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Abstract. This paper presents a study of several non-uniform and uniform techniques for sampling of unit sphere and gives
an comparative analysis on uniform sampling techniques. Each sampling technique generates point sets distributed on sphere.
We are interested to examine the quality of their distributions, which could impact on the Monte Carlo image creation.
Generalized discrepancy is designed as a measure for equidistribution of point sets on spherical sampling patterns as well
as applied to analyze sampling techniques used in rendering. We generate sphere sampling patterns using various random
number generators and Halton low discrepancy sequence. The generalized discrepancy is computed for increasing number of
points for each sampling pattern. Finally, the results for different uniform sampling techniques are studied and analyzed by
comparison of the uniformity of distributions.
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INTRODUCTION

Sampling of hemisphere and sphere is a fundamental task at Monte Carlo solution of image rendering problems,
where the rendering equation [1] is solved numerically. The rendering equation mathematically describes the light
propagation in a scene. The radiance L, leaving from a point x on the surface of the scene in direction ω ∈ Ωx, where
Ωx is the hemisphere at point x, is the sum of the self radiating light source radiance Le and all reflected radiance:
L(x,ω) = Le(x,ω)+

∫
Ωx

L(−ω ′) fr(−ω ′,x,ω)cosθ ′dω ′. The radiance Le has non-zero value if the considered point
x is a point from solid light source. Therefore, the reflected radiance in direction ω is an integral of the radiance
incoming from all points, which can be seen through the hemisphere Ωx at point x attenuated by the surface BRDF
(Bidirectional Reflectance Distribution Function) fr(−ω ′,x,ω) and the projection cosθ ′.

When the point x is on a transparent object the transmitted light component must be added to the rendering equation.
This component estimates the total light transmitted trough the object and incoming to the point x from all directions
opposite to the hemisphere Ωx. The transmitted light in direction ω is an integral similar to the the reflected radiance
integral where the domain of integration is the hemisphere Ωx at point x and BRDF is substituted by the surface BTDF
(Bidirectional Transmittance Distribution Function) [2]. In this case the integration domain for solving the rendering
equation is a sphere Ω(x) at point x, where Ω(x) = Ωx

∪
Ωx.

Let us consider a few classical sampling techniques [3] for Monte Carlo solution of the rendering equation. Each
one uses random variables u,v∈ [0,1] to generate different sampling patterns for integration domain. Cosine weighted
random sampling uses φ = 2πui, θ = arcsin

√
vi, ui,vi ∈ [0,1], i = 1, . . . ,N to generate a sampling pattern.

Systematic and Stratified sampling methods are very similar at all. Let n1 and n2 are arbitrary integers, where
n1 × n2 = N and t1 = 2π

n1
and t2 = 1

n2
. The only difference is that Systematic generates once u,v ∈ [0,1], whereas

Stratified generate pairs (ui,v j), where ui,v j ∈ [0,1], i = 0, . . . ,n1, j = 0, . . . ,n2. Then, both methods do the following:
for i = 0 to (n1 −1) for i = 0 to (n1 −1)

φi = t1(u+ i) φi = t1(ui + i)
for j = 0 to (n2 −1) for j = 0 to (n2 −1)

θ j = arcsin
√

t2(v+ j) θ j = arcsin
√

t2(v j + j)
A class of Uniform Separation sampling methods for Monte Carlo solving the rendering equation is introduced

by us in [4], further developed and extended in [5] and [6]. Uniform Triangle Separation, Uniform Quadran-



gle Separation and Combined Uniform Separation symmetrically partition the spherical integration domain, as
shown in Fig. 1, into 48 equal spherical triangles Ω△, 24 equal spherical quadrangles Ω� and the combination of 16
equal spherical triangles Ω△ and 16 equal spherical quadrangles Ω�, respectively. All equal sub-domains are non-
overlapped, symmetric each to other and have fixed vertices and computable parameters. We have find the trans-
formations

(
φ0 =

uπ
4 ;θ ′

△0
= arctan v

cos uπ
4

)
and

(
φ0 =

uπ
4 ;θ ′

�0
= arccot v

cos uπ
4

)
, where u,v ∈ [0,1]; φ0 ∈ [0,

π
4
] and

θ ′
△0

∈ [0,arctan
1

cosφ0
] and θ ′

�0
∈ [arctan

1
cosφ0

,
π
2
] for sampling one Ω△0 and Ω�0 . The symmetric property al-

lows us to sample only one sub-domain and calculate in parallel the coordinates of the symmetric points on sphere.

