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Abstract. The quantum-kinetics of current carriers in modern nanoscale
semiconductor devices is determined by the interplay between coherent
phenomena and processes which destroy the quantum phase correlations.
The carrier behavior has been recently described with a two-stage Wigner
function model, where the phase-breaking effects are considered as a cor-
rection to the coherent counterpart. The correction function satisfies a
Boltzmann-like equation.
A stochastic method for solving the equation for the correction function
is developed in this work, under the condition for an a-priori knowledge of
the coherent Wigner function. The steps of an almost optimal algorithm
for a stepwise evaluation of the correction function are presented. The
algorithm conforms the well established Monte Carlo device simulation
methods, and thus allows an easy implementation.

1 Introduction

Modeling and simulation of electronic transport in semiconductor devices is chal-
lenged by the nanometer and picosecond scale processes which determine the
functionality of modern integrated circuits. Quantum transport models are ex-
plored to correctly describe coherent processes, such as tunneling, in conjunction
with de-coherence processes of scattering, which try to recover the classical be-
havior of the current carriers.

The Wigner-Boltzmann (WB) equation gives a comprehensive quantum-
kinetic description of these phenomena, and has been recently applied for sumu-
lation of a variety of nanometer devices and involved transport phenomena [1].
Stochastic approaches to the WB equation efficiently describe the scattering
processes, however, the coherent part of the transport is obtained at significant
numerical costs. A scheme which uses coherent data obtained by alternative ap-
proaches has been developed recently. The scattering-induced correction to the
coherent Wigner function satisfies a Fredholm integral equation of the second
kind, with a free term determined by the coherent data.

Particle methods have been developed and used to calculate the free term.
We have successfully applied these methods for very small devices, where this
term can be regarded as a zeroth order correction. Here we utilize the numerical



II

Monte Carlo theory to derive a stochastic algorithm for solving the equation for
the WB correction.

An important peculiarity is that the problem is comprised by two models
with different dimensions: while the coherent transport involves two variables -
the position and wave vector x, kx, the scattering occurs in the three dimensional
wave vector space, thus involving the transversal components ky, kz = k⊥. The
two models are combined into a four dimensional space formulation by merely
physical considerations. In this respect the sequel does not stick to the formal
Monte Carlo schemes for solving integral equations, and in particular the adjoint
equation, which proved as an already established approach to carrier transport
problems [2], [3]. The adjoint equation remains rather implicit in the derivations,
which refers to core schemes for solving integrals in favor of an emphasis on the
physical aspects.

2 The model

The time-independent Wigner-Boltzmann equation:

h̄kx

m

∂

∂x
fw(x, kx,k⊥) =

∫

dkx
′Vw(x, kx

′ − kx)fw(x, k′

x,k⊥) + (1)

∫

dk′fw(x,k′)S(k′,k) − fw(x,k)λ(k)

describes the coherent part of the carrier transport at a rigorous quantum
level, accomplished by the Boltzmann scattering model of the phase-breaking
processes. Here Vw is the Wigner potential, the Boltzmann scattering opera-
tor S(k,k′) presents the scattering rate for a transition from k to k′. λ(k) =
∫

dk′S(k.k′) is the total out-scattering rate, so that the quantity S/λ is the
probability density for scattering from the initial to the final state. The solution
of (1) in the region D of a given device determines the physical characteristics
of the current carriers and thus the circuit behavior of the device. The external
factors which determine the solution are the applied bias, which controls the
electric potential profile in the device, and the boundary conditions. The lat-
ter are assumed to satisfy the equilibrium distribution function deep inside the
device leads. It is the Maxwell-Boltzmann distribution fMB, which is the only
function turning the second row in (1) to zero independently of the physical
origin of the scattering processes.

