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Abstract

The question ‘‘what Monte Carlo models can do and cannot do efficiently’’ is discussed for some functional spaces that
define the regularity of the input data. Data classes important for practical computations are considered: classes of func-
tions with bounded derivatives and Hölder type conditions, as well as Korobov-like spaces.

Theoretical performance analysis of some algorithms with unimprovable rate of convergence is given. Estimates of
computational complexity of two classes of algorithms – deterministic and randomized for both problems – numerical mul-
tidimensional integration and calculation of linear functionals of the solution of a class of integral equations are presented.
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1. Introduction: definitions and basic notations

The Monte Carlo method is a powerful tool in many fields of mathematics, physics and engineering. It is
known that the algorithms based on this method give statistical estimates for any linear functional of the solu-
tion by performing random sampling of a certain random variable (r.v.) whose mathematical expectation is
the desired functional.

The Monte Carlo method is a method for solving problems using random variables. In [1] one can find the
following definition of the Monte Carlo method.

Definition 1.1. The Monte Carlo method consists of solving various problems of computational mathematics
by means of the construction of some random process for each such problem, with the parameters of the
process equal to the required quantities of the problem.
0307-904X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.apm.2007.04.010

* Corresponding author.
E-mail addresses: emanouil@parallel.bas.bg (E. Atanassov), I.T.Dimov@reading.ac.uk (I.T. Dimov).
URL: http://www.personal.reading.ac.uk/sis04itd/ (E. Atanassov).

Please cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
efficiently?, Appl. Math. Modell. (2007), doi:10.1016/j.apm.2007.04.010

mailto:emanouil@parallel.bas.bg
mailto:I.T.Dimov@reading.ac.uk
http://www.personal.reading.ac.uk/sis04itd/


2 E. Atanassov, I.T. Dimov / Applied Mathematical Modelling xxx (2007) xxx–xxx

ARTICLE IN PRESS
The method can guarantee that the error of Monte Carlo approximation is smaller than a given value with
a certain probability. So, Monte Carlo method always produces an approximation of the solution, but one can
control the accuracy of this solution in terms of probability error.

Let us introduce some notations used in the paper: the mathematical expectation of the r.v. n or h is
denoted by El(n), El(h) (sometimes abbreviated to En, Eh); the variance by D(n), D(h) (or Dn, Dh) and the
standard deviation by r(n), r(h) (or rn, rh). We shall let c denote the random number, that is a uniformly
distributed r.v. in [0, 1] with E(c) = 1/2 and D(c) = 1/12. We shall further denote the values of the random
point n or h by ni, hi ði ¼ 1; 2; . . . ; nÞ respectively. If ni is a d-dimensional random point, then usually it is con-
structed using d random numbers c, i.e., ni � ðcð1Þi ; . . . ; cðdÞi Þ. The density (frequency) function will be denoted
by p(x). Let the variable J be the desired solution of the problem or some desired linear functional of the solu-
tion. A r.v. n with mathematical expectation equal to J must be constructed: En = J. Using n independent val-
ues (realizations) of n : n1; n2; . . . ; nn, an approximation �nn to J : J � 1

n ðn1 þ � � � þ nnÞ ¼ �nn, can then be
computed. The following definition of the probability error can be given:

Definition 1.2. If J is the exact solution of the problem, then the probability error is the least possible real
number Rn, for which
1 Ma
from t

Plea
effic
P ¼ Prfj�nn � J j 6 Rng; ð1Þ

where 0 < P < 1. If P = 1/2, then the probability error is called probable error.

The probable error is the value rn for which
Prfj�nn � J j 6 rng ¼
1

2
¼ Prfj�nn � J jP rng:
So, dealing with randomized algorithms one has to accept that the result of the computation can be close to
the real value only with a certain probability. Such a setting of the problem of error estimation may not be
acceptable if one needs a guaranteed accuracy or strictly reliable results. But in the most cases it is reasonable
to accept an error estimate with a probability smaller than 1. In fact, we shall see that this is a price paid by
randomized algorithms to increase their convergence rate. It is important to note here that the value of the
probability P (0 < P < 1) in (1) does not reflect on the rate of convergence of the probability error Rn. It re-
flects only on the constant. That is why the choice of the value of P is not important for the convergence rate
(respectively, for the rate of algorithmic complexity). Nevertheless, for practical computations it may be of
great importance to have the value of the constant in order to get the number of operations for a given algo-
rithm. Two examples of such estimates are presented in Section 2.4, and one more example is given in Section
3.4.

