
Parallel Monte Carlo Sampling Scheme for
Sphere and Hemisphere�

I.T. Dimov1, A.A. Penzov2, and S.S. Stoilova3

1 Institute for Parallel Processing, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., bl. 25 A, 1113 Sofia, Bulgaria and ACET Centre, University

of Reading Whiteknights, PO Box 217, Reading, RG6 6AH, UK
I.T.Dimov@reading.ac.uk

2 Institute for Parallel Processing, Bulgarian Academy of Sciences,
Acad. G. Bonchev Str., bl. 25 A, 1113 Sofia, Bulgaria

apenzov@parallel.bas.bg
3 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,

Acad. G. Bonchev Str., bl. 8, 1113 Sofia, Bulgaria
stoilova@math.bas.bg

Abstract. The sampling of certain solid angle is a fundamental opera-
tion in realistic image synthesis, where the rendering equation describing
the light propagation in closed domains is solved. Monte Carlo meth-
ods for solving the rendering equation use sampling of the solid angle
subtended by unit hemisphere or unit sphere in order to perform the
numerical integration of the rendering equation.

In this work we consider the problem for generation of uniformly dis-
tributed random samples over hemisphere and sphere. Our aim is to
construct and study the parallel sampling scheme for hemisphere and
sphere. First we apply the symmetry property for partitioning of hemi-
sphere and sphere. The domain of solid angle subtended by a hemisphere
is divided into a number of equal sub-domains. Each sub-domain repre-
sents solid angle subtended by orthogonal spherical triangle with fixed
vertices and computable parameters. Then we introduce two new algo-
rithms for sampling of orthogonal spherical triangles.

Both algorithms are based on a transformation of the unit square.
Similarly to the Arvo’s algorithm for sampling of arbitrary spherical tri-
angle the suggested algorithms accommodate the stratified sampling. We
derive the necessary transformations for the algorithms. The first sam-
pling algorithm generates a sample by mapping of the unit square onto
orthogonal spherical triangle. The second algorithm directly compute the
unit radius vector of a sampling point inside to the orthogonal spheri-
cal triangle. The sampling of total hemisphere and sphere is performed
in parallel for all sub-domains simultaneously by using the symmetry
property of partitioning. The applicability of the corresponding paral-
lel sampling scheme for Monte Carlo and Quasi-Monte Carlo solving of
rendering equation is discussed.

� Supported by the Ministry of Education and Science of Bulgaria under Grand No.
I1405/04 and by FP6 INCO Grand 016639/2005 Project BIS-21++.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 148–155, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere 149

1 Introduction

The main task in the area of computer graphics is realistic image synthesis.
For creation of photorealistic images the solution of a Fredholm type integral
equation must be found. This integral equation is called rendering equation and
it is formulate first by Kajiya in [3]. The rendering equation describes the light
propagation in closed domains called frequently scenes (see Fig. 1).

Fig. 1. The geometry for the rendering equation

The radiance L, leaving from a point x on the surface of the scene in direction
ω ∈ Ωx, where Ωx is the hemisphere in point x, is the sum of the self radiating
light source radiance Le and all reflected radiance:

L(x, ω) = Le(x, ω) +
∫

Ωx

L(h(x, ω′), −ω′)fr(−ω′, x, ω) cos θ′dω′.

Here h(x, ω′) is the first point that is hit when shooting a ray from x into
direction ω′. The radiance Le has non-zero value if the considered point x is a
point from solid light source. Therefore, the reflected radiance in direction ω is
an integral of the radiance incoming from all points, which can be seen through
the hemisphere Ωx in point x attenuated by the surface BRDF (Bidirectional
Reflectance Distribution Function) fr(−ω′, x, ω) and the projection cos θ′. The
angle θ′ is the angle between surface normal in x and the direction ω′. The law
for energy conservation holds, i.e.:

∫
Ωx

fr(−ω′, x, ω) cos θ′dω′ < 1, because a real
scene always reflects less light than it receives from the light sources due to light
absorption of the objects.

When the point x is a point from a transparent object the transmitted light
component must be added to the rendering equation. This component estimates
the total light transmitted trough the object and incoming to the point x from
all directions opposite to the hemisphere Ωx. The transmitted light in direction

150 I.T. Dimov, A.A. Penzov, and S.S. Stoilova

ω is an integral similar to the the reflected radiance integral where the domain
of integration is the hemisphere Ωx in point x and BRDF is substituted by the
surface BTDF (Bidirectional Transmittance Distribution Function) [2]. In this
case the integration domain for solving the rendering equation is a sphere Ω(x)

in point x, where Ω(x) = Ωx

⋃
Ωx.