The coherent problem is obtained from (1) by switching off all scattering
processes. In this case the solution f c

w(x, kx) does not depend on the transversal
wave vector components. A proper alignment of the variables with the genuine
problem must be such that f c

w is recovered after an integration over the transver-
sal ones. A consistent with the boundary condition assumption is the appearance
of the equilibrium with respect to the transversal variables function fMB(k⊥):

f c
w(x,k) = f c

w(x, kx)
h̄2

2πmkT
e−

h̄2
k
2

⊥

2mkT (2)
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This allows to define the function

f∆
w (x,k) = fw(x,k) − f c

w(x,k), (3)

which is the scattering induced correction to the coherent Wigner function. The
equation for the correction f∆

w is obtained by subtracting the coherent counter-
part from (1). An immediate property of (3) is that the correction is zero at the
device boundaries, where the same boundary conditions are assumed for both
cases.

The Wigner potential is approximated by its classical limit valid for slowly
varying potentials at a next step:

∫

dkx
′Vw(x, kx

′ − kx)f∆
w (x, k′

x,k⊥) = −
eE(x)

h̄

∂f∆
w (x, kx,k⊥)

∂kx

(4)

This means that the force F (x) = eE(x), given by the derivative of the poten-
tial, can be only a linear function within the spatial support of f∆

w , related to
the spatial width of the electrons. Such an assumption in the general equation
(1) precludes the quantum-mechanical description of the transport. The latter,
however, has a different physical meaning in the equation for the correction. The
width of the electron has been already accounted by the coherent solution, so
that the limit precludes only correlations between the electric potential and the
scattering processes.

The obtained model for the correction function can be written as a Fredholm
integral equation of the second kind with a free term determined by f c

w:

f∆
w (x,k) =

∫ 0

tb

dt

∫

dk′f∆
w (X(t),k′)S(k′,k(t))e

−

∫

0

t
λ(k(τ))dτ

+ f∆,0
w (x,k)

f∆,0
w =

∫ 0

tb

dt

{
∫

dk′f c
w(X(t),k′)S(k′,k(t))e

−

∫

0

t
λ(k(τ))dτ

(5)

− f c
w(X(t),k(t))λ(k(t))e

−

∫

0

t
λ(k(τ))dτ

}

Here

X(t) = x −

∫ 0

t

h̄Kx(τ)

m
dτ Kx(t) = kx −

∫ 0

t

F (X(τ))

h̄
dτ (6)

are classical Newton trajectories initialized by x, kx, 0, t < 0, and k(t) stands for
Kx(t),k⊥. The trajectory crosses the boundary of the device at a certain time
tb, where f∆

w (X(tb),k(tb)) = 0.

3 Computational Problem

The general task is to compute the averaged value of f∆
w in the given domain Ω

of the two dimensional phase space. The averaged value can be expressed as:

I(Ω) =

∫

dx

∫

dkxf∆
w (x, kx)θΩ(x, kx) =

∫

dx

∫

dkx

∫

dk⊥f∆
w (x,k)θΩ(x, kx)

(7)
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by introducing the domain indicator θΩ(x, kx), which is unity if the arguments
belong to Ω, and 0 otherwise. The solution of equation (5) can be expressed as
consecutive iterations of the kernel on the free term: f∆

w =
∑

∞

p=0 f∆,p
w :

f∆,(p+1)
w =

∫ 0

−∞

dt

∫

dk′θD(X(t))f∆,p
w (X(t),k′)S(k′,k(t))e

−

∫

0

t
λ(k(τ))dτ

(8)

The lower bound of the time integral has been extended to −∞, since the intro-
duced device domain indicator θD takes care for it’s correct value tb. We consider
the contributions to (7) of the consecutive terms of (8). In this way we reduce
the general task (7) to a problem of evaluation of the consecutive contributions:

I(Ω) =

∫

dx

∫

dkx

∫

dk⊥f∆
w (x,k)θΩ(x, kx) =

∞
∑

p=0

∫

dk⊥I
(p+1)
Ω (k⊥)

I
(p+1)
Ω (k⊥) =

∫ 0

−∞

dt

∫

dx

∫

dkx

∫

dk′θD(X(t))

f∆,p
w (X(t),k′)S(k′,k(t))e

−

∫

0

t
λ(k(τ))dτ

θΩ(x, kx) (9)

The trajectory X(t),k(t) = (Kx(t),k⊥) is initialized by x, kx at time 0, and the
parameterization is backward: t < 0.

