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Abstract. Variance-based sensitivity analysis has been performed for a
study of input parameters contribution into output variability of a large-
scale air pollution model - the Unified Danish Eulerian Model. The prob-
lem of computing of numerical indicators of sensitivity - Sobol’ global sen-
sitivity indices leads to multidimensional integration. Plain and Adaptive
Monte Carlo techniques for numerical integration have been analysed and
applied. Numerical results for sensitivity of pollutants concentrations to
chemical rates variability are presented.

1 Introduction

Sensitivity analysis (SA) is a study of how uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model input [6].
There are several available sensitivity analysis techniques [6]. Variance-based
methods deliver results that are independent to the models behaviors: linearity,
monotonicity and additivity of the relationship between input factor and model
output sensitivity measures.

The aim of our research is to develop an Adaptive Monte Carlo (MC) algo-
rithm for evaluating Sobol’ global sensitivity indices increasing the reliability of
the results by reducing the variance of the corresponding Monte Carlo estimator
and applying adaptive concept to numerical integration of functions with local
difficulties. It gives a possibility for a robust SA - a comprehensive study the
influence of variations of the chemical rates on the model results in a particular
case. This helps to identify the most influential parameters and mechanisms and
to improve the accuracy or insignificant parameters. It also helps to simplify
the model by ignoring them after careful complementary analysis of relations
between parameters.

2 Background studies

The investigations and the numerical results reported in this paper have been
obtained by using a large-scale mathematical model called Unified Danish



Eulerian Model (UNI-DEM) [7, 8]. This model simulates the transport of
air pollutants and has been developed by Dr. Z. Zlatev and his collaborators at
the Danish National Environmental Research Institute (http://www2.dmu.dk/
AtmosphericEnvironment/DEM/). Both non-linearity and stiffness of the equa-
tions are mainly introduced by the chemistry (CBM-4 chemical scheme) [8].
Thus, the motivation to choose UNI-DEM is that it is one of the models of at-
mospheric chemistry, where the chemical processes are taken into account in a
very accurate way. Our main interest is to find out how changes in the input
parameters of the model influence the model output. We consider the chemical
rate constants to be input parameters and the concentrations of pollutants to
be output parameters. In the context of this paper, the term ”constants” means
variables with normal distribution (established experimentally) with mean 1.0.

2.1 Sobol’ Global Sensitivity Indices Concept

It is assumed that the mathematical model can be presented as a model function

u = f(x), where x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d (1)

is a vector of input independent parameters with a joint probability density
function (p.d.f.) p(x) = p(x1, . . . , xd). The total sensitivity index (TSI) of input
parameter xi, i ∈ {1, . . . , d} is defined in the following way [3]: Stot

xi
= Si +∑

l1 6=i

Sil1 +
∑

l1,l2 6=i,l1<l2

Sil1l2 + . . . + Sil1...ld−1 , where Si is called the main effect

(first-order sensitivity index) of xi and Sil1...lj−1 is the j-th order sensitivity
index (respectively two-way interactions for j = 2, and so on) for parameter
xi (2 ≤ j ≤ d).

The variance-based Sobol’ method [3] uses the sensitivity measures (indices)
and takes into account interaction effects between inputs. An important advan-
tage of this method is that it allows to compute not only the first-order indices,
but also indices of a higher-order in a way similar to the computation of the
main effects, the total sensitivity index can be calculated with just one Monte
Carlo integral per factor. The computational cost of estimating all first-order
(m = 1) and total sensitivity indices via Sobol’ approach is proportional to dN
where N is the sample size and d is the number of input parameters (see [2]).
The method is based on a decomposition of an integrable model function f in
the d-dimensional factor space into terms of increasing dimensionality:

f(x) = f0 +
d∑

ν=1

∑

l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), f0 =
∫

f(x)dx (2)

where f0 is a constant. The representation (2) is unique (called ANOVA - rep-
resentation of the model function f(x) [4]) if

∫ 1

0
fl1...lν (xl1 , xl2 , . . . , xlν )dxlk =

0, 1 ≤ k ≤ ν, ν = 1, . . . , d. The quantities D =
∫

Ud f2(x)dx−f2
0 , Dl1 ... lν =∫

f2
l1 ... lν

x. l1
. . . x. lν

are called variances (total and partial variances, respectively),



where f(x) is a square integrable function. Therefore, the total variance of the
model output is partitioned into partial variances [3] in the analogous way as the
model function, that is the ANOVA-decomposition: D =

∑d
ν=1

∑
l1<...<lν

Dl1...lν .
Based on the above assumptions about the model function and the output vari-
ance, the following quantities

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d} (3)

are called Sobol’ global sensitivity indices [3, 4].
The results discussed above make clear that the mathematical treatment

of the problem of providing global sensitivity analysis consists in evaluating
total sensitivity indices and in particular Sobol’ global sensitivity indices (3)
of corresponding order. This leads to computing of multidimensional integrals
I =

