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Abstract

Many scientific and engineering applications involve inverting large matrices or solving systems of linear algebraic equations. Solving the
problems with proven algorithms for direct methods can take very long to compute, as they depend on the size of the matrix. The computatic
complexity of the stochastic Monte Carlo methods depends only on the number of chains and the length of those chains. The computing po
needed by inherently parallel Monte Carlo methods can be satisfied very efficiently by distributed computing technologies such as Grid computi
In this paper we show how a load balanced Monte Carlo method for computing the inverse of a dense matrix can be constructed, show how
method can be implemented on the Grid, and demonstrate how efficiently the method scales on multiple processors.
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1. Introduction O(n?) operations (for dense matrix format), and they are
optimal by rate (the best rate of convergence that can be
Inverting a realn x n matrix (MI) or solving a system achieved) of complexity. The Monte Carlo methods require
of linear algebraic equations (SLAE) are problems ofQn?) operations for dense matrix format afdn) operations
unquestionable importance in many scientific and engineeringpr sparse matrix format and they are also optimal by rate.
applications: e.g real-time speech coding, digital signaevertheless, for some specific classes of matrices Monte Carlo
processing, communications, stochastic modelling, and manyould be more or less efficient in terms of the number of
physical problems involving partial differential equations. Thegperations needed to perform the algorithm for solving the
direct methods of solution requi@(n®) sequential steps when problem witha priori given accuracy. Some recent results in
using the usual elimination or annihilation schemes (e.g. NoMhis direction are presented 2.
pivoting Gaussian elimination, Gauss—Jordan methoti§) | It is known that Monte Carlo (MC) methods give statistical
Consequently the computation time for very large problemsggiimates for elements of the inverse matrix, or for components
or for real-time solution problems, can be prohlbmve and thisys the solution vector of SLAE, by performing random
prevents the use of many established algorithms. ~ sampling of a certain random variable, whose mathematical
The Classical (Deterministic)lterative Methods (Jacobi, expectation is the desired solutic)18,22]. We concentrate on
Gauss.—SeideI, Successive Ove_r—relaxation, _Successive Undgfic methods for M1 and/or solving SLAE since on(Nt)
relaxation) requmi)(kn_z) operations, wherk is the number  giohq are required to find an element of the inverse matrix or
of iterations. The Conjugate Gradient type methods réquirgomponent of the solution vector of SLAE (wheke is the

number of chains andis an estimate of the chain length in the
* Corresponding author. stochastic process, both of which are independent tife size
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availability of the resource. The complex scientific problemsconsiderB = B; — By, whereB; is the diagonal matrix oB,
solved by MC methods usually demand a high amount ok.g.(by)ij = bij fori =1,2,...,n. Asshownin P1] we could
computing power. In certain applications, like Monte Carlotransform the systerfl) to

sensitivity studies, the computation of Sobol’'s sensitivity

indexes needs additional computing resourcgs I|n other X = Tx+ f, (2)

applications, like radiotherapy dose calculations, the CompUtin%/hereT _ B-lCandf = B-lb. The multipliersy are
= = ) ,

wer m vailable on imely critical i nd in .
power must be available on a timely critical basis, and chosen so that, if it is possible, they reduce the nornT of

some cases, is used on almost real-time optimisatié6p [ .
The requirements of the computing resources may be thteo be less than 1 and thus reducing the number of Markov

limiting factor for some small-scale organisations to exploitChaInS required to reach a given precision. We consider two

the advantages of MC methods in their applications. Thé)OSS'b'"t'es’_mSt’ finding .the. so[uj|lon Of = Tx+ T using

MC part of an application could easily be delegated to the!\_/lc,methf)ld Il = 1 orfmdmgB ~using MC aqd after that

available compute resources by using distributed computinand'ngj’ - Then, if required, obtaining the solution vector by

technologies. The distributed computing environment, whicH< = B b.

