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Abstract

A systematic procedure for sensitivity analysis of a case study in the area of air
pollution modeling has been performed. Contemporary mathematical models should
include a large set of chemical and photochemical reactions to be established as a
reliable simulation tool. The Unified Danish Eulerian Model is in the focus of our
investigation as one of the most advanced large-scale mathematical models that
describes adequately all physical and chemical processes.

Variance-based methods are one of the most often used approaches for providing
sensitivity analysis. To measure the extent of influence of the variation of the chem-
ical rate constants in the mathematical model over the pollutants concentrations
the Sobol’ global sensitivity indices are estimated using efficient techniques for small
sensitivity indices to avoid a loss of accuracy. Studying of relationships between in-
put parameters and model output as well as internal mechanisms is very useful for
a verification and an improvement of the model and also for development of mon-
itoring and control strategies of harmful emissions, for a reliable prediction of the
final output of scenarios when the concentration levels of pollutants are exceeded.
The proposed procedure can also be applied when other large-scale mathematical
models are used.

Key words: Variance-based sensitivity analysis, Sobol’ bal sensitivity indices, Air
pollution modeling, Multidimensional numerical integration

Preprint submitted to Elsevier 9 April 2010



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 Introduction

Environmental security is rapidly becoming a significant topic of present in-
terest all over the world. It is necessary to carry out many comprehensive
scientific studies and to analyze carefully the most important physical and
chemical processes during the transport and transformations of air pollutants.
An effective performance of such complicated procedures requires a joined
research and collaboration between experts in the field of environmental mod-
eling, numerical analysis and scientific computing.

The aim of the present work is to propose a new mechanism for investigation
the sensitivity of the calculated concentration levels of important pollutants
(like nitrogen dioxide NO2 and especially ozone O3) due to variation of rates of
the involved chemical reactions in a real-life scenario of air pollution transport
over Europe with the Unified Danish Eulerian Model (UNI-DEM).

In investigation of various highly complex engineering, physical, environmen-
tal, social, and economic systems it is important to measure relations that
describe the effect on the output results when the conditions for the input
change.

Sensitivity analysis (SA) is the study of how uncertainty in the output of
a model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input [21]. Two classes in sensitivity analysis are
considered in the existing literature: local SA and global SA. Local SA studies
how some small variations of inputs around a given value change the value of
the output. Global SA takes into account all the variation range of the inputs,
and apportions the output uncertainty to the uncertainty in the input factors.

Several sensitivity analysis techniques are available [21]. Most existing meth-
ods for providing SA rely heavily on special assumptions connected to the
behavior of the model (such as linearity, monotonicity and additivity of the
relationship between input factor and model output). Among quantitative
methods, variance-based methods are the most often used [20]. The main idea
of these methods is to evaluate how the variance of an input or a group of
inputs contributes into the variance of model output.

Computational tasks arising in the treatment of large-scale air pollution mod-
els are enormous, and great difficulties arise even when modern high-perfor-
mance computers are used. That is why, it is highly desirable to simplify as
much as possible the model keeping the needed level of reliability of mod-
els’ results. A careful sensitivity analysis is needed in order to decide where
and how simplifications can be made. On the other hand, it is important to
analyze the influence of variations of the initial conditions, the boundary con-
ditions and/or the chemical rates on the model results in order to make right
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assumptions about the simplifications which have to be implemented. Such
an analysis can give valuable information about the performance of reliable
and reasonable simplifications or to identify parameters and mechanisms the
accuracy of which should be improved, because the model results are very
sensitive to variations of these parameters and mechanisms. Thus, the goal
could be

• improving the model,
• increasing the reliability of the results, and
• identifying processes that must be studied more carefully.

The rest of the paper is organised as follows. A description of the used mathe-
matical model is given in Section 2, Subsection 2.1. Here we also describe the
approach for evaluating Sobol’ global sensitivity indices (SI) in Subsection 2.3.
Subsection 2.4 contains a brief review of two Monte Carlo approaches for small
sensitivity indices. Section 3 presents a case study, the proposed scheme for
providing sensitivity analysis and some results from numerical experiments.
Section 4 contains a discussion about the obtained numerical results. Some
concluding remarks are given in Section 5.

2 Mathematical Background

2.1 The Mathematical Model - Unified Danish Eulerian Model

According to the definition, given in [21], sensitivity analysis involves models,
model inputs and model outputs.

The focus of our study is in the area of environmental security (air pollu-
tion transfer). Contemporary mathematical models of air pollution transport
should include a fairly large set of chemical and photochemical reactions to
be established as a reliable simulation tool [32]. The investigations and the
numerical results that are reported in this paper have been done by using
a large-scale mathematical model called the Unified Danish Eulerian Model
[6,29,31,33].