The year 1949 is generally regarded as the official birthday of the Monte Carlo method when the paper of
Metropolis and Ulam [2] was published, although some authors point to earlier dates. Ermakov [3], for exam-
ple, notes that a solution of a problem by the Monte Carlo method is contained in the Old Testament. In 1777
G. Compte de Buffon posed the following problem: suppose we have a floor made of parallel strips of wood,
each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across
a line between two strips [4]? The problem in more mathematical terms is: given a needle of length l dropped
on a plane ruled with parallel lines t units apart, what is the probability P that the needle will cross a line? (see
[4,5]). He found that P = 2l/(pt). In 1886, Marquis Pierre–Simon de Laplace showed that the number p can be
approximated by repeatedly throwing a needle onto a lined sheet of paper and counting the number of inter-
sected lines (see [5]). The development and intensive applications of the method is connected with the names of
John von Neumann, E. Fermi and G. Kahn, who worked at Los Alamos (USA) for 40 years for the Manhat-
tan project.1 The development of modern computers, and particularly parallel computing systems, provided
fast and specialized generators of random numbers and gave a new momentum to the development of Monte
Carlo algorithms.
nhattan Project refers to the effort to develop the first nuclear weapons during World War II by the United States with assistance
he United Kingdom and Canada.
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There are many algorithms using this essential idea for solving a wide range of problems. In our consider-
ation we use both Monte Carlo and randomized algorithms as equivalent concepts. The randomized algorithms
are currently widely used for those problems for which the deterministic algorithms hopelessly break down:
high-dimensional integration, integral and integro-differential equations of high dimensions, boundary-value
problems for differential equations in domains with complicated boundaries, simulation of turbulent flows,
studying of chaotic structures, etc. An important advantage of the Monte Carlo algorithms is that they permit
the direct determination of an unknown functional of the solution, in a given number of operations equivalent
to the number of operations needed to calculate the solution at only one point of the domain [6–8]. This is very
important for some problems of applied science. Often, one does not need to know the solution on the whole
domain in which the problem is defined, but only a part of the solution or even the solution at a given point.
Usually, it is only necessary to know the value of some functional of the solution. Problems of this kind can be
found in many areas of applied sciences. For example, in statistical physics, one is interested in computing
linear functionals of the solution of the equations for density distribution function (such as Boltzmann, Wig-
ner or Schroedinger equation), i.e., probability of finding a particle at a given point in space and at a given
time (integral of the solution), mean value of the velocity of the particles (the first integral moment of the
velocity) or the energy (the second integral moment of the velocity) and, so on.

It is well known that Monte Carlo algorithms are very efficient when parallel processors or parallel com-
puters are available. Indeed these algorithms are inherently parallel and have minimum dependency. In addi-
tion, they are also naturally vectorizable when powerful vector processors are used. Nevertheless, the problem
of parallelization of the Monte Carlo algorithms is not a trivial task because different kinds of parallelization
can be used. To find the most efficient parallelization in order to obtain a high value of the speed-up of the
algorithm is an extremely important practical problem in scientific computing [8,9,7].

Monte Carlo algorithms have proved to be very efficient in solving multidimensional integrals in composite
domains [10–12,7,13]. The problem of evaluation integrals of high dimensionality is important since it appears
in many applications of control theory, statistical physics and mathematical economics. For instance, one of
the numerical approaches for solving stochastic systems in control theory leads to a large number of multidi-
mensional integrals with dimensionality up to d = 30.

There are two main directions in the development and study of Monte Carlo algorithms. The first is Monte
Carlo simulation, where algorithms are used for simulation of real-life processes and phenomena. In this case,
the algorithms just follow the corresponding physical, chemical or biological processes under consideration. In
such simulations Monte Carlo is used as a tool for choosing one of many different possible outcomes of a par-
ticular process. For example, Monte Carlo simulation is used to study particle transport in some physical sys-
tems. Using such a tool one can simulate the probabilities for different interactions between particles, as well
as the distance between two particles, the direction of their movement and other physical parameters. Thus,
Monte Carlo simulation could be considered as a method for solving probabilistic problems using some kind
of simulations of random variables or random fields.