can sustain such a compute power, can be achieved by use of Consider first the stochastic approach. Assumelfffigt< 1

grid technologies. and that the system is transformed to its iterative fd@h
Grid technologies address coordinated resource sharirfgonsider the Markov chain given by:

and dynamic problem solving in multi-institutional virtual

organisationsq]. The sharing includes all types of resources

including compute time and data storage capabilities. Theyhere thes, i = 1,2,...,k, belongs to the state space
resources can be on the same local network or may b& _ (1 2 . n}. Then fora, 8 € S, pol@) = p(so = @)
located on geographically dispersed area. Grid computings the probability that the Markov chain starts at statand
technologies, by enabling the compute resources regardle Sit1 = BIS] = &) = P is the transition probability from
of the;rlvglggogra[r)]higal Iocation(sj,_ promote the fmor_e fr_]?quenz,?atea to stateg. The set of all probabilities,s defines a
use o methods on very diverse areas of scientific an . e D n

industrial problems and for any size of organisation. This coulgranSItIOh probability .ma.tn)P' — {paﬂ}“’ﬁzlt [,1'2]'

be achieved by fitting the requirements and the characteristics & Say that the distributiogps, ..., pn)” is acceptable for

of the relevant MC method, which is the MC MI method in this & 9iven vectorg, and that the distributiorp, is acceptable

paper’s context, with the underlying grid infrastructure. for matrix T, if p, > 0 wheng. # 0, andp, > 0, when
Coarse grained MC algorithms for Ml and SLAE have beend = 0, andpys > 0 whenTys # 91 andp,s > O when

proposed by several author4,20]. In Section2 we give lep = O respectively. We assumg ;_; p,s = 1, for all

an overview of using MC for Ml and SLAE; in Sectiod « =12,...,n. Generally, we define

we present a MC algorithm for MI; we give an overview of Ts s

several methods for running jobs dme grid in Section4; in ~ Wo =1, Wj = Wj_—

Section5 we look at performing MC methods on Grid systems; Psjasi

our implementation of the algorithm is described in SecBpn for j = 1,2,... n.

and we conclude our research in Secftfon

S S S

Consider now the random varial#¢g] = g—ssg Yo W s

2. Monte Carlo matrix computations We use the following notation for the partial sum:

i
Assume that the SLAE is presented in the form: 6i[g] = s Z W fs;.
Pso i=0

Bx =D, 1)
Under condition|| T|| < 1, the corresponding Neumann series

whereB is a real squar@ x n matrix, X = (X1, X2, ..., Xn)' )
is a 1x n solution vectob = (by, by byt andt megns converges for any giverf, and E#;[g] tends to(g, x) as
transpose ety i — oo. Thus, 6i[g] can be considered as an estimate of

(g, x) for i sufficiently large. To find an arbitrary component
of the solution, for example, thréh component ok, we should
chooseg=e(r)=(0,...,0,1,0,...,0) such that

B=B-C, —_—

Assume the general ca$8| > 1 where| B|| is the spectral
norm! We consider the splitting

where off-diagonal elements & are the same as those Bf 1 ifr=a
and the diagonal elementsBfare defined a§i = bii +y B,  &a =dra = {0 otherwise
choosing in most cases > 1fori = 1,2, ..., n. We further

It follows that

n

1 As discussed later, the choice of matrix norm does not affect significantly(g, X) = Z e(N)aXy = Xr.

the convergence of the algorithm. a1
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The corresponding MC method is given by: In this work we consider the almost optimal (MAO)
N transition probability
A 1
N SZ]:. iLem)]ls Pas = n . s
Z [aas]

where N is the number of chains andj[e(r)]s is the
approximate value of; in the sth chain. It means that using
MC method, we can estimate only one, few or all elements o

;ora,ﬁzl,z,...,n

the solution vector. 3. Monte Carlo algorithm for matrix inversion
MC Ml is obtained in a similar way]]]. To find the inverse _ . _
M-1— {mﬁr,l) pr/ L of some matrixM, we must first compute In. this paper we con_5|der only present results for dlago-nally
the elements of matrid = | — M, wherel is the identity domlnant matrice$. This Ieadg us Fo pre§ent the folloyvlng
matrix. Clearly, the inverse matrix is given by algorlthm for a MC method for inverting a diagonally dominant
matrix.
-1_ i Al Step 1. Read in matrixB, the matrix to be inverted