∫
Ω

g(x)p(x) dx, Ω ⊂ Rd, where g(x) is a square integrable function in Ω
and p(x) ≥ 0 is a p.d.f., such that

∫
Ω

p(x) dx = 1.
The procedure for computation of global sensitivity indices is based on the

following representation of the variance Dy : Dy =
∫

f(x) f(y, z′)dxdz′ − f2
0

(see [4]), where y = (xk1 , . . . , xkm
), 1 ≤ k1 < . . . < km ≤ d, is an arbitrary

set of m variables (1 ≤ m ≤ d − 1) and z be the set of d −m complementary
variables, i.e. x = (y, z). Let K = (k1, . . . , km) and the complement of the subset
K in the set of all parameter indices is denoted by K̄. The last equality allows to
construct a Monte Carlo algorithm for evaluating f0,D and Dy, where ξ = (η, ζ):

1
N

N∑

j=1

f(ξj)
P−→ f0,

1
N

N∑

j=1

f(ξj) f(ηj , ζ
′
j)

P−→ Dy + f2
0 ,

1
N

N∑

j=1

f2(ξj)
P−→ D + f2

0 ,
1
N

N∑

j=1

f(ξj) f(η′j , ζj)
P−→ Dz + f2

0 .

2.2 Monte Carlo Approach for Small Sensitivity Indices

The standard Monte Carlo algorithm for estimating global sensitivity indices,
proposed in [3], is spoilt by loss of accuracy when Dy << f2

0 , i.e. in the case
of small (in values) sensitivity indices. That is why here we have applied one of
the approaches for evaluating small sensitivity indices - the so called combined
approach [2]. The concept of the approach consists in replacement of the original
integrand (the mathematical model function) with a function of the following
type ϕ(x) = f(x) − c, where c ∼ f0. The following estimator for variances has
been proposed for this approach:

Dy =
∫

ϕ(x) [ϕ(y, z′)dxdz′ − ϕ(x′)]dxdx′, D =
∫

ϕ(x)[ϕ(x)− ϕ(x′)]dxdx′.

3 Description of the Algorithms

Two Monte Carlo algorithms have been applied: Plain and Adaptive. Plain
(Crude) Monte Carlo is the simplest possible MC approach for solving mul-



tidimensional integrals [1]. Let us consider the problem of the approximate com-
putation of the integral I =

∫
Ω

g(x)p(x)dx. Let ξ be a random point with a p.d.f.
p(x). Introducing the random variable θ = f(ξ) such that Eθ =

∫
Ω

g(x)p(x)dx.
Let the random points ξ1, ξ2, . . . , ξN be independent realizations of the random
point ξ with p.d.f. p(x) and θ1 = f(ξ1), . . . , θN = f(ξN ). Then an approximate
value of I is θN = 1

N

∑N
i=1 θi. The last equation defines the Plain Monte Carlo

algorithm.
There are various Adaptive Monte Carlo algorithms depending on the

technique of adaptation [1]. Our Adaptive algorithm uses a posteriori information
about the variance. The idea of the algorithm consists in the following: the
domain of integration Ω is separated initially into subdomains with identical
volume. The corresponding interval on every dimension coordinate is partitioned
into M subintervals, i.e. Ω =

∑
j Ωj , j = 1, Md. Denote by pj and IΩj

the
following expressions: pj =

∫
Ωj

p(x) dx and IΩj =
∫

Ωj
f(x)p(x) dx. Consider

now a random point ξ(j) ∈ Ωj with a density function p(x)/pj . In this case

IΩj
= E

[
pj

N

∑N
i=1 f(ξ(j)

i )
]

= EθN .

The algorithm starts with a relatively small number M which is given as
input data. For every subdomain the integral IΩj and the variance are evaluated.
Then the variance is compared with a preliminary given value. The obtained
information is used for the next refinement of the domain and for increasing
the density of the random points. The subdomain with the largest variance is
divided onto 2d new subdomains. The algorithm stops when the variance at all
obtained after division subdomains satisfies the preliminary given accuracy ε (or
when a given maximum value of number of levels or subdomains where the stop
criterion is not satisfied has been reached).