The Unified Danish Eulerian Model simulates the transport of air pollutants. It
has been developed at the Danish National Environmental Research Institute
(http://www2.dmu.dk/AtmosphericEnvironment/DEM/). The space domain
of the model contains the whole of Europe, the Mediterranean as well as parts
of Asia and Africa. The model gives the possibility to study concentration
variations in time of a high number of air pollutants, which is important for
environmental protection, agriculture, health care. The mathematical model
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takes into account the major physical processes - advection, diffusion, de-
position, emissions, and chemical reactions. It must be emphasized that the
main types of pollutants - sulphur pollutants, nitrogen pollutants, ammonia-
ammonium, ozone, radicals and hydrocarbons can be studied by this model.

UNI-DEM is described mathematically [6,29,31] by the following system of
partial differential equations:

∂cs

∂t
= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
+

+
∂

∂x

(
Kx

∂cs

∂x

)
+

∂

∂y

(
Ky

∂cs

∂y

)
+

∂

∂z

(
Kz

∂cs

∂z

)
+

+Es + Qs(c1, c2, . . . , cq)− (k1s + k2s)cs, s = 1, 2, . . . , q.

The number q of equations in this system is equal to the number of chemical
species that are studied by the model. The other quantities involved in the
model are described below: cs - concentrations of the chemical species; u, v, w
- components of the wind along the coordinate axes; Kx, Ky, Kz - diffusion
coefficients; Es - emissions in the space domain; k1s, k2s - coefficients of dry
and wet deposition respectively (s = 1, . . . , q); Qs(c1, c2, . . . , cq) - non-linear
functions that describe the chemical reactions between species.

Chemical reactions play a significant role in the model. The equations in
the model are coupled through the chemical reactions. Moreover, both non-
linearity and stiffness of the equations are mainly introduced by the chemistry
(see [32]). Thus, the motivation to choose UNI-DEM is that it is one of the
models of atmospheric chemistry, where the chemical processes are taken into
account in a very accurate way. The chemical scheme used in the model is the
well-known condensed CBM-IV (Carbon Bond Mechanism; the scheme was
proposed in [8], but some enhancements have been obtained in [29] by adding
several reactions for handling the ammonia-ammonium transformations in the
atmosphere). It includes 35 pollutants and 71 chemical reactions. The scheme
is suitable and adequate to study cases of high concentrations of chemical
species. The space domain is discretized in a grid with (96× 96) nodes in the
two-dimensional version and (96 × 96 × 10) nodes in the three-dimensional
version of the model. The step of the discretization in the horizontal direction
is 50 km and ten non-uniform layers are used in the vertical direction (the
height of the layers is gradually increased, being smallest close to the surface).

The evaluation of model results against observations has been done in con-
nection with some practical air pollution studies in various regions of Europe.
The results have been presented for Bulgaria [35,36], Denmark [29,34], Eng-
land [1], Europe [2,4,29–31], Hungary [11,12] and North Sea [9]. UNI-DEM has
also been used in some inter-comparisons of European large-scale air pollution
models [10,18].
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Our main goal is to find out how variations of the input parameters of the
model influence the model output. In our studies the chemical rate constants
are considered as input parameters and the concentrations of pollutants are
output parameters. In this paper, the term ”constants” means variables with
normal distribution (established experimentally) with mean 1.0.

2.2 Global Sensitivity Indices Concept

When the sensitivity of the concentrations calculated by UNI-DEM (or any
other deterministic mathematical model) is studied, it is convenient to intro-
duce some stochastic variables and equations.

It is assumed that the mathematical model can be presented as a model func-
tion

u = f(x), where x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d (1)

is a vector of input parameters with a joint probability density function (p.d.f.)
p(x) = p(x1, . . . , xd). In general, real problems are characterized by multiple
outputs. Here it is assumed that a scalar output is given. It is also assumed
that input variables are independent (non-correlated input variables) and the
density function p(x) = p(x1, x2, . . . , xd) is known, even if xi are not actually
random variables. This implies that the output u is also a random variable,
as it is a function of the random vector x, with its own p.d.f.

It is reasonable to introduce an indicator that measures the importance of
the influence of a given input parameter onto the output. The main indicator
referred to a given input parameter xi, i = 1, . . . , d (normalised between 0
and 1) is defined as

D[E(u|xi)]

Du

, (2)

where D[E(u|xi)] is the variance of the conditional expectation of u with
respect to xi and Du is the total variance according to u. This indicator is
named first-order sensitivity index by Sobol’ [24] or correlation ratio by McKay
[16]. A brief review of measures of importance used in variance-based methods
for sensitivity analysis is given in [5].