1: Input matrix B, parameters and$
Step 2. Calculate intermediate matriceBy(, By)

which converges if A|| < 1. 1: Split B = B; — By, whereB; = diag(B) and
To estimate the elememfr_,l) of the inverse matrixvi 1, B=B1-B
we let the vectorf be the following unit vector Step 3. Calculate matrixA and | Al
1. Compute matrixA = B, B,
fo =e@’). 2: Compute|lA|| and the number of Markov Chains
. . 0.6
We then can use the following MC method for calculating N = <s(1—m5||))
elements of the inverse matrid —1: Step 4. Calculate matrixP
1. Compute the probability matrixP, where pjj =
|aj |
mcD :
; w; |, 3 > k=1 laikl )
My ; ¥ ‘;r,) J ®) Step 5. Calculate matrixv, by MC on A and P
B = 1: Fori =1ton
where(j|sj = r’) means that only 1l'Forj=1toN )
Markov Chain MC Computation
Ars Asisp - - Asi_gs 1.1.1: SetWp = 1, point = i andSUMK] =
- , 1ifi =k
Prsi Psis; - - - Psj_1p; {Oifi;ék

: . . 1.1.2: Select anextpoint based on the tran-
Lo— !
for whichsj =r’ are included in the surg8). sition probabilities in P, such that

SinceW; is included only into the corresponding sum for Alpoinfj[nextpoint % 0
= 1,2, ...,n, then the same set i chains can be used 1.1.3: ComputeW; = W; Alpoinfl[nextpoini
. . . . . il I = YWj—1P[point[nextpoint
to compute a single row of the inverse matrix, which is one 1.1.4: SetSUMnextpoint — SUMInextpoint
of the inherent properties of MC making them suitable for "‘ P P

. + Wj
parallelisation. . ) 1.1.5:1f [Wj| > § setpoint = nextpointand
The probable error of the method, is defmed axy =
B gotol.1.2
0.6745/ 20 where P{ld — E()| < rn} ~ 5 ~ P{l§ - 1.2: Thenmiy = MKl fork = 1,2,...,n
E(0)| > rn}, if we haveN independent reahsatlons of random Setp 6. CalculateB~* -
variable (r.v.)9 with mathematical expectatidBs and average 1: Compute the MC inversB~* = MB; ™.
6 [18]. In Step 3, the chosen noriiA|| is essential for estimating

In the general casg|B| > 1, we make the initial split the number of Markov Chains to ensure a well-balanced
B = B—C. From this we computé = Bl‘le,Which satisfies algorithm (i.e. an algorithm for which the stochastic error is
I|All < 1 (by careful choice, oB, we make|| A < % which approximately equ_al to the systematic erral)) Nevertheless,
gives faster convergence). Then we generate the inveBé);af the particular choice of the norm does not reflect too much

(3). From this we wish to recoveB—L, which uses an iterative ©O" the efficiency of the algorithm since all matrix norms are
processk =n—1,n— .,0)on B 1 equivalent. While the implementation presented in this paper is

for dense matrices the algorithm also applies equally to sparse

-1 -1 and banded matrices.

-1_ p-1 By 1S+1Beiy
B.'=B,+ : 4)

k k+1 1_t g1 S

— trace
( k+1 +l) 2)f we, instead, had a non-diagonally dominant matrix then we would have
R 1 to extend the algorithm to do the initial splB, = B — C, and recovery(4), as

whereBn—l =B land By~ = B—1. explained in the previous section.
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4. Grid approach for Monte Carlo methods e Scheduling and control of many subtasks to different
compute resources.
When making an application available on the Grid, a strategye Grid software provides a complete framework with
has to be developed to gain maximum performance. The established protocols to manage a set of distributed tasks.
strategy used, which helps to maximise the advantages of the Well-established and mature security solutions ensure the

Grid, depends largely on the application itself. protection of users’ software and data.
There are some design issues to considéf Wwhen using e Grid software offer service-based workflow management
the grid for MC methods: where the whole task could be carried out without any

human intervention, hence providing a significant speed-up.

e Grid software could be used to efficiently hide the
complexities that arise from using heterogeneous hardware
resources.