The second direction is Monte Carlo numerical algorithms. Monte Carlo numerical algorithms are can be
used for solving deterministic problems by modeling random variables or random fields. The main idea is to
construct some artificial random process and to prove that the mathematical expectation of the process is
equal to the unknown solution of the problem or to some functional of the solution. Usually, there are more
than one possible ways to create such an artificial process. After finding such a process one needs to define an
algorithm for computing values of the r.v. The r.v. can be considered as a weight of a random process (usually,
a Markov process). Then, the Monte Carlo algorithm for solving the problem under consideration consists in
simulating the Markov process and computing the values of the r.v.

This paper will be primary concerned with Monte Carlo numerical algorithms. We will concentrate on two
important problems of numerical analysis: evaluation of integrals and linear functionals of integral equations.
Moreover, we shall focus on the performance analysis of the algorithms under consideration. Some important
results from this point of view can be found in [14,9,7,15–17]. We should say that the performance analysis of
the algorithms is closely connected with the error analysis in functional spaces. Our consideration will allow
comparisons between deterministic and randomized algorithms. We are going to discuss the unimprovable
limits of the complexity of two big classes of algorithms for computing both integrals and integral equations.
Having these unimprovable rates another important question arises: which one of the existing algorithms
Please cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
efficiently?, Appl. Math. Modell. (2007), doi:10.1016/j.apm.2007.04.010



4 E. Atanassov, I.T. Dimov / Applied Mathematical Modelling xxx (2007) xxx–xxx

ARTICLE IN PRESS
reaches these unimprovable rates? Another interesting problem will be: if there are no algorithms reaching
these unimprovable rates, then develop new algorithms with such optimal behaviours. In this paper we will
refer to some results and show some algorithms with unimprovable rates, but we are not going to formulate
new algorithms with optimal behaviours.

There are two big classes of Monte Carlo numerical algorithms: direct and iterative. A typical case of direct
Monte Carlo algorithms is the case of Monte Carlo integration. Iterative randomized algorithms are used for
calculating linear functionals of the solution of integral equations. Define an iteration of order 0.2 mm i as a
function of the following form:
Plea
effic
uðkþ1Þ ¼ F kðA; b; uðkÞ; uðk�1Þ; . . . ; uðk�iþ1ÞÞ;

where u(k) is obtained from the kth iteration. It is desired that u(k)! u = A�1b as k!1. The method is called
stationary if Fk = F for all k, that is, Fk is independent of k. The iterative process is called linear if Fk is a linear
function of uðkÞ; . . . ; uðk�iþ1Þ. Here we will be interested in stationary linear iterative Monte Carlo algorithms.

Consider a general description of the iterative Monte Carlo algorithms. Let F be a Banach space of real-
valued functions. Let f = f(x) 2 F and uk = u(xk) 2 F be defined in a close domain G � Rd and L = L(u) be
a linear operator defined on F. Consider the sequence u1; u2; . . . ; defined by the recursion formula
uk ¼ Lðuk�1Þ þ f ; k ¼ 1; 2; . . . ð2Þ
The formal solution of (2) is the truncated Neumann series
uk ¼ f þ Lðf Þ þ � � � þ Lk�1ðf Þ þ Lkðu0Þ; k > 0; ð3Þ

where Lk means the kth iterate of L.