The total sensitivity index [14] provides a measure of the total effect of a given
parameter, including all the possible joint terms between that parameter and
all the others. The total sensitivity index (TSI) of input parameter xi, i ∈
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{1, . . . , d} is defined in the following way [14,24]:

Stot
xi

= Si +
∑
l1 6=i

Sil1 +
∑

l1,l2 6=i,l1<l2

Sil1l2 + . . . + Sil1...ld−1
, (3)

where Si is called the main effect (first-order sensitivity index) of xi and

Sil1...lj−1
is the j-th order sensitivity index (respectively two-way interactions

for j = 2, three-way interactions for j = 3 and so on) for parameter xi (2 ≤
j ≤ d). The higher-order terms describe the interaction effects between the
unknown input parameters xi1 , . . . , xiν , ν ∈ {2, . . . , d} on the output variance.
Usually for practical computations the set of input parameters is classified ac-
cording their TSI [5]: very important if 0.8 < Stot

xi
, important if 0.5 < Stot

xi
< 0.8,

unimportant if 0.3 < Stot
xi

< 0.5, and irrelevant if Stot
xi

< 0.3. In subsection 2.3
we will show how sensitivity indices Sl1 ... lν are defined via the variances of
conditional expectations Dl1 = D[fl1(xl1)] = D[E(u|xl1)], Dl1 ... lν , 2 ≤ ν ≤ d
(see, equation (8)). It is often reasonable to assume (see [15,17]) that rel-
atively small subsets of input variables in high-dimensional models have the
main impact on the output. The high dimensional sums can be neglected when
many practical problems are studied. This means that one can use low-order
indices preferably, but should be able to control the contribution of higher-
order terms.

2.3 The Sobol’ Approach

The Sobol’ method is one of the most often used variance-based methods. To
our best knowledge the Sobol’ sensitivity measure [24] was first published in
[23]. An important advantage of this method is that it allows to compute not
only the first-order indices, but also indices of a higher-order in a way similar
to the computation of the main effects. The total sensitivity index can be
calculated with just one Monte Carlo integral per factor.

The method for global SA applied here is based on a decomposition of an
integrable model function f in the d-dimensional factor space into terms of
increasing dimensionality:

f(x) = f0 +
d∑

ν=1

∑
l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), (4)

where f0 is a constant. The total number of summands in equation (4) is 2d

(see [26]) and, in general, this so called high dimensional model representation
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[24] is non-unique. But, if each term is chosen to satisfy the following condition

1∫
0

fl1...lν (xl1 , xl2 , . . . , xlν ) dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , d (5)

then (4) is unique. The representation (4) is called ANOVA-representation of
the model function f(x) [25]. The functional decomposition of [0; 1]d ANOVA
(analysis of variance) has been studied by many authors [3,13,22,28]. Sobol’
has proven [23] that the decomposition (4) is unique on the assumption (5)
and the functions of the right-hand side can be defined in a unique way by
multidimensional integrals [25]:

• f0 =
∫

Ud

f(x) dx;

• fl1(xl1) =
∫

Ud−1

f(x)
∏
k 6=l1

dxk − f0, l1 ∈ {1, 2, . . . , d};

• fl1l2(xl1 , xl2) =
∫

Ud−2

f(x)
∏

k 6=l1,l2

dxk−f0−fl1(xl1)−fl2(xl2), l1, l2 ∈ {1, . . . , d}.

An additional essential property of the terms in the ANOVA-presentation is
their mutually orthogonality:∫

Ud

fi1...iµfj1...jν dx = 0, (i1, . . . , iµ) 6= (j1, . . . , jν), µ, ν ∈ {1, . . . , d}.

It follows from the assumption that the above subsets of indices differ from
one another at least one element and the corresponding integral vanishes for
this index due to (5).

The quantities

D =
∫

Ud

f 2(x) dx− f 2
0 , Dl1 ... lν =

∫
f 2

l1 ... lν dxl1 . . . dxlν (6)

are called variances (total and partial variances, respectively) and have been
obtained after squaring and integrating over Ud the equality (4) on the as-
sumption that f(x) is a square integrable function (thus all terms in (4) are
also square integrable functions). Therefore, the total variance of the model
output is partitioned into partial variances [23] in the analogous way as the
model function, that is the unique ANOVA-decomposition:

D =
d∑

ν=1

∑
l1<...<lν

Dl1...lν . (7)
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It is obvious that the use of terms of probability theory is based on the fol-
lowing interpretation: in general, the input parameters are random variables
distributed in Ud that defines fl1 ... lν (xl1 , xl2 , . . . , xlν ) also as random variables
with variances (6). For example fl1 is presented by a conditional expectation:

fl1(xl1) = E(u|xl1)− f0 and respectively Dl1 = D[fl1(xl1)] = D[E(u|xl1)].

Based on the above assumptions about the model function and the output
variance, the following quantities

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d} (8)

are called Sobol’ global sensitivity indices [23,25]. This formula coincides for
ν = 1 with (2) and the so defined measures correspond to the main effect
of input parameters as well as the interactions effect. Using the definition of
these measures as ratios of variances and dividing (7) by D, it is easy to show
that the following properties hold for the Sobol’ global sensitivity indices:

Sl1 ... lν ≥ 0, and
d∑

ν=1

d∑
l1<...<lν

Sl1 ... lν = 1.