e Investigation of cross-cluster parallelisation.
e Necessity of a checkpointing mechanism.
e Trustworthiness of the remote resource.

e Determination of the best approach to offer the MC method ) _ .
on the Grid. In this study, the Globus Toolkit was used, which offers

a framework using well-established protocols. Reasons for

The most important feature of MC methods for grid this choice included prior experience with the software and
computing is their stochastic nature, which provides a naturahe availability of a testbed with the Globus software already
parallelisation with very little inter-process communication. deployed. Similar results can be expected to be achieved using
This is a promising application area to achieve crossother software packages such as UNICORE, Condor-G and
cluster parallelisation with the help of libraries like MPICH- g-Lijte that also enable grid computing through well-defined
G [8]. From the point of the MC MI method, cross-cluster frameworks.
parallelisation can be quite expensive to employ. Although The Globus Toolkit provides a set of libraries and programs,
relatively little inter-process communication is required for MC which address the challenges presented by the distributed grid
MI methods as well, parallel processes of MC MI methodcomputing environment, including remote job submission and
need to work with the full matrix — the matrix needs to execution, data transfer, resource discovery and security. The
be transferred to every node of every cluster which makes ifatest version of the Globus Toolkit, version 4 (GT4],[
communicationally expensive and hence less feasible for thextensively uses Web services mechanisms to define its
Grid. interfaces. Taking advantage of well-defined Web service

An application specific checkpointing mechanism is thoughiprotocols and standards, XML-based mechanisms are used to
to be essential for many MC methods over the grid to increasglescribe and discover the network services which facilitate
the overall performance of the system. MC methods are CPlthe development of service-oriented architectures (SGR) [
intensive and may take quite long to complete. Any interruptiorThe GT4 framework provides all necessary components
would result in having to restart the same computation fromand associated services to develop a complete distributed
scratch. On the other hand, they are also easy to reconstruct asemputing application.
resume once the time step of the computation and the value are Security in a grid environment is a very important issue. Grid
known. This can easily be achieved by keeping an intermediatsecurity is provided by the Grid Security Infrastructure (GSI)
state of the computation in a database to recover and resumi®GT4 to guarantee secure grid-based operations. GSl is based
the computation from the point where it was checkpointedon public key cryptography. It provides two levels of security
This saves a substantial amount of CPU time once the task is- message-level security and transport-level security. For MC
rescheduled. However, any checkpointing mechanism for thill methods we are mainly interested in transport-level security,
MC MI method is an expensive process, since each checkpoimghich uses proxy certificates to ensure the privacy of the code
requires recording the current state of the matrix. and the data sets on remote resources.

When working on MC computations, the accuracy of
the result is influenced by the hardware and the compile®. Grid implementation
This can make the application sensitive to computational ) ) ) ) o )
errors. [L5] suggests the use of cross-checking of the data for In this section we conS|der. various grid implementations
the trustworthiness of the remote resource. For time critical?” the MC MI method. Single cluster and workflow
applications, this is not a viable option. Our suggestion is to usénPlementations are analysed and an MC Linear Algebra (LA)
certain remote resources where trustworthiness is guaranteddid service implementation is suggested. Running the MC
This could easily be achieved by using custom MC grid serviceM! method in a multicluster environment is not investigated
attached to trusted remote resources. It is also related to tf$ cross parallelisation of the MC MI method is theoretically

fourth item on the above list — how best to offer the MC M 00 €xpensive to employ. When using the WS-GRAM job
method over the Grid. Using Grids promises a lot for MC MI submission service directly the code and the data set is assumed

method as listed below: not to be avai!able on the remote resource.
For the grid-enabled MC MI method GT4's WS-GRAM
e Grid technologies provide access to compute resources i§ervice plays an important role. WS-GRAM provides the
a virtual organisation, enabling the supply of necessargybmission of the code on remote resourcgisas well as
compute power whenever needed. file stage-in and stage-out facilities for job submission using

