
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Future Generation Computer Systems 24 (2008) 605–612
www.elsevier.com/locate/fgcs

Monte Carlo methods for matrix computations on the grid

S. Branforda, C. Sahina, A. Thandavana, C. Weihraucha,∗, V.N. Alexandrova, I.T. Dimova,b

a Centre for Advanced Computing and Emerging Technologies, School of System Engineering, Philip Lyle Building, The University of Reading,
Whiteknights, PO Box 68, Reading, RG6 6BX, UK

b Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113 Sofia, Bulgaria

Received 23 April 2007; received in revised form 25 June 2007; accepted 14 July 2007
Available online 25 July 2007

Abstract

Many scientific and engineering applications involve inverting large matrices or solving systems of linear algebraic equations. Solving these
problems with proven algorithms for direct methods can take very long to compute, as they depend on the size of the matrix. The computational
complexity of the stochastic Monte Carlo methods depends only on the number of chains and the length of those chains. The computing power
needed by inherently parallel Monte Carlo methods can be satisfied very efficiently by distributed computing technologies such as Grid computing.
In this paper we show how a load balanced Monte Carlo method for computing the inverse of a dense matrix can be constructed, show how the
method can be implemented on the Grid, and demonstrate how efficiently the method scales on multiple processors.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Monte Carlo methods; Matrix computations; Grid computing

1. Introduction

Inverting a real n × n matrix (MI) or solving a system
of linear algebraic equations (SLAE) are problems of
unquestionable importance in many scientific and engineering
applications: e.g real-time speech coding, digital signal
processing, communications, stochastic modelling, and many
physical problems involving partial differential equations. The
direct methods of solution require O(n3) sequential steps when
using the usual elimination or annihilation schemes (e.g. non-
pivoting Gaussian elimination, Gauss–Jordan methods) [10].
Consequently the computation time for very large problems,
or for real-time solution problems, can be prohibitive and this
prevents the use of many established algorithms.

The Classical (Deterministic) Iterative Methods (Jacobi,
Gauss–Seidel, Successive Over-relaxation, Successive Under-
relaxation) require O(kn2) operations, where k is the number
of iterations. The Conjugate Gradient type methods require

∗ Corresponding author.
E-mail addresses: s.j.branford@reading.ac.uk (S. Branford),

c.sahin@reading.ac.uk (C. Sahin), a.thandavan@reading.ac.uk
(A. Thandavan), c.weihrauch@reading.ac.uk (C. Weihrauch),
v.n.alexandrov@reading.ac.uk (V.N. Alexandrov), i.t.dimov@reading.ac.uk,
ivdimov@bas.bg (I.T. Dimov).

O(n2) operations (for dense matrix format), and they are
optimal by rate (the best rate of convergence that can be
achieved) of complexity. The Monte Carlo methods require
O(n2) operations for dense matrix format and O(n) operations
for sparse matrix format and they are also optimal by rate.
Nevertheless, for some specific classes of matrices Monte Carlo
could be more or less efficient in terms of the number of
operations needed to perform the algorithm for solving the
problem with a priori given accuracy. Some recent results in
this direction are presented in [23].

It is known that Monte Carlo (MC) methods give statistical
estimates for elements of the inverse matrix, or for components
of the solution vector of SLAE, by performing random
sampling of a certain random variable, whose mathematical
expectation is the desired solution [6,18,22]. We concentrate on
MC methods for MI and/or solving SLAE since only O(Nτ)

steps are required to find an element of the inverse matrix or
component of the solution vector of SLAE (where N is the
number of chains and τ is an estimate of the chain length in the
stochastic process, both of which are independent of n, the size
of the matrix); and since the sampling process for stochastic
methods is inherently parallel.

In terms of the computing requirements, there are
three critical issues: throughput, peak performance, and the

0167-739X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2007.07.006

Author's personal copy

606 S. Branford et al. / Future Generation Computer Systems 24 (2008) 605–612

availability of the resource. The complex scientific problems
solved by MC methods usually demand a high amount of
computing power. In certain applications, like Monte Carlo
sensitivity studies, the computation of Sobol’s sensitivity
indexes needs additional computing resources [5]. In other
applications, like radiotherapy dose calculations, the computing
power must be available on a timely critical basis, and in
some cases, is used on almost real-time optimisations [16].
The requirements of the computing resources may be the
limiting factor for some small-scale organisations to exploit
the advantages of MC methods in their applications. The
MC part of an application could easily be delegated to the
available compute resources by using distributed computing
technologies. The distributed computing environment, which
can sustain such a compute power, can be achieved by use of
grid technologies.