As an example consider the integral iterations. Let u(x) 2 F, x 2 G � Rd and l(x,x 0) be a function defined
for x 2 G, x 0 2 G. The integral transformation LuðxÞ ¼

R
G lðx; x0Þuðx0Þdx0 maps the function u(x) onto the func-

tion Lu(x), and is called an iteration of u(x) by the integral transformation kernel l(x,x 0). The second integral
iteration of u(x) is denoted by LLu(x) = L2u(x). Obviously, L2uðxÞ ¼

R
G

R
G lðx; x0Þlðx0; x00Þdx0 dx00. In this way

L3uðxÞ; . . . ; LiuðxÞ; . . . can be defined. When the infinite series converges, the sum is an element u from the space
F which satisfies the equation
u ¼ LðuÞ þ f : ð4Þ

The truncation error of (3) is uk � u = Lk(u0 � u). Let J(uk) be a functional that has to be calculated. Consider
the spaces
Tiþ1 ¼ Rd � Rd � . . .� Rd|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i times

; i ¼ 1; 2; . . . ; k; ð5Þ
where ‘‘·’’ denotes the Cartesian product of spaces.
Random variables hi; i ¼ 0; 1; . . . ; k are defined on the respective product spaces Ti+1 and have conditional

mathematical expectations
Eh0 ¼ Jðu0Þ; Eðh1=h0Þ ¼ Jðu1Þ; . . . ;Eðhk=h0Þ ¼ JðukÞ;

where J(u) is a functional of u. The computational problem then becomes one of calculating repeated realiza-
tions of hk and combining them into an appropriate statistical estimator of J(uk).

As an approximate value of the linear functional J(uk) is set up
JðukÞ �
1

n

Xn

s¼1

fhkgs; ð6Þ
where {hk}s is the sth realization of the r.v. hk.
Note that the nature of the every process realization of h is a Markov process. We will consider only discrete

Markov processes with a finite set of states, the so called finite discrete Markov chains. Such kind of chains are
used to compute linear functionals of the solution of integral equations.
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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Definition 1.3. A finite discrete Markov chain Ti is defined as a finite set of states fk1; k2; . . . ; kig.

At each of the sequence of times t ¼ 0; 1; . . . ; i; . . . the system Ti is in one of the following states kj. The state
kj determines a set of conditional probabilities pjl, such that pjl is the probability that the system will be in the
state kl at the (s + 1)th time given that it was in state kj at time s. Thus, pjl is the probability of the transition
kj) kl. The set of all conditional probabilities pjl defines a transition probability matrix P ¼ fpjlg

i
j;l¼1, which

completely characterizes the given chain Ti.

Definition 1.4. A state is called absorbing if the chain terminates in this state with probability one.

In the general case, iterative Monte Carlo algorithms can be defined as terminated Markov chains
Plea
effic
T ¼ kt0
! kt1

! kt2 ! � � � ! kti ; ð7Þ
where ktq ðq ¼ 1; . . . ; iÞ is one of the absorbing states. This determines the value of some function F(T) = J(u),
which depends on the sequence (7). The function F(T) is a r.v. After the value of F(T) has been calculated,
the system is restarted at its initial state kt0 and the transitions are begun anew. A number of n independent runs
are performed through the Markov chain starting from the state st0

to any of the absorbing states. The average
1

n

X
T

F ðT Þ ð8Þ
is taken over all actual sequences of transitions (7). The value in (8) approximates E{F(T)}, which is the re-
quired linear form of the solution.

We also will be interested in performance analysis of algorithms. The performance analysis deals with com-

putational cost of the algorithms.

Definition 1.5. Computational cost of a randomized iterative algorithm AR is defined by
sðARÞ ¼ nEðqÞt0;
where E(q) is the mathematical expectation of the number of transitions in the sequence (7) and t0 is the mean
time needed for value of one transition.

In case of Monte Carlo integration, which is a direct randomized algorithm we have E(q) = 1 and the cost is
a product of the number of values of the r.v. and the mean time needed to produce one value of the r.v.

Dealing with randomized algorithms, the general approach one could follow is:

• Define the problem under consideration and give the conditions that need to be satisfied to obtain a unique
solution.

• Construct a random process and prove that such a process can be used for obtaining the approximate solu-
tion of the problem.

• Estimate the statistical error of the method.
• Try to find the optimal (in some sense) algorithm, that is to choose the random process for which the sta-

tistical error is minimal.
• Choose the parameters of the algorithm (such as the number of the values of the r.v., the length (number of

states) of the Markov chain and, so on) in order to provide a good balance between the statistical and the
systematic errors.

• Obtain a priori estimates for the speed-up and the parallel efficiency of the algorithm when parallel or vector

processors are used.