4 Analysis of Numerical Results and Discussion

The first stage of computations includes a generation of input data for our proce-
dure using the UNI-DEM. The model runs have been done for the chemical rates
variations with a fixed set of perturbation factors α = {αi}, i = 1, . . . , d, where
every αi corresponds to a chemical rate among the set of 69 time-dependent
chemical reactions and 47 constant chemical reactions, and d is the total num-
ber of chemical reactions taken into account in the numerical experiments. The

generated data is ratios of the following type rs(α) =
cα
s (aimax

s , bjmax
s )

cmax
s

, αi ∈
{0.1, 0.2, . . . , 2.0}, where the lower index s corresponds to the chemical species
(pollutants). The denominator cmax

s = cmax
s (aimax

s , bjmax
s ) is the maximum mean

value of the concentration of chemical species s obtained for α = (1, . . . , 1), i.e.
without any perturbations, aimax

s and bjmax
s are the coordinates of the point,

where this maximum has been reached, and imax, jmax are the mesh indices of
this point. The nominator represents the values of the concentrations of the cor-
responding pollutant for a given set of values of the perturbation parameters
αi ∈ {0.1, . . . , 2.0}, computed at the point (aimax

s , bjmax
s ). Thus we consider a set



of pollutant concentrations normalized according to the maximum mean value of
the concentration of the corresponding chemical species. We also study numer-
ically how different chemical rate reactions influence concentrations of a given
pollutant. An example of how chemical rate reaction of three different reactions
(## 3, 6 and 22 of CBM-4 chemical scheme) influence ozone concentrations is
presented on Figure 1. One can see that in this particular case the influence of
reactions ## 3 and 22 is significant and the influence of reaction 6 is almost
negligible.

Sensitivity Analysis computations consists of two steps: approximation and
computing of Sobol’ global sensitivity indices. As a result of computations with
the use of UNI-DEM we obtain mesh functions in a form of tables of the values
of the model function. The first step is to represent the model as a continuous
function (1). To do that we use approximation by polynomials of third and forth
degree, where ps(x) is the polynomial approximating the mesh function that cor-
responds to the s-th chemical species. The approximation domain Ω = [0.1; 2.0]3

has been chosen a bit wider ranging than the integration domain Ω = [0.6; 1.4]3

in order to present more precisely the mesh model function. The squared 2-vector
norm of the residual defined as ‖ ps−rs ‖22=

∑n
l=1[ps(xl)−rs(xl)]2, xl ∈ [a; b]3 in

the case of a polynomial of 4-th degree in three variables was ‖ ps−rs ‖22= 0.022
for xl ∈ [0.1; 2.0]3 and ‖ ps − rs ‖22= 0.00022 for xl ∈ [0.6; 1.4]3 in our numerical
experiments. If one is not happy with the accuracy of polynomial approximation
other tools should be used. So, we consider polynomials of 4-th degree in three
variables as a case study which is completely satisfying us at this stage.
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Fig. 1. Sensitivity of ozone concentra-
tions to changes of chemical rates.
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Fig. 2. Model function for x1 = 1.

The approximate function is smooth but it has a single peak at one of the
corners of the domain. A section of the model function graphics (the first variable
is fixed to 1.0) is presented on Figure 2. The adaptive approach seems to be
promising for functions like this. Adaptive Monte Carlo algorithm (see Section
3) has been applied to the problem of numerical integration. The results have



Table 1. First-order and total sensitivity indices of input parameters estimated using
different approaches of sensitivity analysis applying Plain Monte Carlo algorithm.
XXXXXXXXXquantity

approach Standard (Sobol’) Combined
N Est. value Rel. error N Est. value Rel. error

g0 104 0.5155 8e-05 104 0.2525 0.0002
106 0.5156 3e-05 106 0.2526 7e-05
107 0.5155 2e-05 107 0.2526 5e-05

D 104 0.2635 0.0002 104 0.0052 0.0081
106 0.2636 6e-05 106 0.0052 0.0009
107 0.2636 5e-05 107 0.0052 0.0012

S1 104 0.2657 0.0127 104 0.5349 0.0048
106 0.2654 0.0116 106 0.5337 0.0025
107 0.2653 0.0114 107 0.5325 0.0003

S3 104 0.2525 0.0013 104 0.0012 0.4060
106 0.2521 0.0002 106 0.0019 0.0333
107 0.2521 0.0002 107 0.0019 0.0213

Stot
x1 104 0.4183 0.0002 104 0.5389 0.0021

106 0.4185 0.0003 106 0.5392 0.0026
107 0.4184 0.0001 107 0.5380 0.0003

Stot
x3 104 0.4017 0.0002 104 0.0009 0.6078

106 0.4018 5e-06 106 0.0022 0.0354
107 0.4018 8e-06 107 0.0022 0.0192

been compared with Plain MC (see Section 3). One of the best available random
number generators, SIMD-oriented Fast Mersenne Twister (SFMT) [5] 128-bit
pseudorandom number generator of period 219937 − 1 has been used to generate
the required random points.