Based on the results discussed above it is clear that the mathematical treat-
ment of the problem of providing global sensitivity analysis consists in eval-
uating total sensitivity indices (3) and in particular Sobol’ global sensitivity
indices (8) of corresponding order. And that leads to computing of multi-
dimensional integrals: I =

∫
Ω g(x)p(x) dx, Ω ⊂ Rd, where g(x) is a square

integrable function in Ω and p(x) ≥ 0 is a probability density function, such
that

∫
Ω p(x) dx = 1. This means that in general case one needs to compute

2d integrals of type (6) to obtain Stot
xi

. As we discussed earlier the basic as-
sumption underlying representation (4) is that the basic features of the model
functions (1) describing typical real-life problems can be presented by low-
order subsets of input variables [15,17], that are constants, terms of first and
second order. Thus, the high-dimensional sums (referred to higher-order in-
teractions effects) in (4) can normally be neglected. Therefore, based on this
assumption, one can assume that the dimension of the initial problem can be
reduced.

Nevertheless, the calculating of the integrals defined by formulas (6) requires
integration of different integrands that is not effective according to the com-
putational cost. The procedure for computing global sensitivity indices mea-
suring effect (main or otherwise) of the input parameters that is overcoming
this disadvantage has been proposed by Sobol’ [25]. Consider an arbitrary set
of m variables (1 ≤ m ≤ d− 1): y = (xk1 , . . . , xkm), 1 ≤ k1 < . . . < km ≤ d,
and let z be the set of d −m complementary variables. Thus x = (y, z). Let
K = (k1, . . . , km).

8
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The variances corresponding to the subsets y and z can be defined as

Dy =
m∑

n=1

∑
(i1<...<in)∈K

Di1 ... in , Dz =
d−m∑
n=1

∑
(j1<...<jn)∈K̄

Dj1 ... jn , (9)

where the complement of the subset K in the set of all parameter indices is
denoted by K̄. The first sum in (9) is extended over all subsets (i1, . . . , in),
where all indices i1, . . . , in belong to K. Then the total variance correspond-
ing to the subset y is Dtot

y = D − Dz and it is extended over all subsets
(i1, . . . , iν), 1 ≤ ν ≤ d, where at least one il ∈ K, 1 ≤ l ≤ ν.

The procedure for computation of global sensitivity indices is based on the

following representation of the variance Dy : Dy =
∫

f(x) f(y, z′) dx dz′− f 2
0

(see [25]). The last equality allows to construct a Monte Carlo algorithm for
evaluating f0,D and Dy, where ξ = (η, ζ):

1

N

N∑
j=1

f(ξj)
P−→ f0,

1

N

N∑
j=1

f(ξj) f(ηj, ζ
′
j)

P−→ Dy + f 2
0 ,

1

N

N∑
j=1

f 2(ξj)
P−→ D + f 2

0 ,
1

N

N∑
j=1

f(ξj) f(η′j, ζj)
P−→ Dz + f 2

0 .

For example, for m = 1, y = {xl1}, l1 ∈ {1, . . . , d} and z = {1, . . . , d}\l1:
Sl1 = S(l1) = D(l1)/D, Stot

l1
= Dtot

l1
/D = 1− Sz.

It is important to estimate the computational cost for computing the sensi-
tivity indices in order to be able to compare this approach with other existing
approaches. The computational cost of estimating all first-order (m = 1) and
total sensitivity indices via the scheme proposed by Sobol’ can be defined as
N(2d + 1) model function evaluations (N model runs for f0, dN model runs
for the first-order terms, and dN model runs for the total effect terms), where
N is the sample size and d is the number of input parameters. It should be
noted that the most frequently used variance-based methods as Sobol’ method
and FAST (Fourier Amplitude Sensitivity Test) (and their improved versions)
have a computational cost proportional to dN of estimating all main and total
effects of input parameters (see [19]).

The computing of higher-order interactions effect can be performed by an
iterative process. For example, S(l1l2) = D(l1l2)/D = Sl1 + Sl2 + Sl1l2 , and
Sl1l2 can be obtained assuming that the corresponding first-order sensitivity
indices have been already computed.

9
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2.4 Monte Carlo Approaches for Small Sensitivity Indices

Unfortunately the standard Monte Carlo algorithm for estimating global sen-
sitivity indices, proposed in [23], is spoilt by loss of accuracy when Dy << f 2

0 ,
i.e. in the case of small (in values) sensitivity indices. In Section 3.6 we will
discuss this loss of accuracy based on our numerical results presented on Table
1. That is why here we have applied two approaches for evaluating small sen-
sitivity indices - reducing of the mean value (proposed by I.M. Sobol’, 1990)
and a combined approach (it is a combination of approaches of reducing of
the mean value and correlated sampling) suggested in [27]. These approaches
are described briefly below.

The concept of the first approach consists of replacement of the original inte-
grand (the mathematical model function) by a function of the following type
ϕ(x) = f(x) − c, where c ∼ f0. For numerical experiments we have chosen
the constant c to be a Monte Carlo estimate of f0. Therefore the following
formulas hold to estimate the partial and total variances respectively:

Dy =
∫

ϕ(x) ϕ(y, z′) dx dz′ − ω2, where ω =
∫

ϕ(x) dx,

D =
∫

ϕ2(x) dx− ω2, ω = f0 − c.