3.1 Stochastic Analysis

The aim of the following analysis is twofold: to devise a Monte Carlo method
for evaluation of I(Ω); the method to be compatible with the established al-
gorithms for device simulations and thus to allow an easy implementation.
These algorithms emulate the natural processes of the evolution of Boltzmann
carriers, which follow an incrementing in time succession. Thus equation (9)
must be reformulated in a forward in time, t > 0, parameterization. Accord-
ing to (6) the trajectory is initialized by x, kx at 0, which can be written as:
X(t) = X(t; x, kx, 0) = xt Kx(t) = Kx(t; x, kx, 0) = kt

x. Two basic properties
of the Newton trajectories are utilized. A trajectory, being a unique solution of
a first order differential equations, can be initialized by any of its points xt, kt

x

associated to given time t. Furthermore, in stationary conditions trajectories are
invariant with respect to a shift of both, the time origin and the parameterization
time:

X(τ) = X(τ−t; xt, kt
x, 0) = Xt(τ −t); Kx(τ) = Kx(τ−t; xt, kt

x, 0) = Kt
x(τ −t)

Here the initialization point/time have been changed accordingly, followed by a
shift in time by −t. The short notations Xt, Kt recall for the novel initialization
by xt, kt

x, 0. It follows that x = Xt(−t), kx = Kt
x(−t). The Liouville theorem
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dxdkx = dxtdkt
x is finally utilized to reformulate (9) as follows:

I
(p+1)
Ω (k⊥) =

∫

∞

0

dt

∫

dxt

∫

dkt
x

∫

dk′θD(xt)f∆,p
w (xt,k′)

{

S(k′, kt
x,k⊥)

λ(k′)

}

{

λ(Kt
x(t),k⊥)e

−

∫

t

0

λ(Kt
x(τ),k⊥)dτ

}

λ(k′)

λ(Kt
x(t), k⊥)

θΩ(Xt(t), Kt
x(t)) (10)

where, now, the trajectory Xt(t), Kt
x(t), t > 0 is initialized by xt, kt

x at the time
origin, and the equation has been augmented to obtain the (enclosed in curly
brackets) well known Monte Carlo probability densities for scattering, S, and
drift, D, processes. Indeed these densities associate to an initial point a final
point within the scheme:

SD
{

xt,k′ → xt, kt
x,k⊥ ⇒ Xt(t), Kt

x(t),k⊥

}

, (11)

where → corresponds to a scattering event, while ⇒ to a drift, called also free
flight. The scheme defines a segment of a numerical trajectory obtained by the
consecutive iterations of (10). To analyze the physical aspects behind such a

trajectory, it is sufficient to consider the second iteration I
(2)
Ω . The following

property will be used: in the limiting case, when the domain Ω shrinks to a
point so that the domain indicator becomes a delta function: δ(x−Xt(t))δ(kx −

Kt
x(t)), equation (10) obtains a recursive form, due to the fact that I

(p+1)
δ (k⊥) =

f
∆,(p+1)
w (x, kx,k⊥) A convention to mark the variables by the number of the

corresponding iteration is followed, for convenience the superscript t is omitted
along with the subscript of kx. Finally, the notation (11), which provides a
convenient abbreviation for the product of the two probability densities in (10)
is utilized:

∞
∫

0

dt2

∫

dx2

∫

dk2

∫

dk′

2θD(x2)

∞
∫

0

dt1

∫

dx1

∫

dk1

∫

dk′

1θD(x1)f
∆,0
w (x1,k

′

1) (12)

SD {x1,k
′

1 → x1, k1,k
′

⊥2 ⇒ X1(t1), K1(t1),k
′

⊥2}
λ(k′

1)

λ(k′
2)

δ(x2, k
′

2; X1K1, t1)

SD {x2,k
′

2 → x2, k2,k
′

⊥3 ⇒ X2(t2), K2(t2),k
′

⊥3}
λ(k′

2)

λ(k′
3)