Grid technologies address coordinated resource sharing
and dynamic problem solving in multi-institutional virtual
organisations [9]. The sharing includes all types of resources
including compute time and data storage capabilities. The
resources can be on the same local network or may be
located on geographically dispersed area. Grid computing
technologies, by enabling the compute resources regardless
of their geographical locations, promote the more frequent
use of MC methods on very diverse areas of scientific and
industrial problems and for any size of organisation. This could
be achieved by fitting the requirements and the characteristics
of the relevant MC method, which is the MC MI method in this
paper’s context, with the underlying grid infrastructure.

Coarse grained MC algorithms for MI and SLAE have been
proposed by several authors [2,4,20]. In Section 2 we give
an overview of using MC for MI and SLAE; in Section 3
we present a MC algorithm for MI; we give an overview of
several methods for running jobs on the grid in Section 4; in
Section 5 we look at performing MC methods on Grid systems;
our implementation of the algorithm is described in Section 6;
and we conclude our research in Section 7.

2. Monte Carlo matrix computations

Assume that the SLAE is presented in the form:

Bx = b, (1)

where B is a real square n × n matrix, x = (x1, x2, . . . , xn)t

is a 1 × n solution vector b = (b1, b2, . . . , bn)t and t means
transpose.

Assume the general case ‖B‖ > 1 where ‖B‖ is the spectral
norm.1 We consider the splitting

B = B̂ − C,

where off-diagonal elements of B̂ are the same as those of B,
and the diagonal elements of B̂ are defined as b̂i i = bi i +γi‖B‖,
choosing in most cases γi > 1 for i = 1, 2, . . . , n. We further

1 As discussed later, the choice of matrix norm does not affect significantly
the convergence of the algorithm.

consider B̂ = B1 − B2, where B1 is the diagonal matrix of B̂,
e.g. (b1)i i = b̂i i for i = 1, 2, . . . , n. As shown in [21] we could
transform the system (1) to

x = T x + f, (2)

where T = B̂−1C and f = B̂−1b. The multipliers γi are
chosen so that, if it is possible, they reduce the norm of T
to be less than 1 and thus reducing the number of Markov
chains required to reach a given precision. We consider two
possibilities, first, finding the solution of x = T x + f using
MC method if ‖T ‖ < 1 or finding B̂−1 using MC and after that
finding B−1. Then, if required, obtaining the solution vector by
x = B−1b.

Consider first the stochastic approach. Assume that ‖T ‖ < 1
and that the system is transformed to its iterative form (2).
Consider the Markov chain given by:

s0 → s1 → · · · → sk,

where the si , i = 1, 2, . . . , k, belongs to the state space
S = {1, 2, . . . , n}. Then for α, β ∈ S, p0(α) = p(s0 = α)

is the probability that the Markov chain starts at state α and
p(s j+1 = β|s j = α) = pαβ is the transition probability from
state α to state β. The set of all probabilities pαβ defines a
transition probability matrix P = {pαβ}

n
α,β=1 [1,2].

We say that the distribution (p1, . . . , pn)t is acceptable for
a given vector g, and that the distribution pαβ is acceptable
for matrix T , if pα > 0 when gα 6= 0, and pα ≥ 0, when
gα = 0, and pαβ > 0 when Tαβ 6= 0, and pαβ ≥ 0 when
Tαβ = 0 respectively. We assume

∑n
β=1 pαβ = 1, for all

α = 1, 2, . . . , n. Generally, we define

W0 = 1, W j = W j−1
Ts j−1s j

ps j−1s j

,

for j = 1, 2, . . . , n.
Consider now the random variable θ [g] =

gs0
ps0

∑
∞

i=1 Wi fsi .

We use the following notation for the partial sum:

θi [g] =
gs0

ps0

i∑
j=0

W j fs j .

Under condition ‖T ‖ < 1, the corresponding Neumann series
converges for any given f , and Eθi [g] tends to (g, x) as
i → ∞. Thus, θi [g] can be considered as an estimate of
(g, x) for i sufficiently large. To find an arbitrary component
of the solution, for example, the r th component of x , we should
choose, g = e(r) = (0, . . . , 0, 1︸ ︷︷ ︸

r

, 0, . . . , 0) such that

e(r)α = δrα =

{
1 if r = α

0 otherwise.