Applying Monte Carlo methods for solving the rendering equation, we must
sample the solid angle subtended by unit hemisphere or unit sphere in order
to perform the numerical integration of the rendering equation. The sampling
of certain solid angle is a fundamental operation in realistic image synthesis,
which requires generating directions over the solid angle. To generate sampling
directions for numerical integration of the rendering equation it is enough to
generate points over unit hemisphere or unit sphere.

A good survey of different sampling algorithms for unit sphere and unit hemi-
sphere is given by Philip Dutré in [2]. Some of them generate the sampling points
directly over the hemisphere and sphere. Others first find points uniformly on the
main disk, and then project them on the hemisphere or the sphere. Deterministic
sampling methods for spheres are proposed in [7] and applied in robotics, where
the regularity of Platonic solids is exploited. Arvo [1] suggests a sampling algo-
rithm for arbitrary spherical triangle and Urena [6] shows an adaptive sampling
method for spherical triangles.

Further in this paper we consider the parallel samples generation over sphere
and hemisphere for Monte Carlo solving of rendering equation.

2 Partitioning of Sphere and Hemisphere

Consider hemisphere and sphere with center in the origin of a Descartes coordi-
nate system. Similarly to the Bresenham algorithm [5] for raster display of circle
we apply the symmetry property for partitioning of hemisphere and sphere. It is
obvious that the coordinate planes partition the hemisphere into 4 equal areas
and the sphere into 8 equal areas. The partitioning of each one area into sub-
domains can be continued by the three bisector planes. One can see that the
bisector planes to the dihedral angles (−→X,

−→
Y), (−→X,

−→
Z) and (−→Z ,

−→
Y), partition

each area into 6 equal sub-domains. In Fig. 2 we show the partitioning of the
area with positive coordinate values of X, Y and Z into 6 equal sub-domains.

As described above we can partition the hemisphere into 24 and respectively
the sphere into 48 equal sub-domains. Something more, due to the planes of
partitioning each sub-domain is symmetric to all others. The symmetric property
allows us to calculate in parallel the coordinates of the symmetric points. For
example to calculate the coordinates of the point P3 we consecutively multiply
the coordinates of the point P0(x0, y0, z0) by two matrix of symmetry:

P0(x0, y0, z0) ∗

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ ∗

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ = P2(z0, y0, x0) ∗

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ = P3(z0, x0, y0).

Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere 151

Fig. 2. Partition of a spherical area into 6 sub-domains

Table 1. Parallel Sample Coordinates Calculation of Hemisphere

P0(x0, y0, z0) P
′
0(−x0, y0, z0) P

′′
0 (−x0, −y0, z0) P

′′′
0 (x0, −y0, z0)

P1(y0, x0, z0) P
′
1(−y0, x0, z0) P

′′
1 (−y0, −x0, z0) P

′′′
1 (y0, −x0, z0)

P2(z0, y0, x0) P
′
2(−z0, y0, x0) P

′′
2 (−z0, −y0, x0) P

′′′
2 (z0, −y0, x0)

P3(z0, x0, y0) P
′
3(−z0, x0, y0) P

′′
3 (−z0, −x0, y0) P

′′′
3 (z0, −x0, y0)

P4(x0, z0, y0) P
′
4(−x0, z0, y0) P

′′
4 (−x0, −z0, y0) P

′′′
4 (x0, −z0, y0)

P5(y0, z0, x0) P
′
5(−y0, z0, x0) P

′′
5 (−y0, −z0, x0) P

′′′
5 (y0, −z0, x0)

Table 2. Parallel Sample Coordinates Calculation of Sphere

P0(x0, y0, z0) P
′
0(−x0, y0, z0) P

′′
0 (−x0, −y0, z0) P

′′′
0 (x0, −y0, z0)

P1(y0, x0, z0) P
′
1(−y0, x0, z0) P

′′
1 (−y0, −x0, z0) P

′′′
1 (y0, −x0, z0)

P2(z0, y0, x0) P
′
2(−z0, y0, x0) P

′′
2 (−z0, −y0, x0) P

′′′
2 (z0, −y0, x0)

P3(z0, x0, y0) P
′
3(−z0, x0, y0) P

′′
3 (−z0, −x0, y0) P

′′′
3 (z0, −x0, y0)

P4(x0, z0, y0) P
′
4(−x0, z0, y0) P

′′
4 (−x0, −z0, y0) P

′′′
4 (x0, −z0, y0)

P5(y0, z0, x0) P
′
5(−y0, z0, x0) P

′′
5 (−y0, −z0, x0) P

′′′
5 (y0, −z0, x0)

P 0(x0, y0, −z0) P
′

0(−x0, y0, −z0) P
′′

0 (−x0, −y0, −z0) P
′′′

0 (x0, −y0, −z0)