θΩ(X2(t2), K2(t2))

with
δ(xs+1, k

′

s+1; Xs, Ks, ts) = δ(xs+1 − Xs(ts))δ(k
′

s+1 − Ks(ts))

The zeroth order is given by the free term which, according to (5) has two
components denoted by f∆,0A

w and f∆,0B
w . The former is expressed in a forward

in time parameterization [4] as follows:

f∆,0A
w (x1,k

′

1) =

∫

∞

0

dt0

∫

dx0

∫

dk0

∫

dk′

0θD(x0)







h̄2e−
h̄2

k
′2

⊥0

2mkT

2πmkT







f c
w(x0, k

′

0) (13)

{

S(k′
0, k0,k

′

⊥1)

λ(k′
0)

} {

λ(K0(t0),k
′

⊥1)e
−

∫

t0

0

λ(K0(τ),k′

⊥1
)dτ

}

λ(k′
0)

λ(k′
1)

δ(x1, k
′

1; X0K0, t0)
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The terms in the curly brackets in (12) and (13) correspond to a sequence of
conditional probabilities giving rise to free-flight and scattering events. The final
point of each free flight becomes the initial point for the next scattering event:

x0, k
′

0,k
′

⊥0 → x0, k0,k
′

⊥1 ⇒ X0(t0) = x1, K0(t0) = k′

1,k
′

⊥1 | f∆,0A
w (x1,k

′

1)

x1, k
′

1,k
′

⊥1 → x1, k1,k
′

⊥2 ⇒ X1(t1) = x2, K1(t1) = k′

2,k
′

⊥2 | f∆,1A
w (x2,k

′

2)

x2, k
′

2,k
′

⊥2 → x2, k2,k
′

⊥3 ⇒ X2(t2), K2(t2),k
′

⊥3 | I
(2)
Ω (k′

⊥3)

The sequence of events resembles the evolution of a Boltzmann particle and thus
enables the implementation of the standard algorithm for trajectory construction
utilized in the device Monte Carlo simulators.

3.2 Numerical Aspects

We now return to the general task, the computation of I(Ω), and analyze what
happens from a numerical point of view during the particle evolution. The basic
notions from the Monte Carlo evaluation of integrals are assumed to be well
known, and will be applied in the following. A general result is that a stochastic
approach is optimal provided that the sampling probability density is propor-
tional to the integrand function. In this respect the choice of the initial point
x0, k

′
0,k

′

⊥0 in (13) is according to the Gaussian in the first curly brackets for the
transversal variables, and according to:

|f c
w(x0, k

′
0)|

F1
; F1 =

∫

dx

∫

dkx|f
c
w(x, kx)|;

for the longitudinal ones. Thus the initial weight of the particle is F1 times the
sign of f c

w in the chosen point. The multiplication by F1 can be done at the final
stage of evaluation of the estimators, so that the initialized particle carries the
sign only. The particle evolves to x1, k

′
1,k

′

⊥1 as a result of a scattering and a drift
event, and the weight is updated by the ratio of the two λ values. We note that
at this stage the above procedure can be regarded as a legitimate experiment

for evaluation of I(Ω)(0) =
∫

dk⊥1I
(0)
Ω (k⊥1). An estimator ξΩ(0) is introduced,

whose value is updated by adding of sign(f c
w)λ(k′

0)/λ(k′
1). The integral over

the transverse variables means that the update of the estimator is independent
of the concrete value of k⊥1. The trajectory continues by a second scattering
and free flight, and the weight is updated by the next fraction λ(k′

0)/λ(k′
1).

The obtained two-segment trajectory is a legitimate experiment for evaluation
of I(Ω)(1): the weight sign(f c

w)λ(k′
0)λ(k′

1)/λ(k′
1)λ(k′

2) is added to an estimator
ξΩ(1). A third step follows in the same fashion, etc. The consecutive steps give
rise to a weight sign(f c

w)λ(k′
0)/λ(k′

p) used to evaluate the consecutive values of

I(Ω)(p), stored by the corresponding estimators ξΩ(p). The procedure continues,
until the trajectory abandons the device domain for the first time: In this case the
device domain indicator becomes zero, which resets the value of the accumulated
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weight of all further steps to 0. The contributions to the higher order terms in the
sum for I(Ω) become zero and the further evolution of such a trajectory becomes
obsolete. In this way one trajectory represents one independent experiment for
a direct evaluation of IΩ : all estimators can be merged into one, ξΩ . Finally, the
arithmetic mean of the accumulated due to N independent trajectories value of
ξΩ, multiplied by F1 is a Monte Carlo estimate of IΩ .