It follows that

(g, x) =

n∑
α=1

e(r)αxα = xr .

Author's personal copy

S. Branford et al. / Future Generation Computer Systems 24 (2008) 605–612 607

The corresponding MC method is given by:

xr = Θ̂ =
1
N

N∑
s=1

θi [e(r)]s,

where N is the number of chains and θi [e(r)]s is the
approximate value of xr in the sth chain. It means that using
MC method, we can estimate only one, few or all elements of
the solution vector.

MC MI is obtained in a similar way [1]. To find the inverse
M−1

= {m(−1)

rr ′ }
n
r,r ′=1 of some matrix M , we must first compute

the elements of matrix A = I − M , where I is the identity
matrix. Clearly, the inverse matrix is given by

M−1
=

∞∑
i=0

Ai ,

which converges if ‖A‖ < 1.

To estimate the element m(−1)

rr ′ of the inverse matrix M−1,
we let the vector f be the following unit vector

fr ′ = e(r ′).

We then can use the following MC method for calculating
elements of the inverse matrix M−1:

m(−1)

rr ′ ≈
1
N

N∑
s=1

 ∑
(j |s j =r ′)

W j

 , (3)

where (j |s j = r ′) means that only

W j =
Ars1 As1s2 . . . As j−1s j

prs1 ps1s2 . . . ps j−1 p j

,

for which s j = r ′ are included in the sum (3).
Since W j is included only into the corresponding sum for

r ′
= 1, 2, . . . , n, then the same set of N chains can be used

to compute a single row of the inverse matrix, which is one
of the inherent properties of MC making them suitable for
parallelisation.

The probable error of the method, is defined as rN =

0.6745
√

Dθ
N , where P{|θ̄ − E(θ)| < rN } ≈

1
2 ≈ P{|θ̄ −

E(θ)| > rN }, if we have N independent realisations of random
variable (r.v.) θ with mathematical expectation Eθ and average
θ̄ [18].

In the general case, ‖B‖ > 1, we make the initial split
B = B̂−C . From this we compute A = B−1

1 B2, which satisfies
‖A‖ < 1 (by careful choice, of B̂, we make ‖A‖ < 1

2 , which
gives faster convergence). Then we generate the inverse of B̂ by
(3). From this we wish to recover B−1, which uses an iterative
process (k = n − 1, n − 2, . . . , 0) on B̂−1

B−1
k = B−1

k+1 +
B−1

k+1Sk+1 B−1
k+1

1 − trace
(

B−1
k+1Sk+1

) , (4)

where B−1
n = B̂−1 and B−1

0 = B−1.

In this work we consider the almost optimal (MAO)
transition probability

pαβ =
|aαβ |

n∑
β=1

|aαβ |

,

for α, β = 1, 2, . . . , n.

3. Monte Carlo algorithm for matrix inversion

In this paper we consider only present results for diagonally
dominant matrices.2 This leads us to present the following
algorithm for a MC method for inverting a diagonally dominant
matrix.

Step 1. Read in matrix B, the matrix to be inverted
1: Input matrix B, parameters ε and δ

Step 2. Calculate intermediate matrices (B1, B2)
1: Split B = B1 − B2, where B1 = diag(B) and

B2 = B1 − B
Step 3. Calculate matrix A and ‖A‖

1: Compute matrix A = B−1
1 B2

2: Compute ‖A‖ and the number of Markov Chains

N =

(
0.6745

ε(1−‖A‖)

)2

Step 4. Calculate matrix P
1: Compute the probability matrix, P , where pi j =

|ai j |∑n
k=1 |aik |

Step 5. Calculate matrix M , by MC on A and P
1: For i = 1 to n

1.1: For j = 1 to N
Markov Chain MC Computation
1.1.1: Set W0 = 1, point = i and SUM[k] ={

1 if i = k
0 if i 6= k

1.1.2: Select a nextpoint, based on the tran-
sition probabilities in P , such that
A[point][nextpoint] 6= 0

1.1.3: Compute W j = W j−1
A[point][nextpoint]
P[point][nextpoint]

1.1.4: Set SUM[nextpoint] = SUM[nextpoint]
+ W j

1.1.5: If |W j | > δ set point = nextpoint and
goto 1.1.2

1.2: Then mik =
SUM[k]

N for k = 1, 2, . . . , n
Setp 6. Calculate B−1

1: Compute the MC inverse B−1
= M B−1

1 .