P 1(y0, x0, −z0) P
′

1(−y0, x0, −z0) P
′′

1 (−y0, −x0, −z0) P
′′′

1 (y0, −x0, −z0)

P 2(z0, y0, −x0) P
′

2(−z0, y0, −x0) P
′′

2 (−z0, −y0, −x0) P
′′′

2 (z0, −y0, −x0)

P 3(z0, x0, −y0) P
′

3(−z0, x0, −y0) P
′′

3 (−z0, −x0, −y0) P
′′′

3 (z0, −x0, −y0)

P 4(x0, z0, −y0) P
′

4(−x0, z0, −y0) P
′′

4 (−x0, −z0, −y0) P
′′′

4 (x0, −z0, −y0)

P 5(y0, z0, −x0) P
′

5(−y0, z0, −x0) P
′′

5 (−y0, −z0, −x0) P
′′′

5 (y0, −z0, −x0)

152 I.T. Dimov, A.A. Penzov, and S.S. Stoilova

Therefore, sampling the hemisphere and calculating the coordinates of a sam-
pling point P0(x0, y0, z0) from a given sub-domain, we can calculate in parallel
the other sampling point coordinates for the hemisphere in accordance to the
Table 1.

The coordinate of symmetric points when we sampling the sphere can be
calculated in a same way. The Table 2. represents the parallel coordinates calcu-
lations for the sphere. Note that the marked with P

(·)
(·) points in Table 2. are the

same as the respective points presented in Table 1. and only differ in negative
sign of the Z coordinate.

This kind of partitioning allows to sample only one sub-domain and to cal-
culate in parallel all other samples for the hemisphere or sphere. Since the sym-
metry is identity the generation of uniformly distributed random samples in a
sub-domain leads to the uniform distribution of all samples in the hemisphere
and sphere.

3 Algorithms for Parallel Sampling Scheme

In this section we consider the problem for sampling a sub-domain in the terms
of hemisphere and sphere partitioning, described in the previous section. Each
sub-domain represents solid angle subtended by orthogonal spherical triangle
with fixed vertices and computable parameters. In order to generate uniformly
distributed random samples of the sub-domain we propose two algorithms.

3.1 Algorithm 1

This algorithm is very similar to the Arvo’s [1] algorithm for sampling of arbi-
trary spherical triangle. Let us consider the solid angle subtended by the spherical
triangle �ABC shown in Fig. 3.

Due to the partitioning planes, we can observe, that the arcs ÂB, B̂C and
ÂC are the arcs of the main (central) circles. The angle γ is equal to π

2 and the
length of the arc B̂C is π

4 . One can write the following identities:

cos ÂB = cos B̂C · cos ÂC + sin B̂C · sin ÂC · cos γ

cosβ = − cos γ · cosα + sin γ · sinα · cos ÂC

sin B̂C

sin α
=

sin ÂB

sin γ
.

The first two expressions are spherical cosine law for the arc ÂB and for
the angle β, as well the third is spherical sine law. By definition the angle β is
the angle between tangents to the spherical arcs in the point B which is equal
to the dihedral angle between the partitioning planes. Therefore, the angle β is

Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere 153

Fig. 3. Sampling point generation by Algorithm 1

always equal to the angle ϕ. Since the arc ÂB is arc from the central circle in the
orthogonal spherical triangle, it equals to θ, we can write the following equality:

tan ÂB =
1

cosβ
⇒ tan θ =

1
cosϕ

.

Similarly to the strategy presented in [1] we attempt to generate a sample
by mapping of the unit square onto orthogonal spherical triangle. With other
words we seek a bijection F (u, v) : [0, 1]2 → �ABC, where u and v are ran-
dom variables uniformly distributed in [0, 1]. Now we introduce the following
transformation:

ϕ =
uπ

4
and θ = arctan

v

cosϕ
= arctan

v

cos uπ
4

,

where u, v ∈ [0, 1]; ϕ ∈ [0,
π

4
] and θ ∈ [0, arctan

1
cosϕ

]. The algorithm can be

described as:

 Generate Random Variables:(real u , real v)

 Calculate angles : ϕ =

uπ

4
and θ = arctan

v

cos uπ
4

 Calculate the sampling point coordinates:
Px = cosϕ · sin θ, Py = sinϕ · sin θ and Pz = cos θ

 Return Sampling Point: P (Px, Py, Pz).