Please cite this article in press as: S. Branford, et al., Monte Carlo methods for matrix computations on the grid, Future Generation Computer Systems (2007),
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<job>
<executable>matrix</executable>
<directory>//home/biol/testl</directory>
<argument>A-10</argument>
<argument>0.2</argument>
<argument>0.2</argument>
<environment>
<name>LD_LIBRARY_PATH</name>
<value>$LD_LIBRARY_PATH:/opt/intel/fc/9.0/1lib</value>
</environment>
<stdout>out.1</stdout>
<stderr>err.1</stderr>
<jobType>single</jobType>
<fileStageln>
<transfer>
<sourceUrl>gsiftp://machine:2811/home/biol/A-10</sourcelUrl>
<destinationUrl>file:////home/biol/test1/A-10</destinationUrl>
</transfer>
</fileStageIn>
<fileStageOut>
<transfer>
<sourceUrl>gsiftp://machine:2811/home/biol/test1/out.1</sourcelrl>
<destinationUrl>gsiftp://machine:2811/home/biol/out.machinei</destinationUrl>
</transfer>
</fileStagelut>
</job>

Fig. 1. An example job description file.

Each sub-job is a
separate Grid job

e arrows show
@ the flow of data

Fig. 2. Running the job using a workflow.

GT4's Reliable File Transfer service. WS-GRAM also providesscheduler and the number of processors needed) has all the
stateful monitoring of the jobs on the remote resources, with énformation for the job to run on the remote compute resource.
control over the jobs (cancel, hold, resume, etc.) and comes with

credential management as the security in a grid environment 1. Workflow method

vital. The ManagedJobFactoryService that ships with GT4,

provides the scheduling of the application on different types of Another possibility is to run the MC MI code as part of a
schedulers like fork. PBS. Condor and LSF. workflow system, as demonstrated fig. 2. This is a more
' ' realistic approach, as the MC MI method is mostly used as

rpart of a bigger application or several MC Ml instances are run

; simultaneously to achieve a more accurate result. Such systems

Service need to exchange data, hence the need to behave as part of
WS-GRAM job submission uses a job description file (JDF)a bigger system. This could be easily achieved by using grid

which defines the requirements of the job to run. An examplevorkflow systemsZ4].

JDF is shown irFig. 1 A possible workflow scenario is the simultaneous runs of the

MC MI simulations on different resources to achieve a more

In the simplest case, the MC MI executable is submitted fo
execution on a remote cluster using ManagedJobFactory-

The example JDHrig. 1, defines a single job because the
executable for the platform is assumed to be ready prior ggocurate result:
submission. JDFs also facilitate the preparation of multijob(1) The client defines the workflow including how many MC
definition files in case a compilation prior to execution is Ml simulations need to be scheduled.
needed on the remote platform. Note also that theType = (2) GT4 resource discovery service (MDS) provides the
element is ‘single’ which indicates a sequential job. The JDF, available resources in the virtual organisation. The subtasks
which contains XML-based job specifications (including input  are scheduled to the remote resources by the availability of
and output files, execution information like the name of the  their computing power, using GT4 GRAM service.

Please cite this article in press as: S. Branford, et al., Monte Carlo methods for matrix computations on the grid, Future Generation Computer Sysiems (200
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(3) GRAM also stages the input data into the resource by using Client
GT4's RFT service.
(4) The JDF has all the information on how to run the code on

the remote resource. Following the execution of the code,

output data is staged to the local resource or to a data server

as stated in the workflow description, to generate the final

result. MCLAGridServicd

5.2. Monte Carlo linear algebra grid service

. Resource
So far, the WS-GRAM servic®lanagedJobFactorySer-

vice is used to submit and monitor the job on remote clusters.
Another option is to implement the MC LA methods as a dedi-
cated grid service. The MC LA grid service ties the service onto
the resource where it is deployed, providing certain advantages; 2. Fault tolerance
e Trustworthiness is guaranteed by deploying the service only
on trusted resources. MC algorithms, by their very nature, make it easy to
e The grid service, which should be easy to use, provides énplement fault tolerance (FT)LB]. One method is to compute
black box for users where they simply provide their matricess% or 10% more chains than required, and just use the results

Fig. 3. MC LA grid service used for matrix inversion.

as input and get its inverse as output. from the successful nodes if one or more nodes fail. The easiest
e Code complexities are hidden with the code and librariesmplementation would be to ignore failed nodes and just carry
already available on the deployed resource. on with the results returned from the working nod&225].