A new estimator for variances has been proposed in the combined approach:

Dy =
∫

ϕ(x) [ϕ(y, z′)dx dz′ − ϕ(x′)] dx dx′, D =
∫

ϕ(x)[ϕ(x)− ϕ(x′)] dx dx′.

It should be noted that the variance of the second approach is smaller than the
variance of the first one under certain conditions specified in the proposition
proven in [27]:

Proposition (I. Sobol’, E. Myshetskaya, 2007). Denote δ = sup |v(y)|2/Dz.

If δ < 1 and Sz >
1

2− δ
, then V

(2)
0 < V

(1)
0 , where V (1) and V (2) refer to the

variances of the first and the second approach for small indices respectively

and v(y) =
∫

g2(z
′) g12(y, z′) dz′.

The used quantities are terms in the ANOVA-like decomposition of the model
function:

f(x) = f0 + g1(y) + g2(z) + g12(x), where

g1(y) =
∫

f(x) dz− f0, g2(z) =
∫

f(x) dy − f0,

g12(x) = f(x)−
∫

f(x) dy −
∫

f(x) dz + f0.

10



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 Numerical Experiments. A Case Study

3.1 Air Pollution Model

The particular model for our studies is the UNI-DEM, but most of the results
can also be applied when other large-scale mathematical models are used.
This model is one of the most advanced large-scale mathematical models that
describes adequately all physical and chemical processes. A two-dimensional
discretization on a 96 × 96 grid has been selected. All runs were performed
for the period 1994-1998. For the sensitivity study a representative summer
month has been selected because it is well-known that the concentrations of
many chemical species achieve their annual maximum in summer-time. Here
it has been chosen to study the sensitivity of the concentrations of one of
the most important pollutants - ozone. Sensitivity analysis is applied for the
average values of concentrations for this month obtained by using UNI-DEM.

The chemical reactions taking place during air pollution transport are among
the most important processes. This is why we decided to concentrate our
attention to the chemical reactions.

3.2 Sensitivity Tests with UNI-DEM Performed in a Previous Study

The idea of performed sensitivity tests with UNI-DEM that is proposed and
discussed in [6,7] is based on the computation of standard deviations and
skewness of the pollutants concentrations under consideration, for example
ozone and nitrogen dioxide. The experiments were performed with a sequence
of 100 normally distributed random values of the constant rate of the reaction
O3 + NO =⇒ NO2 using the two-dimensional version of UNI-DEM.

As a result of these experiments some major conclusions have been drawn
about

• the relationship between emissions amount and pollutants concentrations,
• the distributions of the standard deviations of pollutants concentrations and

the influence of the variety of the variance of the sequence of normally dis-
tributed random values of the rate constant of the above chemical reaction
on the standard deviations of pollutants concentrations, and

• the sensitivity of the dependence of pollutants concentrations on the variety
of the chemical rate constants.

11
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3.3 Using a Box-model to Obtain Initial Guesses about the Sensitivity

The computer treatment of a large-scale air pollution model is an extremely
expensive process. Furthermore, the treatment of the chemical reactions is
the most time-consuming part of any air pollution model. Therefore, it is
necessary to find some simple way for obtaining an initial evaluation of the
sensitivity of the concentrations of the different species to variations of the
rates of the chemical reactions. The so-called ”box-model” can conveniently
be used in the solution of this sub-task [31]. Consider the system of partial
differential equations by which UNI-DEM is described mathematically (see
Subsection 2.1). Remove all terms excluding the emission and chemical terms.
Since these terms do not depend on the spatial variables, a system of ordinary
differential equations dgs,i,j,k/dt = Es,i,j,k + Qs,i,j,k(g1,i,j,k, g2,i,j,k, . . . , gq,i,j,k),
where gs,i,j,k(t) is the value of the concentration cs at an arbitrary grid-point
(xi, yj, zk) in the space domain at time t has to be considered. This means
that, roughly speaking, the model is considered at a given grid-point, which
also explains the use of the term box-model. While the computer treatment
of the whole UNI-DEM leads to the solution of huge systems of ordinary dif-
ferential equations (containing millions of equations) during many time-steps,
the box-model is a rather small system, which does not cause computational
difficulties. It was possible to run this system in a large number of sensitivity
tests where the chemical rates of all chemical reactions were cyclicly varied
by multiplying them by a factor α, where α ∈ [0.1, 2.0]. The resulting simple
optimization procedure was used to determine the chemical rates for which
the overall results (including all concentrations) are most sensitive. By using
this procedure, it was possible to find out that the results seem to be most
sensitive to the variation of the 3-rd, 22-nd and 28-th chemical reactions from
the list of reactions of the condensed CBM IV scheme ([29]). The simplified
chemical equations of these reactions are as follows:

#3 O3 + NO =⇒ NO2

#22 HO2 + NO =⇒ OH + NO2

#28 OH + CO =⇒ HO2

Note that the ozone does not necessarily participate in all these reactions.
Important precursors of ozone participate instead.