In Step 3, the chosen norm ‖A‖ is essential for estimating
the number of Markov Chains to ensure a well-balanced
algorithm (i.e. an algorithm for which the stochastic error is
approximately equal to the systematic error) [4]. Nevertheless,
the particular choice of the norm does not reflect too much
on the efficiency of the algorithm since all matrix norms are
equivalent. While the implementation presented in this paper is
for dense matrices the algorithm also applies equally to sparse
and banded matrices.

2 If we, instead, had a non-diagonally dominant matrix then we would have
to extend the algorithm to do the initial split, B = B̂ − C , and recovery, (4), as
explained in the previous section.

Author's personal copy

608 S. Branford et al. / Future Generation Computer Systems 24 (2008) 605–612

4. Grid approach for Monte Carlo methods

When making an application available on the Grid, a strategy
has to be developed to gain maximum performance. The
strategy used, which helps to maximise the advantages of the
Grid, depends largely on the application itself.

There are some design issues to consider [15] when using
the grid for MC methods:

• Investigation of cross-cluster parallelisation.
• Necessity of a checkpointing mechanism.
• Trustworthiness of the remote resource.
• Determination of the best approach to offer the MC method

on the Grid.

The most important feature of MC methods for grid
computing is their stochastic nature, which provides a natural
parallelisation with very little inter-process communication.
This is a promising application area to achieve cross-
cluster parallelisation with the help of libraries like MPICH-
G [8]. From the point of the MC MI method, cross-cluster
parallelisation can be quite expensive to employ. Although
relatively little inter-process communication is required for MC
MI methods as well, parallel processes of MC MI method
need to work with the full matrix — the matrix needs to
be transferred to every node of every cluster which makes it
communicationally expensive and hence less feasible for the
Grid.

An application specific checkpointing mechanism is thought
to be essential for many MC methods over the grid to increase
the overall performance of the system. MC methods are CPU
intensive and may take quite long to complete. Any interruption
would result in having to restart the same computation from
scratch. On the other hand, they are also easy to reconstruct and
resume once the time step of the computation and the value are
known. This can easily be achieved by keeping an intermediate
state of the computation in a database to recover and resume
the computation from the point where it was checkpointed.
This saves a substantial amount of CPU time once the task is
rescheduled. However, any checkpointing mechanism for the
MC MI method is an expensive process, since each checkpoint
requires recording the current state of the matrix.

When working on MC computations, the accuracy of
the result is influenced by the hardware and the compiler.
This can make the application sensitive to computational
errors. [15] suggests the use of cross-checking of the data for
the trustworthiness of the remote resource. For time critical
applications, this is not a viable option. Our suggestion is to use
certain remote resources where trustworthiness is guaranteed.
This could easily be achieved by using custom MC grid services
attached to trusted remote resources. It is also related to the
fourth item on the above list — how best to offer the MC MI
method over the Grid. Using Grids promises a lot for MC MI
method as listed below:

• Grid technologies provide access to compute resources in
a virtual organisation, enabling the supply of necessary
compute power whenever needed.

• Scheduling and control of many subtasks to different
compute resources.

• Grid software provides a complete framework with
established protocols to manage a set of distributed tasks.

• Well-established and mature security solutions ensure the
protection of users’ software and data.

• Grid software offer service-based workflow management
where the whole task could be carried out without any
human intervention, hence providing a significant speed-up.

• Grid software could be used to efficiently hide the
complexities that arise from using heterogeneous hardware
resources.

In this study, the Globus Toolkit was used, which offers
a framework using well-established protocols. Reasons for
this choice included prior experience with the software and
the availability of a testbed with the Globus software already
deployed. Similar results can be expected to be achieved using
other software packages such as UNICORE, Condor-G and
g-Lite that also enable grid computing through well-defined
frameworks.

The Globus Toolkit provides a set of libraries and programs,
which address the challenges presented by the distributed grid
computing environment, including remote job submission and
execution, data transfer, resource discovery and security. The
latest version of the Globus Toolkit, version 4 (GT4) [7],
extensively uses Web services mechanisms to define its
interfaces. Taking advantage of well-defined Web service
protocols and standards, XML-based mechanisms are used to
describe and discover the network services which facilitate
the development of service-oriented architectures (SOA) [7].
The GT4 framework provides all necessary components
and associated services to develop a complete distributed
computing application.