The contribution of the second component f∆,0B
w is a subject of similar analy-

sis. The only difference is that the trajectory begins with a free flight, determined
by the initialization point. This can be formally accounted by replacement of the
first S/λ term in (13) by a delta function.

Different strategies may be considered: the two contributions can be eval-
uated separately, or f∆,0

w can be evaluated at a first stage and then used for
a direct evaluation of the iteration series. As the efficiency of these strategies
can be estimated by numerical experiments only, we continue by adopting the
’separate simulation’ approach.

3.3 Pointwise Evaluation

It is further assumed that the coherent solution is known only pointwise. The
following decomposition can be utilized in (10):

∫

dxt

∫

dk′

xf∆,(p)
w (xt, k′

x,k′

⊥) =
∑

mn

f∆,(p)
w (xt

m, k′

xn,k′

⊥)∆ (14)

introduced by the interval ∆ = ∆kx∆x. The computational task is further fo-

cused on the evaluation of the averaged value of f
∆,(p+1)
w in the domain Ωij

specified by ∆ around (xi, kxj). In particular (10) reduces to the recursive rela-
tion:

f∆,(p+1)
w (xi, kxj ,k⊥)=

∑

mn

∫

dkt
x

∞
∫

0

dt

∫

dk′

⊥f∆,p
w (xt

m, k′

xn,k′

⊥)

{

S(k′, kt
x,k⊥)

λ(k′)

}

{

λ(Kt
x(t),k⊥)e

−

∫

t

0
λ(Kt

x(τ),k⊥)dτ

}

λ(k′)

λ(Kt
x(t),k⊥)

θD(xt
m)θΩij

(Xt(t), Kt
x(t)),(15)

where the trajectory is initialized by xm, kt
x, and gives rise to the following

algorithm:

- The phase space simulation domain is decomposed into sub-domains Ωmn

around xm, kxn nodes; The estimators ξmn are initialized to zero. Evaluated
are the probabilities:

Pmn =
|f c

w(xm, kxm)|

F1
; F1 =

∑

mn

|f c
w(xm, kxm)|;

The number of independent Monte Carlo experiments is specified to Nl.
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- Within a loop over l = 1, . . . , Nl: the initial point xm, kxn,k⊥ of the l-th
trajectory is chosen randomly by using Pmn and the Gaussian distribution
function of the transversal wave vectors. The product of the sign of f c

w and
λ, both evaluated at the initial point, is assigned to a variable wl.

- The construction of the trajectory begins by a scattering event for the itera-
tion series A corresponding the first component of the free term, followed by
a free flight. For the second component, B, only the free flight remains. In
both cases the events are realized by the standard scheme for device Monte
Carlo simulators.

- After each free flight: if the trajectory belongs to the device domain, the
estimator of the nearest to the end point node is updated by adding wl/λ
where λ is determined by the free flight end point; otherwise the construction
of the trajectory is stopped and another trajectory begins.

- At the end of the loop the values of the estimators are divided by Nl It holds:

f∆A,B
w (xi, kxj) ≃ ξA,B

ij /Nl.

Finally
f∆

w (xi, kxj) = f∆A
w (xi, kxj) − f∆B

w (xi, kxj).

4 Conclusions

The presented approach aims at an estimation of the effect of scattering to the
coherent transport in nanoscale devices. It offers high computational efficiency
at the expense of neglecting the correlations between electrical potential and
scattering events. The devised Monte Carlo algorithm calculates pointwise the
values of the scattering-induced Wigner function correction. It is compatible with
the established methods for Monte Carlo device simulations and thus allows an
easy implementation.
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