_j, v_j) \) in Eq. (6). The Monte Carlo estimator for Phong BRDF specular component is \(\langle L \rangle \approx L_2 \) or

\[
\langle L \rangle = \frac{2\pi p_z}{N(n+1)} \left(1 - \left(\frac{\sqrt{3}}{3} \right)^{n+1} \right) \sum_{i=0}^{7} \sum_{j=1}^{N'} L_{\Omega_{i,j}} Z'_{i,j}(u_j, v_j).
\]

The new Monte Carlo estimator for Phong BRDF model is the sum of Eq.(4) and Eq. (7)

\[
\langle L \rangle = \langle L_1 \rangle + \langle L_2 \rangle.
\]

CONCLUSION

A new Monte Carlo estimator for solving Phong rendering equation is proposed. Our estimator offers variance reduction due to using of Uniform Separation Strategy. One can see, \(\int_{\Omega} \cos^4 \theta'_d \sigma' \approx \frac{\pi}{\pi^4} \left(\left(\frac{\sqrt{3}}{3} \right)^{n+1} + \left(\frac{\sqrt{3}}{3} \right)^{n+1} \right) \). In our estimator the sampling points are reused in a natural way by symmetry and rotation, which are very fast computing operations. This is another important advantage, improving the efficiency of Monte Carlo estimator. The new Monte Carlo estimator Eq. (8) is easy for parallel realizations as well as implementations on GPU (Graphics Processing Unit).

ACKNOWLEDGMENTS

This paper was supported by the Project "Efficient Monte Carlo Methods for Large-Scale Scientific Problems" of Bulgarian National Science Found, Grant No.: DTK 02/44.

REFERENCES