Security in a grid environment is a very important issue. Grid
security is provided by the Grid Security Infrastructure (GSI)
in GT4 to guarantee secure grid-based operations. GSI is based
on public key cryptography. It provides two levels of security
— message-level security and transport-level security. For MC
MI methods we are mainly interested in transport-level security,
which uses proxy certificates to ensure the privacy of the code
and the data sets on remote resources.

5. Grid implementation

In this section we consider various grid implementations
for the MC MI method. Single cluster and workflow
implementations are analysed and an MC Linear Algebra (LA)
grid service implementation is suggested. Running the MC
MI method in a multicluster environment is not investigated
as cross parallelisation of the MC MI method is theoretically
too expensive to employ. When using the WS-GRAM job
submission service directly the code and the data set is assumed
not to be available on the remote resource.

For the grid-enabled MC MI method GT4’s WS-GRAM
service plays an important role. WS-GRAM provides the
submission of the code on remote resources [5] as well as
file stage-in and stage-out facilities for job submission using

Author's personal copy

S. Branford et al. / Future Generation Computer Systems 24 (2008) 605–612 609

Fig. 1. An example job description file.

Fig. 2. Running the job using a workflow.

GT4’s Reliable File Transfer service. WS-GRAM also provides
stateful monitoring of the jobs on the remote resources, with a
control over the jobs (cancel, hold, resume, etc.) and comes with
credential management as the security in a grid environment is
vital. The ManagedJobFactoryService that ships with GT4,
provides the scheduling of the application on different types of
schedulers like fork, PBS, Condor and LSF.

In the simplest case, the MC MI executable is submitted for
execution on a remote cluster using the ManagedJobFactory-
Service

WS-GRAM job submission uses a job description file (JDF)
which defines the requirements of the job to run. An example
JDF is shown in Fig. 1.

The example JDF, Fig. 1, defines a single job because the
executable for the platform is assumed to be ready prior to
submission. JDFs also facilitate the preparation of multijob
definition files in case a compilation prior to execution is
needed on the remote platform. Note also that the jobType
element is ‘single’ which indicates a sequential job. The JDF,
which contains XML-based job specifications (including input
and output files, execution information like the name of the

scheduler and the number of processors needed) has all the
information for the job to run on the remote compute resource.

5.1. Workflow method

Another possibility is to run the MC MI code as part of a
workflow system, as demonstrated in Fig. 2. This is a more
realistic approach, as the MC MI method is mostly used as
part of a bigger application or several MC MI instances are run
simultaneously to achieve a more accurate result. Such systems
need to exchange data, hence the need to behave as part of
a bigger system. This could be easily achieved by using grid
workflow systems [24].

A possible workflow scenario is the simultaneous runs of the
MC MI simulations on different resources to achieve a more
accurate result:

(1) The client defines the workflow including how many MC
MI simulations need to be scheduled.

(2) GT4 resource discovery service (MDS) provides the
available resources in the virtual organisation. The subtasks
are scheduled to the remote resources by the availability of
their computing power, using GT4 GRAM service.

Author's personal copy

610 S. Branford et al. / Future Generation Computer Systems 24 (2008) 605–612

(3) GRAM also stages the input data into the resource by using
GT4’s RFT service.

(4) The JDF has all the information on how to run the code on
the remote resource. Following the execution of the code,
output data is staged to the local resource or to a data server
as stated in the workflow description, to generate the final
result.

5.2. Monte Carlo linear algebra grid service

So far, the WS-GRAM service ManagedJobFactorySer-
vice is used to submit and monitor the job on remote clusters.
Another option is to implement the MC LA methods as a dedi-
cated grid service. The MC LA grid service ties the service onto
the resource where it is deployed, providing certain advantages:

• Trustworthiness is guaranteed by deploying the service only
on trusted resources.

• The grid service, which should be easy to use, provides a
black box for users where they simply provide their matrices
as input and get its inverse as output.

• Code complexities are hidden with the code and libraries
already available on the deployed resource.

• Better optimised runs can be expected as the code would
be tuned to the underlying hardware and with the use of
optimised compilers and random number generators.

• Additional MC LA methods could be added to the service
where users could query MC LA specific information
through the information services.

The MC LA grid service could be plugged into bigger
applications as part of a workflow management system that
would return the result in an efficient and trusted manner.