e Better optimised runs can be expected as the code would The MPI 1.x standard 1J7] describes how the MPI
be tuned to the underlying hardware and with the use ofmplementation could handle node failures by overriding the
optimised compilers and random number generators. error handler withMPI_Comm_set_errhandler (). The error

e Additional MC LA methods could be added to the servicehandlerMPI_ERRORS_ARE_FATAL is used by default, and this
where users could query MC LA specific information handler causes all nodes to stop if just one node fails. Changing
through the information services. it to MPI_ERRORS_RETURN would allow MPI to ignore the
The MC LA grid service could be plugged into bigger failed nodes and the Monte Carlo algorithm could finish the

applications as part of a workflow management system that@lculation. However, this feature is not implemented in the

would return the result in an efficient and trusted manner. ~ Most popular MP1 1.x implementations. Most grid systems use,
A certain disadvantage is that the MC LA grid service limits OF are based on, MPICH.B,11] or LAM-MPI[3,19). However,

the use of the available resources in the virtual organisation. i the best of our knowledge these two currently do not support

also requires extra work, including the installation, maintenanc& - We hope that in the future production grids will move to

and upgrade of the MC LA grid service in each resource it igmplementations which support FT. This would allow us to
deployed on. better exploit the natural features of MC algorithms.
The client in Fig. 3 represents a human or software

interaction. The MC LA grid service will be implemented in 6.3. Binary search

the future. A large part of the time the MC method needs to compute the

6. Implementation solution is spent on finding and jumping to the next element in
the matrix. The next element is chosen based on a probability

6.1. Load balancing parallel algorithm matrix. To improve the implementation of this section of the

algorithm a binary search algorithm was implementef.[The
binary search only needs logsteps to find the next element
compared to a standard linear search algorithm which would

Working from the algorithm presented in Sect®we arrive
at the following load-balancing parallel algorithm for MC MI:

1. The master process carries out Steps 1-4. need on average/2 steps.
2. The master process broadcast#\, P, Psum ands.
3. Each process carries out a part of the Markov chains. 6.4. Results
4. Each process returns the time taken for the first part of chains
to the master process. The results were obtained using an SGI Prism system

5. The master process distributes the remaining chains betwe@guipped with eight Intel Itanium Il 1.5 GHz processors and
the processes, balancing the number of chains to be dorlé GB main memory. The code was compiled using the Intel
by each process based on the time taken for the first part dfortran Compiler 9, and the variables were stored at double

chains. precision.
6. Each process completes a proportion of the remaining The input matrices were randomly generated diagonally
Markov chains. dominant matrices of size 500—-6000. As the MC algorithm
7. The master process collects the MC calculations. requires a copy of the matrix on each node, the available
8. The master process carries out Step 6. memory on the test machine limits us to dense problems of at

Please cite this article in press as: S. Branford, et al., Monte Carlo methods for matrix computations on the grid, Future Generation Computer Systems (2007),
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Table 1 In the future we are looking at expanding on this grid MC
Timing for the Monte Carlo algorithm MI method by looking at other grid MC methods. Possibilities
Proc 500 1000 2000 3000 4000 5000 gooo include MC MI methods for different types of matrices,
MC methods to solve SLAE, and MC methods for finding

1 80.26 283.51 814.08 1421.55 2098.96 3016.95 3782.21 . | The Monte Carlo algorith ted h .
2 4194 157.60 751.16 81352 1202.88 1679.44 19g2.10c'9€nvalues. The Monte Carlo algorthm presented here IS
3 33.78 103.45 34137 52824 77568 1081.43 1680.76'€levant for sparse and banded matrices — it is only necessary
4 2339 91.05 25494 38820 563.18 94549 998.69t0 adjust the implementation to optimise the code for such
5 18.27  60.60 179.47 31091 488.13 635.08 869.96problems. A combination of these methods could then be
6 1r20 5236 15519 27215 405.34  613.82  842.11fereq as a grid MC service, available for scientists to use in
7 1556 4461 13344 25000 35441 47557 64257 . lication
8 1220 3916 11492 20504 30457 42004 570.17 €Il applications.
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