Results for some first-order and total sensitivity indices obtained by the Plain
Monte Carlo algorithm are presented in Table 1. Two approaches for sensitivity
indices have been applied - standard (Sobol’, 2001) and combined approach. For
the implementation of the combined approach a Monte Carlo estimate of f0 has
been used - c = 0.51365. The following notation is used in the tables: ε is the
desired estimate of standard deviation, #sub is the number of subdomains after
domain division, Nsub is the number of samples in each subdomain, N is the
number of samples in the domain of integration (for the Plain algorithm), D is
the variance; g0 is the integral over the domain [0.6; 1.4]3, where the integrand
for the standard approach is the model function, f(x), and for the combined
approach f(x) − c respectively. Relative error is the absolute error divided by
the exact value. Each estimated value is obtained after 10 algorithm runs. The
exact values are know for our special case of mesh function approximation.

One of the advantages of Sobol’ type approaches has been applied in the
implementation of the Plain Monte Carlo algorithm - the possibility to compute
first-order and total sensitivity indices of a given input parameter using only
one Monte Carlo integral and two independent multidimensional sequences of
random numbers. The results obtained confirm the expected effect of decrease
of the relative error with the increase of the number of samples. On the other



Table 2. First-order and total sensitivity indices of input parameters estimated using
combined approach applying Plain and Adaptive Monte Carlo algorithms.

Estimated Plain Adaptive
quantity N Est. value Rel. error #sub Nsub ε Est. value Rel. error

g0 192 0.2516 0.0038 - - - - -
7200 0.2524 0.0005 - - - - -
32000 0.2524 0.0005 - - - - -

D 192 0.0055 0.0493 64 3 0.5 0.0056 0.0725
7200 0.0052 0.0130 180 40 0.0165 0.0051 0.0333
32000 0.0052 0.0034 64 500 0.1 0.0052 0.0003

S1 192 0.6502 0.2214 64 3 0.5 0.5072 0.0473
7200 0.5299 0.0046 180 40 0.0165 0.5307 0.0031
32000 0.5326 0.0004 64 500 0.1 0.5323 0.0001

S3 192 0.0055 1.7695 64 3 0.5 0.0016 0.1790
7200 0.0009 0.5367 64 500 0.1 0.0027 0.3463
32000 0.0013 0.3250 64 104 0.1 0.0019 0.0581

Stot
x1 192 0.5875 0.0923 64 3 0.5 0.5108 0.0503

7200 0.5346 0.0061 180 40 0.0165 0.5345 0.0061
32000 0.5368 0.0020 64 500 0.1 0.5376 0.0004

Stot
x3 192 0.0004 1.1693 64 3 0.5 0.0047 1.1013

7200 0.0006 0.7529 180 40 0.0165 0.0021 0.0895
32000 0.0018 0.2094 64 500 0.1 0.0022 0.0153

hand, the order of relative error decreases for the values of sensitivity indices in
comparison with g0 and variation D for both approaches. These quantities are
presented by only one (g0) or two (D) integrals while each sensitivity index (first-
order or total) is presented by a ratio of integrals estimated be the Plain Monte
Carlo algorithm that leads to an accumulation of errors. The value of variation
for the standard approach is much smaller than the value of variation for the
combined approach and the division into that relatively small quantity leads to
larger relative errors for total sensitivity indices using the combined approach.
Nevertheless, the results for total sensitivity indices obtained by the combined
approach are more reliable - the values of total effects are fully consistent with
the expected tendencies according to Figure 1.

A comparison between computed first-order and total sensitivity indices ob-
tained by the combined approach using Plain and Adaptive Monte Carlo al-
gorithms is given in Table 2. The concepts of the combined approach and the
developed adaptive approach require numerical integration over 6-dimensional
domain, i.e. twice as large as the dimension of the model function. That is why
g0 has not been computed in this case. Since the total number of estimated quan-
tities is seven - variance and main and total effects of three input parameters
- the adaptive procedure applied to all of them would be inefficient according
its computational cost. The criterion for achieving the desired accuracy in com-
puting variance has been adopted as a common criterion in computing other
quantities because all main and total effects depend on the variance. In contrast



of that, two independent random sequences in 3-dimensional domain [0.6; 1.4]3

have been used for implementation of the Plain Monte Carlo algorithm.
The number of samples for both Monte Carlo techniques has been chosen

following the requirement for consistency of obtained results, i.e. the number of
samples for Plain algorithm is a multiplication of average number of subdomains
(from several runs) and number of samples in each subdomain. It has been
observed that the computational times using two Monte Carlo approaches for
numerical integration (Plain and Adaptive) to estimate the unknown quantities
are comparable. For example, t = 0.073s for the Plain (N = 32 000) and t =
0.078s for the Adaptive. Thus, the conclusions about efficiency of the applied
algorithms in computing the desired quantities can be made by comparing orders
of estimated errors.

The Adaptive algorithm has an advantage over the Plain algorithm for a fixed
number of samples that confirms reducing variance effect of the applied adaptive
technique. Moreover, the approximative values of quantities are sufficiently close
to exact values even for the smallest chosen number of samples.
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