A certain disadvantage is that the MC LA grid service limits
the use of the available resources in the virtual organisation. It
also requires extra work, including the installation, maintenance
and upgrade of the MC LA grid service in each resource it is
deployed on.

The client in Fig. 3 represents a human or software
interaction. The MC LA grid service will be implemented in
the future.

6. Implementation

6.1. Load balancing parallel algorithm

Working from the algorithm presented in Section 3 we arrive
at the following load-balancing parallel algorithm for MC MI:

1. The master process carries out Steps 1–4.
2. The master process broadcasts n, A, P , Psum, and δ.
3. Each process carries out a part of the Markov chains.
4. Each process returns the time taken for the first part of chains

to the master process.
5. The master process distributes the remaining chains between

the processes, balancing the number of chains to be done
by each process based on the time taken for the first part of
chains.

6. Each process completes a proportion of the remaining
Markov chains.

7. The master process collects the MC calculations.
8. The master process carries out Step 6.

Fig. 3. MC LA grid service used for matrix inversion.

6.2. Fault tolerance

MC algorithms, by their very nature, make it easy to
implement fault tolerance (FT) [15]. One method is to compute
5% or 10% more chains than required, and just use the results
from the successful nodes if one or more nodes fail. The easiest
implementation would be to ignore failed nodes and just carry
on with the results returned from the working nodes [12,25].

The MPI 1.x standard [17] describes how the MPI
implementation could handle node failures by overriding the
error handler with MPI Comm set errhandler(). The error
handler MPI ERRORS ARE FATAL is used by default, and this
handler causes all nodes to stop if just one node fails. Changing
it to MPI ERRORS RETURN would allow MPI to ignore the
failed nodes and the Monte Carlo algorithm could finish the
calculation. However, this feature is not implemented in the
most popular MPI 1.x implementations. Most grid systems use,
or are based on, MPICH [13,11] or LAM-MPI [3,19]. However,
to the best of our knowledge these two currently do not support
FT. We hope that in the future production grids will move to
implementations which support FT. This would allow us to
better exploit the natural features of MC algorithms.

6.3. Binary search

A large part of the time the MC method needs to compute the
solution is spent on finding and jumping to the next element in
the matrix. The next element is chosen based on a probability
matrix. To improve the implementation of this section of the
algorithm a binary search algorithm was implemented [14]. The
binary search only needs log n steps to find the next element
compared to a standard linear search algorithm which would
need on average n/2 steps.

6.4. Results

The results were obtained using an SGI Prism system
equipped with eight Intel Itanium II 1.5 GHz processors and
16 GB main memory. The code was compiled using the Intel
Fortran Compiler 9, and the variables were stored at double
precision.

The input matrices were randomly generated diagonally
dominant matrices of size 500–6000. As the MC algorithm
requires a copy of the matrix on each node, the available
memory on the test machine limits us to dense problems of at

Author's personal copy

S. Branford et al. / Future Generation Computer Systems 24 (2008) 605–612 611

Table 1
Timing for the Monte Carlo algorithm

Proc 500 1000 2000 3000 4000 5000 6000

1 80.26 283.51 814.08 1421.55 2098.96 3016.95 3782.21
2 41.94 157.60 751.16 813.52 1202.88 1679.44 1982.10
3 33.78 103.45 341.37 528.24 775.68 1081.43 1680.76
4 23.39 91.05 254.94 388.20 563.18 945.49 998.69
5 18.27 60.60 179.47 310.91 488.13 635.08 869.96
6 17.20 52.36 155.19 272.15 405.34 613.82 842.11
7 15.56 44.61 133.44 250.00 354.41 475.57 642.57
8 12.20 39.16 114.92 205.04 304.57 420.04 570.17

Fig. 4. Speedup of the Monte Carlo algorithm.

most size 6000. Our approach works for some non-diagonally
dominant matrices [4] as well.

The results of the experiments are shown in Table 1, and
Fig. 4 shows the speedup achieved by the algorithm. As it can
be seen the MC MI method scales well and the speedup is
near linear. There are a few extraneous results, but these are to
be expected from a MC method, since the Markov Chains are
random processes; from computer systems, where the nature of
the processes running sometimes causes nodes to take longer
to compute the test chains, which leads to a wrong balancing
result.