In this paper we will not go in details in choosing parameters of the algorithms as it is done in our paper
[14]. We also are not going to obtain a priori estimates for the speed-up and the parallel efficiency of the algo-
rithms under consideration. Some results in this direction are given in [8,9,7]. The above mentioned questions
are important, but they are considered in other works. Here we shall concentrate on comparing two classes of
algorithms – deterministic and randomized from a point of view of their performance for fixed classes of the
input data of the problem, i.e., for a priori given smoothness.
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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The question: what Monte Carlo can do and cannot do efficiently? frequently arises among people dealing
with numerical methods, scientific computing and applications of mathematics in theoretical and applied
sciences. Often if there are two algorithms people are interested which one is better. What means better in
the case when one cannot get the exact solution of the problem and one is happy to have an e-approximation
to the true solution? Obviously, one will call better the algorithm, which produces the e-approximation to the
solution with a fixed probability faster. We assume that an algorithm that uses smaller number of operations is
executed faster, and thus we measure the speed of the algorithm with the number of operations required.

Definition 1.6. Consider the set A, of algorithms, A
Plea
effic
A ¼ fA : PrðRn 6 eÞP cg

that solve a given problem with a probability error Rn such that the probability that Rn is less than a priori
given constant e is bigger than a constant c < 1. The algorithms A 2A with the smallest computational cost
will be called optimal.

We have to be more careful if we have to consider two classes of algorithms instead of just two algorithms.
One can state that the algorithms of the first class are better than the algorithms of the second class if:

• one can prove that some algorithms from the first class have a certain rate of convergence and
• there is no algorithm belonging to the second class, which can reach such a rate.

The important observation here is that the lower error bounds are very important if we want to compare
classes of algorithms.

By x ¼ ðx1; . . . ; xdÞ we denote a point in the domain G � Rd , where Rd is d-dimensional Euclidean space.
The d-dimensional unite cube is denoted by Ed = [0, 1]d.

By f(x), h(x), u(x), g(x) we denote functions of d variables belonging to some functional spaces. The inner
product of functions h(x) and u(x) is denoted by ðh; uÞ ¼

R
G hðxÞuðxÞdx. J(u) denotes a linear functional of u. If

X is some Banach space and u 2 X, then u* is the conjugate function belonging to the dual space X*. The space
of functions continuous on G are denoted by C(G). C(k)(G) is the space of functions u for which u(k) 2 C(G). As
usual kf kLq

¼ ð
R

G f qðxÞpðxÞdxÞ1=q denotes the Lq-norm of f(x).

Definition 1.7. Hk(a,G) is the space of functions for which jf(x) � f(y)j 6 ajx � yjk.

Definition 1.8. Wr(a; G) is a class of functions f(x), continuous on G with partially continuous rth derivatives,
such that jDrf(x)j 6 a, where Dr ¼ Dr1

1 . . . Drd
d is the rth derivative, r ¼ ðr1; r2; . . . ; rdÞ; jrj ¼ r1 þ r2 þ � � � þ rd ,

and Di ¼ o
oxðiÞ

.

Definition 1.9. The Wr
q-norm is defined as
kf kr
Wq
¼

Z
G
ðDrf ðxÞÞqpðxÞdx

� �1=q

:

Definition 1.10. Define the class H r
kða;GÞ; ð0 < k 6 1Þ of functions from Cr, which derivatives of order r sat-

isfy the Hölder condition with a parameter k
H r
kða;GÞ � f 2 Cr : jDrf ðy1; . . . ; ydÞ � Drf ðz1; . . . ; zdÞj 6 a

Xd

j¼1

jyj � zjjk
( )

:

The analysis, studying and finding the number of operations (or the computational cost) we call perfor-

mance analysis. So, the performance analysis deals with the computational cost of algorithms. It should be
mentioned here that the performance analysis is connected with the complexity that will be defined latter in
Section 2.2. The complexity characterizes the problem for a given class of algorithms and not the algorithms.
In Section 2, we will show how the computational cost is connected with the complexity.
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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2. Computational cost and complexity of integration

We will consider a numerical problem as a mapping
Plea
effic
S : F 0 ! R;
where F0 � F and F is some Banach space. We will call S a solution operator following [18]. The elements of F0

are the data, for which the problem has to be solved; and for f 2 F0, S(f) is the exact solution. For a given f 2 F

we want to compute (or approximate) S(f).