3.2 Algorithm 2

This algorithm tries to compute directly the unit radius vector of a sampling
point inside to the orthogonal spherical triangle. Consider a point P inside

154 I.T. Dimov, A.A. Penzov, and S.S. Stoilova

Fig. 4. Sampling point generation by Algorithm 2

for the spherical triangle �ABC shown in Fig. 4. The coordinates of an ar-
bitrary sampling point P could be calculated by finding the intersection point
of spherical triangle �ABC with the two coordinate planes having normal vec-
tors Nx(1, 0, 0) and Ny(0, 1, 0), and rotated respectively on angle ϕ and angle θ,
where θ, ϕ ∈ [0,

π

4
]. It is clear that when θ = ϕ =

π

4
, the point P ≡ A and when

θ = ϕ = 0, the point P ≡ B.
The rotations of the coordinate planes are defined by the matrices of rotation.

Let, Ryθ is the matrix of rotation on angle θ around the axis Y and Rzϕ is the
matrix of rotation on angle θ around the axis Z:

Ryθ =

⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ and Rzϕ =

⎛
⎝ cosϕ sin ϕ 0

− sinϕ cosϕ 0
0 0 1

⎞
⎠.

Applying the rotations to the normal vectors Nx(1, 0, 0) and Ny(0, 1, 0) we
calculate the normal vectors N ′

x and N ′
y to the rotated coordinate planes:

N ′
x = NxRyθ = (cos θ, 0, − sin θ) and N ′

y = NyRzϕ = (− sin ϕ, cosϕ, 0).

The normalized vector product of the vectors N ′
x and N ′

y compute the coor-
dinate of point P as:

P =
N ′

x × N ′
y∣∣N ′

x × N ′
y

∣∣ with |P | = 1

where N ′
x × N ′

y = (sin θ cosϕ, sin θ sin ϕ, cos θ cosϕ) and

∣∣N ′
x × N ′

y

∣∣ =
√

sin2 θ + cos2 θ cos2 ϕ =
√

cos2 ϕ + sin2 θ sin2 ϕ.

Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere 155

The algorithm can be described as:

 Generate Random Variables:(real u , real v)

 Calculate angles : ϕ =

uπ

4
and θ =

vπ

4

 Calculate the sampling point coordinates:

Px =
sin θ · cosϕ√

sin2 θ + cos2 θ cos2 ϕ
, Py =

sin θ · sinϕ√
sin2 θ + cos2 θ cos2 ϕ

and Pz =
cos θ · cosϕ√

sin2 θ + cos2 θ cos2 ϕ

 Return Sampling Point: P (Px, Py, Pz).

4 Conclusion

The presented parallel sampling scheme for Monte Carlo solving of the rendering
equation uses partitioning of the hemisphere or sphere by a natural way. The
sphere or hemisphere is divided into equal sub-domains of orthogonal spherical
triangles by applying the symmetry property. The advantages of this approach
lie in the parallel computations. Sampling only one sub-domain, the sampling
points over hemisphere or sphere are calculated in parallel. This approach is suit-
able for realization over parallel (MIMD, multiple instruction - multiple data)
architectures and implementation on Grid infrastructures. The proposed algo-
rithms for sampling of orthogonal spherical triangles accommodate the stratified
sampling. Instead of using random variables u and v for sampling point gener-
ation we can apply low discrepancy sequences as shown in [4]. This fact leads
to parallel Quasi-Monte Carlo approach for solving of the rendering equation,
which is a subject of future study and research.

References

1. Arvo, James, Stratifed sampling of spherical triangles. In: Computer Graphics Pro-
ceedings, Annual Conference Series, ACM Siggraph, pp. 437–438, (1995).

2. Dutré, Philip, Global Illumination Compendium, Script of September 29 2003,
http://www.cs.kuleuven.ac.be/∼phil/GI/TotalCompendium.pdf

3. Kajiya, J. T., The Rendering Equation, Computer Graphics, vol. 20, No. 4, pp.
143–150, Proceedings of SIGGRAPH‘86, (1986).

4. Keller, Alexander, Quasi-Monte Carlo Methods in Computer Graphics: The Global
Illumination Problem, Lectures in Applied Mathematics, vol. 32, pp. 455–469,
(1996).

5. Rogers, D. F., Procedural Elements for Computer Graphics. McGraw-Hill Inc,
(1985).

6. Urena, Carlos, Computation of Irradiance from Triangles by Adaptive Sampling,
Computer Graphics Forum, Vol. 19, No. 2, pp. 165–171, (2000).

7. Yershova, Anna and LaValle, Steven M., Deterministic Sampling Methods for
Spheres and SO(3), Robotics and Automation, 2004. IEEE Proceedings of ICRA’04,
vol.4, pp. 3974–3980, (2004).

	Introduction
	Partitioning of Sphere and Hemisphere
	Algorithms for Parallel Sampling Scheme
	Algorithm 1
	Algorithm 2

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