When the MC MI method is used with Grid systems, various
overheads are added. One overhead is caused by the GT4
WS-GRAM service, while another is introduced by the local
scheduler on the remote resource. Another source of overhead
is the use of GridFTP to transfer data between resources on the
grid. In our case, the file transfer overhead was negligible as the
largest matrix transferred was reasonably small in size. Also,
the enabling of grid security further increases the overhead.

7. Conclusion and future work

We have shown that MC methods can be used to solve SLAE
and do MI. Further to this we have presented an MC algorithm
for MI, and then extended this to be a load balanced parallel
algorithm. We have then discussed the use of grid technologies
and how the MC MI method can be deployed on the grid. The
load balancing algorithm has been deployed and we present
results showing that the method is efficient at scaling to multiple
processors.

In the future we are looking at expanding on this grid MC
MI method by looking at other grid MC methods. Possibilities
include MC MI methods for different types of matrices,
MC methods to solve SLAE, and MC methods for finding
eigenvalues. The Monte Carlo algorithm presented here is
relevant for sparse and banded matrices — it is only necessary
to adjust the implementation to optimise the code for such
problems. A combination of these methods could then be
offered as a grid MC service, available for scientists to use in
their applications.

Acknowledgement

This work was partially supported by NATO under project
Monte Carlo Sensitivity Studies of Environmental Security
PDD(TC)-(ESP.EAP.CLG 982641).

References

[1] V.N. Alexandrov, Efficient parallel monte carlo methods for matrix
computation, Mathematics and Computers in Simulation 47 (1998)
113–122.

[2] V.N. Alexandrov, A. Rau-Chaplin, F. Dehne, K. Taft, Efficient coarse
grain Monte Carlo algorithms for matrix computation using PVM, Lecture
Notes in Computational Science (1998) 323–330.

[3] G. Burns, R. Daoud, J. Vaigl, LAM: An open cluster environment for MPI,
in: Proceedings of Supercomputing Symposium, 1994, pp. 379–386.

[4] I.T. Dimov, T. Dimov, T. Gurov, A new iterative Monte Carlo approach
for inverse matrix problem, Journal of Computational and Applied
Mathematics 92 (1997) 15–35.

[5] I. Dimov, Z. Zlatev, Testing the sensitivity of air pollution levels to
variations of some chemical rate constants, in: Large-Scale Computations
in Engineering and Environmental Sciences, in: M. Griebel, O. Iliev,
S. Margenov, P.S. Vassilevski (Eds.), Notes on Numerical Fluid
Mechanics, vol. 62, 1997, pp. 167–175.

[6] G.E. Forsythe, R.A. Leibler, Matrix inversion by a Monte Carlo method,
Mathematical Tables and Other Aids to Computation 4 (31) (1950)
127–129.

[7] I. Foster, Globus toolkit version 4: Software for service-oriented systems,
in: Lecture Noes in Computer Science, vol. 3779, 2005, pp. 2–13.

[8] I. Foster, N. Karonis, A grid-enabled MPI: Message passing in
heterogeneous distributed computing systems, in: Proceedings of 1998
SuperComputing Conference, November, 1998.

[9] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling
scalable virtual organizations, International Journal of Supercomputer
Applications 15 (3) (2001).

[10] G.H. Golub, C.F. van Loan, Matrix Computations, third ed., The Johns
Hopkins University Press, Baltimore, London, 1996.

[11] W. Gropp, E. Lusk, User’s Guide for mpich, a Portable Implementation
of MPI, c©1996 Mathematics and Computer Science Division, Argonne
National Laboratory.

[12] W. Gropp, E. Lusk, Fault tolerance in MPI programs, in: Proceedings of
Cluster Computing and Grid Systems Conference 2002.

[13] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard, Parallel
Computing 22 (6) (1996) 789–828.

[14] D. Knuth, Sorting and Searching, third ed., in: The Art of Computer
Programming, vol. 3, Addison-Wesley, 1997.

[15] Y. Li, M. Mascagni, Grid-based Monte Carlo application, in: Proceedings
of Grid Computing-GRID 2002, in: Manish Parashar (Ed.), Lecture Notes
in Computer Science, vol. 2536, 2002, pp. 13–24.

[16] J.T. Moscicki, S. Guatelli, M.G. Pia, M. Piergentili, Monte Carlo
Simulation for Radiotherapy in a Distributed Computing Environment,
American Nuclear Society, 2005. On CD-ROM.