3.4 First Stage of Computations based on UNI-DEM

This stage of computations consists of generation of input data for providing
sensitivity analysis. On the other hand, the first computational stage repre-
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sents an output of the UNI-DEM. The model runs have been done for the
chemical rates variations with a fixed set of perturbation factors α = {αi}, i =
1, . . . , d, applied to the constants of a corresponding subset of d chemical re-
actions, selected for these experiments among the total number of reactions
in the target (CBM IV) chemical scheme used in the model.

The generated data is ratios of the following type

rs(α) =
cα
s (aimax

s , bjmax
s )

cmax
s

, αi ∈ {0.1, 0.2, . . . , 2.0},

where the lower index s corresponds to the chemical pollutant, s = 1, . . . , 35.
The denominator cmax

s = cmax
s (aimax

s , bjmax
s ) is the maximum mean value of the

concentration of chemical species s (in the numerical experiments - for July
1998) obtained for α = (1, . . . , 1), i.e. without any perturbations, aimax

s and
bjmax
s are the coordinates of the point, where this maximum has been reached,

and imax, jmax are the mesh indices of this point. The nominator represents
the values of the concentrations of the corresponding pollutant for a given set
of values of the perturbation parameters αi ∈ {0.1, . . . , 2.0}, computed at the
point (aimax

s , bjmax
s ). Thus the input data that would be analyzed by the applied

and investigated here sensitivity analysis tool is a set of pollutant concentra-
tions normalized according to the maximum mean value of the concentration
of the corresponding chemical species.

The numerical results on the first stage has been obtained on a SunFire E25000
supercomputer at the Technical University of Denmark (DTU). Long series of
scenarios where (a) the meteorological conditions were fixed while the emis-
sions were varied and (b) the emissions were kept constant, while meteorolog-
ical conditions for different years are used were run. Based on those numerical
results a number of plots similar to one presented on Figure 1 were analysed.
The results indicate that if the emission changes are considerably large, then
the effect of these changes is greater than the effect of the inter-annual me-
teorological conditions. The point (near the border of Germany, France and
Switzerland) where the average ozone concentrations in July 1998 was maxi-
mal is taken and used for all five years.

We should mention here that the reliability of the model is an important issue.
The reliability of the results obtained by UNI-DEM was checked by comparing
them with observations produced by a large number of stations located over
Europe, as well as, by running the ”rotation test” (see, [31]). The results show
that the accuracy of the numerical simulations is good enough for sensitivity
analysis studies.

Figure 1 shows the distribution of ozone concentrations over Europe for July
1998. Similar plots are drawn for other important pollutants like sulfur diox-
ide, nitrogen dioxide, ozone, peroxy radicals and nitrogen oxide. The results

13
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Fig. 1. Distribution of ozone concentra-
tions in Europe for July 1998.
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Fig. 2. Sensitivity of several species to
changes of chemical rates (1998).

presented on these plots allow us to identify the computational mesh-points
where each pollutant reaches its maximum.

We study numerically how the chemical rate constants (considered as ran-
dom variables) influence the output results. As an example we show how the
rate constant of the 22nd chemical reaction of CBM-4 scheme influences the
concentrations of sulfur dioxide, nitrogen dioxide, ozone, peroxy radicals and
nitrogen oxide for a known scenario taken for July 1998 (see Figure 2). The
results are for the mesh point of the computational domain where the concen-
trations reach their maximum. Figure 2 illustrates the fact that the influence
of this particular rate constant (for the 22nd reaction) to nitrogen dioxide,
ozone, peroxy radicals and nitrogen oxide is significant, but at the same time
the influence to sulfur dioxide is practically negligible.

In order to check the substantiability of the results we run the model for a pe-
riod of 5 years - from 1994 to 1998 (see Figure 3). We can see how the situation
changes for different years with different meteorological conditions. A number
of plots were prepared for different pollutants and Figure 3 is just an example
illustrating how the same 22nd chemical reaction of CBM-4 scheme influences
the concentrations of ozone. One can see that the influence does not change a
lot from one year to another. In this way the tendency of concentration change
depending on the variation of the perturbation factor remains the same (or
very similar) for different years (see Figure 3).

It is studied numerically how various chemical rate reactions influence air-
pollution concentrations. An example is shown on Figure 4. Analyzing pre-

14



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

0.5

0.75

1.0

1.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Fig. 3. Sensitivity of ozone concentrations
to changes of chemical rates.
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Fig. 4. Sensitivity of ozone concentrations
to changes of chemical rates (July 1998).

sented results for reactions ## 3, 22 and 28 of CBM-4 scheme one can con-
clude that the influence of reactions ## 3 and 22 on ozone concentrations is
significant. At the same time the influence of reaction # 28 is relatively low.