FIGURE 1. (a) Uniform Triangle Separation (b) Uniform Quadrangle Separation (c) Combined Uniform Separation

There is no universal sampling scheme or technique proper for arbitrary scene rendering due to the nature of the
rendering equation. Many sampling strategies are design for various tasks and graphical applications. Depending
on smoothness of the integrand in rendering equation to be solved numerically, equidistribution of point sets on
hemisphere or sphere could be an important advantage leading to reduction of the integration error. Otherwise,
equidistribution could be a crucial drawback at discontinuous integrands, but almost all of sampling techniques try to
ensure and preserve low discrepancy property of sampling patterns as a possible advantage for Monte Carlo integration.

We compute the discrepancy to analyze and study the equidistribution of point sets on sphere. Examining the above
sampling methods, the point sets are generated on hemisphere, then distributed on sphere by inverting the Z coordinate.

GENERALIZED DISCREPANCY FOR POINT SETS ON SPHERE

Peter Shirley in 1991 first introduces the discrepancy as measure into computer graphics. Earlier discrepancy measure-
ments are mainly designed for planar structures. Today, the realistic image creators [7] apply generalized discrepancy
to analyze the sampling techniques used in rendering. Generalized discrepancy [8] gives a measure for the uniformity
of a point set on sphere.
Definition Let A be a pseudo differential operator of order s,s> 1, with symbol An ̸= 0 for n≥ 1. Then the generalized

discrepancy associated to the operator A is defined by D({η1, . . . ,ηN};A) = 1
N

[
∑ j=N

j=0 ∑i=N
i=0 ∑n=∞

n=0
2n+1
4πA2

n
P(ηi ·η j)

] 1
2
.

The generalized discrepancy characterizes "how well the point set {η1, . . . ,ηN} is equidistributed", quote to [7]
and [8]. Following the mathematical considerations in [8], we can rewrite the generalized discrepancy as

D(N) =
1

2N
√

π

 N

∑
i, j=1

1−2ln

1+

√
1−−→

Pi ·
−→
Pj

2


1
2

,

where {−→P1 , . . . ,
−→
PN} is a N-point sequence and each

−→
Pi is a point on sphere. Note, in our case of unit sphere, each

−→
Pi (Xi,Yi,Zi) is unit vector, therefore we obtain

−→
Pi ·

−→
Pj = |−→Pi ||

−→
Pj |cos(

−→
Pi ·

−→
Pj ) = cos(

−→
Pi ·

−→
Pj ) = XiX j +YiYj +ZiZ j, as

well as Xi = cosφi sinθi, Yi = sinφi sinθi and Zi = cosθi. The lower the D(N) is, the more uniformly distributed the
sampling pattern is, in general lim

N→∞
D(N) = 0.



EXPERIMENTAL RESULTS

We use four different random number generators (RNG) for generation of random points in unit square: RNG-
1 is Lagged Fibonacci Generator; RNG-2 is Mersenne Twister Generator; RNG-3 is Standard Random Generator
(drand48); and Halton is Halton low discrepancy sequence (LDS) at base 2 and base 3 for the one and other dimension
respectively. Different spherical sampling patterns are generated for each of examined methods trough transformation
of the uniformly distributed random points from unit square onto sphere point sets . The generalized discrepancy is
calculated in each one case for point sets, starting from 96 points and increasing to 12288 points. Numerical results
for the generalized discrepancy D(N), computed at different sampling methods are shown in Fig. 2.

FIGURE 2. Numerical results for D(N)

CONCLUSION

The curves in Fig. 3 and Fig. 4 plot the experimental results of generalized discrepancy with respect to the different
RNG. Series 1-6 correspond to each examined sampling method: Cosine weighted, Systematic and Stratified, Uni-
form Triangle Separation, Uniform Quadrangle Separation and Combined Uniform Separation, respectively.
One can see the values of D(N) are relatively low at all sampling methods, even at N = 96. Uniform Triangle, Uni-
form Quadrangle and Combined Uniform Separation methods explore the uniform sphere partition to strength and
achieve more equidistribution of point sets. The best of three results, we obtain at Uniform Quadrangle Separation
with Halton LDS due to the nature of Uniform Separation strategy. This fact directs us to use these sampling methods



at Monte Carlo image rendering, where the uniformity of sampling points is an essential advantage. The efficiency of
Monte Carlo image rendering is sensitive to the used sampling scheme, as well as to applied RNG. The sensitivity
analysis to find efficient sampling for Monte Carlo image rendering is subject of our permanent future work and study.

FIGURE 3. Comparative results for (a) Lagged Fibonacci Generator and (b) Mersenne Twister Generator

FIGURE 4. Comparative results for (a) Standard Random Generator (drand48) and (b) Halton LDS at base 2 and base 3
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