[17] MPI: A Message-Passing Interface Standard (version 1.1), c©1993, 1994,
1995 University of Tennessee, Knoxville, Tennessee.

[18] I.M. Sobol, Monte Carlo Numerical Methods, Nauka, Moscow, 1973.

Author's personal copy

612 S. Branford et al. / Future Generation Computer Systems 24 (2008) 605–612

[19] J.M. Squyres, A. Lumsdaine, A component architecture for LAM/MPI,
in: Proceedings, 10th European PVM/MPI Users’ Group Meeting,
in: Lecture Notes in Computer Science, vol. 2840, 2003, pp. 379–387.

[20] B. Fathi Vajargah, V.N. Alexandrov, Coarse grained parallel Monte
Carlo algorithms for solving systems of linear equations with minimum
communication, in: Proceedings of PDPTA, Las Vegas, 2001, pp.
2240–2245.

[21] B. Fathi Vajargah, B. Liu, V.N. Alexandrov, Mixed Monte Carlo Parallel
Algorithms for Matrix Computation, in: Lecture Notes in Computational
Science, vol. 2330, Springer Verlag, 2002, pp. 609–618.

[22] J.R. Westlake, A Handbook of Numerical Matrix Inversion and Solution
of Linear Equations, John Wiley & Sons, Inc., New York, London,
Sydney, 1968.

[23] C. Weihrauch, I. Dimov, S. Branford, V. Alexandrov, Comparison of
the computational cost of a Monte Carlo and deterministic algorithm for
computing bilinear forms of matrix powers, in: Computational Science —
ICCS 2006, in: Lecture Notes in Computer Science, vol. 3993, Springer-
Verlag, 2006, pp. 640–647.

[24] F. Neubauera, A. Hoheiselb, J. Geiler, Workflow-based grid applications,
Future Generation Computer Systems 22 (1–2) (2006) 6–15.

[25] A. Luckow, B. Schnor, Migol: A fault-tolerant service framework for MPI
applications in the grid, Future Generation Computer Systems 2007 (in
press).

S. Branford is a researcher at the Centre for Advanced
Computing and Emerging Technologies, University of
Reading. He received his M.Math., from the University
of Oxford, in 2001 and M.Sc., from the University
of Reading, in 2003. His research is in the field
of mathematical computations in science; and in
particular hybrid and parallel Monte Carlo methods for
sparse matrix problems.

C. Sahin is a researcher and a Ph.D. student at the
ACET Centre, University of Reading. He received his
M.Sc. in Network Centred Computing from University
of Reading and a B.Sc. degree in Physics. His area
of research includes computational science, parallel,
distributed and grid computing.

A. Thandavan is a researcher at the Centre for
Advanced Computing and Emerging Technologies,
University of Reading, UK. He received his M.Sc.
in Network Centred Computing from the University
of Reading in 2002 and B.Sc. in Physics from the
University of Madras in 2000. His research interests
include Parallel and High Performance Computing,
Grid Computing and Workflow systems. He is
currently working on the Workflow Builder component
of g-Eclipse, a project funded by the European

Commission’s FP6 programme.

C. Weihrauch is a researcher at the Centre for
Advanced Computing and Emerging Technologies,
University of Reading. He holds an M.Sc. degree
in Network Centred Computing from the University
of Reading and a Diploma (FH) in Technische
Informatik from FHTW Berlin. His area of research
is computational science specialising in parallel
computing and Monte Carlo methods.

V.N. Alexandrov is a professor in Computational
Sciences at the School of Systems Engineering,
Director of the Centre for Advanced Computing and
Emerging Technologies and Head of Research of
PEDAL Laboratory at the University of Reading, UK.
He has obtained his M.Sc. in Applied Mathematics
from Moscow State University in 1984 and his Ph.D.
in parallel computing from the Institute for Parallel
Processing at the Bulgarian Academy of Sciences in
1995. His main interests are in the areas of simulation

and modelling of complex systems, parallel scalable algorithms, collaborative,
cluster and grid computing.

I.T. Dimov is a professor at the University of Reading,
Centre for Advanced Computing and Emerging
Technologies as well as IPP, Bulgarian Academy of
Sciences. He received his M.S. in 1977, Ph.D. in
1980 and M.Sc. in 1984 in Moscow. His research
interests are computational sciences, in particular
Monte Carlo numerical analysis, parallel, distributed
and grid computing.