3.5 Second Stage of Computations with UNI-DEM

The second stage of computations consists of two steps: (i) Approximation,
and (ii) Computing of Sobol’ global sensitivity indices.

As a result of computations with the use of UNI-DEM we obtain tables of
the values of the model function. These values represent the quotient between
the values of the concentration of the corresponding pollutant for a given set
of values of the perturbation parameters αi ∈ {0.1, . . . , 2.0}, computed at
the point where the maximum average value of the concentration has been
reached, and this average value for α = (1, . . . , 1). Since the application of the
sensitivity analysis method supposes that the model is given with a function
(1), the first step is to use approximation in order to produce a function from
the table of values.

This stage is an important link between the generation of experimental data
and the mathematical technology for sensitivity analysis. The precise approx-
imation of data is crucial for the overall reliability of the obtained sensitivity
indices. That is why the investigation and determination of an applicable in-
struments for approximation of the table function is important part of the
work.

As an initial step we use polynomials of third and forth degree as an ap-
proximation tool, where ps(x) is the polynomial that approximates the mesh
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function given in the table that corresponds to the s-th chemical specie:

ps(x) =
k∑

j=0

k∑
ν1, ν2, . . . , νd = 0

ν1 + . . . + νd = j

aν1...νd
xν1

1 xν2
2 . . . xνd

d , k = 3, 4.

The squared 2-vector norm ‖ ps−rs ‖2
2=

n∑
l=1

[ps(xl)−rs(xl)]
2, xl ∈ [0.1; 2.0]3 in

the case of a polynomial of 4-th degree in three variables is ‖ ps−rs ‖2
2= 0.016

for xl ∈ [0.1; 2.0]3 and ‖ ps − rs ‖2
2= 0.00005 for xl ∈ [0.6; 1.4]3 in our numeri-

cal experiments. The obtained results show that the presented norm is more
influenced by the domain than by the degree of the polynomial. This feature
is one of the preconditions for the specification of the domain of perturbation
factors.

3.6 Analysis of the Results

Since three chemical reactions have been chosen as the most important for
the distribution of pollutants concentrations (for example ozone), the domain
of integration is a cube: Ω = [0.6; 1.4]3. This interval has been specified ac-
cording to the variation of the perturbation factors and the regions where the
mathematical model function (an approximation function of ’real’ experimen-
tal data obtained using UNI-DEM) has only positive values (it is a natural
requirement because it is interpreted physically as a pollutant concentration).
Actually, it has been established experimentally that a chemical rate varies
with a normal distribution with mean 1.0. It should be emphasized also that
the law of conservation of mass (matter) of chemical reactions may be broken
for larger intervals.

The results from the numerical experiments are presented in Table 1. The
following notation is used: g0 is the integral over the integrand g(x); c is a
constant obtained as a Monte Carlo estimate of f0. Polynomials of 3-rd (20
unknown coefficients) and 4-th (35 unknown coefficients) degree are used for
data approximation.

According to Table 1 the results for total sensitivity indices obtained using
the combined approach for small indices are the most reliable.

We analyze how variations of the input parameters influence on the model
output, where we consider the chemical rate constants as input parameters
and concentrations of pollutants (more exactly, normalised according to the
maximum mean value for July 1998 of the concentration of the corresponding

16
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Table 1
Total sensitivity indices of input parameters obtained using different approaches of
sensitivity analysis.

PPPPPPPPPPP
estimated
quantity

approach
Standard (Sobol’) Approaches for small indices

red. of the m.v. combined

x ∈ [0.1; 2.0] x ∈ [0.6; 1.4] x ∈ [0.6; 1.4] x ∈ [0.6; 1.4]

integrand g(x) f(x) f(x) f(x)− c f(x)− c

c - - 0.51737 0.51737

g0 0.51520 0.51634 0.25145 0.25145

D 0.26181 0.26446 0.07061 0.00530

S1 0.26386 0.26530 0.27354 0.52979

S2 0.26447 0.26359 0.26713 0.46142

S3 0.25348 0.25209 0.22406 0.00222∑3
i=1 Si 0.78182 0.78097 0.76474 0.99342

S12 0.06885 0.06941 0.07994 0.00628

S13 0.06598 0.06634 0.06845 0.00009

S23 0.06613 0.06592 0.06686 0.00021∑3
i,j=1,i≤j Sij 0.20096 0.20167 0.21525 0.00658

S123 0.01722 0.01736 0.02001 0.000003

Stot
x1

0.41592 0.41841 0.44195 0.53615

Stot
x2

0.41667 0.41627 0.43395 0.46791

Stot
x3

0.40281 0.40170 0.37938 0.00252

chemical species) as output parameters. All sensitivity indices (first-, second-
and third-order as well as total effects) obtained using standard Sobol’ ap-
proach for computing sensitivity indices and both presented approaches for
small indices are given in the Table 1. The domain of integration is [0.6; 1.4]3

for all computations, but as a first case the data in the whole domain has been
used to determine unknown coefficients of the approximation function and as
a second case the data only in the subdomain [0.6; 1.4]3. One can see that the
results in both cases are very similar. Thus, we need only the data in [0.6; 1.4]3

for providing a reliable sensitivity analysis using the presented scheme.

Obviously the results shown in the Table 1 and referred to the standard Sobol’
approach show that Dy = DSy << f 2

0 in this particular case. This means that
the improved approaches that overcome the loss of accuracy for small indices
should be used. On the other hand, the results obtained with the approach of
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Table 2
First-order and total sensitivity indices of input parameters obtained using com-
bined approaches and two approaches implemented in R package.

x ∈ [0.1; 2.0]3 x ∈ [0.6; 1.4]3

estimated combined R Package combined R Package

quantity approach Sobol’, Saltelli FAST approach Sobol’, Saltelli FAST

S1 0.48262 0.46645 0.47933 0.52979 0.53029 0.52783

S2 0.51080 0.54567 0.50928 0.46142 0.47884 0.46034

S3 0.00104 0.00288 0.00101 0.00222 0.00254 0.00221

Stot
x1

0.48807 0.48641 0.48800 0.53615 0.53760 0.53609

Stot
x2

0.51592 0.50845 0.51604 0.46791 0.45089 0.46799

Stot
x3

0.00157 -0.00043 0.00308 0.00252 0.00180 0.00365

reducing the mean value suggest that the estimation especially of very small
indices should be performed using the combined approach. It confirms the
priority of the combined approach according to variance of the correspond-
ing estimator over the first approach (see Proposition from Subsection 2.4).
The results for total sensitivity indices obtained using the combined approach
for small indices are the most reliable - the values of total effects are fully
consistent with the expected tendencies according to Figure 4.

A comparison of results obtained using the present scheme for sensitivity anal-
ysis (applying the combined approach for small sensitivity indices) and results
obtained using the available software tool for sensitivity analysis SA - R lan-
guage (or R Package) and environment for statistical computing (http://www.r-
project.org/) is given in Table 2. One can see that the results are close with
an exception for Stot

x3
obtained with the R package using Sobol’& Saltelli ap-

proach, where we found a negative value for Stot
x3

which is not acceptable. The
reason that one would prefer our approach is that we are able to control the
accuracy at each stage of the computations, i.e. at the stage of

• approximation of the mesh function by changing the polynomial degree and
• computing total sensitivity indices by applying the refined technique suit-

able for computing small indices.

4 Applicability of the Results

Sensitivity analysis, and in particular the results achieved have an impor-
tant twofold role: for mathematical models verification and/or improvement,
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and/or on the other hand, for a reliable interpretation of experts of main effect,
interaction and higher-order interaction effect of input parameters on model
output. Variance-based analysis is an useful tool for an advanced investiga-
tion of relationships between model parameters, output results and internal
mechanisms regulating the system under consideration. Specifying the most
important chemical reactions for the model output the specialists from vari-
ous applied fields (chemistry, physics) may obtain valuable information for an
improvement of the model and thus it will lead to an increase of reliability and
robustness of predictions. In this way the mathematical models will become
able to predict better the effects of high pollution levels (a) on human health
and (b) on losses of crops in agriculture using sensitivity analysis.

Our numerical results show that the standard Sobol’ approach and the re-
duction of the mean value are applicable in cases when the sensitivity indices
are not very small. In most cases the standard approach gives reliable results
if Sxi

≥ 0.35. If Sxi
< 0.35, then the more complicated combined approach

should be used. Our advice to people dealing with sensitivity analysis would
be to apply the standard approach if there is a priori information that the val-
ues of Sxi

are larger than 0.35. If such an information doesn’t exist we would
recommend to use the standard Sobol’ approach and if the computed value is
less than 0.4 to perform computations again with the combined approach.

5 Concluding Remarks

A systematic scheme for providing sensitivity analysis to a mathematical
model of atmospheric chemistry (UNI-DEM) has been used to analyse the
sensitivity of concentrations of some important air pollutants to chosen chem-
ical rate reactions.

We have demonstrated that the important advantage of the method we use is
the possibility to compute not only the first-order indices, but also indices of
a higher-order. Furthermore, the total sensitivity index can be calculated with
just one Monte Carlo integral per factor in a way similar to the computation
of the first-order indices. It makes this approach one of the most efficient
variance-based methods from the point of view of its computational cost (for
estimating all first-order and total sensitivity indices). The computational cost
is proportional to the sample size and the number of input parameters.

We also have shown that for some considerations small sensitivity indices are
important. To be able to get relevant estimates of small indices one needs
to apply a special combined technique which includes a variance reduction
method and correlated sampling.
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As a future research in this area we plan

• to consider other approximation tools (especially approximation by cubic
B-splines looks promising);

• to perform computations with the refined 3D version of UNI-DEM;
• to study model sensitivity on emissions levels and boundary conditions.
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