2.1. Problem of integration

Let us consider the following problem of integration:
SIðf Þ ¼
Z

Ed
f ðxÞdx;
where Ed � ½0; 1�d ; x � ðx1; . . . ; xdÞ 2 Ed � Rd and f 2 C(Ed) is an integrable function on Ed.
The computational problem can be considered as a mapping of function f : f½0; 1�d ! Rdg to R [18]:

SIðf Þ : f ! R, where SIðf Þ ¼
R

Ed f ðxÞdx and f 2 F0 � F � C(Ed). For a given f we want to compute (or
approximate) SI(f). We will be interested to consider subsets F0 of C(Ed) and try to study how the smoothness
of F0 can be exploited.

Many problems in science and finance lead to high-dimensional integration and it is not an easy task to
select a good (or the best, if possible) algorithm to handle the problem when f belongs to a given functional
space.

2.2. Computational model

We will call a quadrature formula any expression of the following kind:
AI ¼
Xn

i¼1

cif ðxiÞ;
which approximates the value of the integral SI(f). The real numbers ci 2 R are called weights and d dimen-
sional points xi 2 Ed are called nodes.

It is clear that for fixed weights ci and nodes xi the quadrature formula AI may be used to define an algo-
rithm. The algorithm AI belongs to the class of deterministic algorithms A. It is assumed that for each inte-
grand f 2 F0 the program can access an oracle O(f, t) that provides information about f. This information
consists of values at f of linear functionals on F. In our particular case, f is a function defined on the domain
Ed � Rd . At input t ¼ ðt1; . . . ; tdÞ the oracle O(t, f) is supposed to provide the value f(t) [18].

We call a randomized quadrature formula any formula of the following kind:
AR
I ¼

Xn

i¼1

rif ðniÞ;
where ri and ni are random weights and nodes.
To obtain random nodes and weights a pseudo-random generator (PRG) is used (in fact, pseudo-random

generators are widely used [19–22]). It is assumed that PRG produces a sequence of independent, uniformly
distributed over the domain [0,1]d random variables (as defined in Section 2.7) niðxÞ; i ¼ 1; 2; . . . ; niðxÞ �
ðc1; . . . ; cdÞ on some probability space (X,R,l). More precisely, when the algorithm calls PRG-instruction,
the number n1(x) is produced; the second PRG-call produces n2(x), etc.. The dependence of the values pro-
duced is given through the dependence on x 2 X (and the probability l on (X,R)).

The computational cost of the algorithm AI at x will be denoted by s(AI, f). In the case of randomized algo-
rithms the computational cost will be denoted by sðAR

I ; f ;xÞ. The computational cost is the sum of the cost of
all instructions carried out, where arithmetic floating point operations, comparisons, PRG-calls are assumed
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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to be of unit cost. As a good approximation we can also use the sum of the cost of all floating point instruc-
tions, since they are more easier to be estimated, while the integer arithmetic and logical operations may
depend on the particular compiler settings. We refer for more details to [15,23,17]. The computational cost
of a deterministic algorithm A will be defined as
Plea
effic
sðAÞ ¼ sup
f2F 0

sðA; f Þ:
For a randomized algorithm AR we will have the expected number of instructions
sðARÞ ¼ sup
f2F 0

ElsðAR; f ;xÞ:
For a given positive e the e-complexity of the integration problems SI and SR
I are defined as follows:
CeðSIÞ ¼ inf
A2A
fsðAIÞ : rðAIÞ 6 eg
and
CeðSR
I Þ ¼ inf

AR2AR
fsðAR

I Þ : rðAR
I Þ 6 eg;
where the errors r(AI) and rðAR
I Þ are defined in Section 2.3. As a good measure of the cost can be considered
sðAI ; f Þ ¼ knþ c;

sðAR
I ; f ;xÞ ¼ kRnþ cR;
where n is the number of nodes and k,kR are constants depending on the function f, dimensionality d and on
the domain of integration (in our case on Ed) and constants c and cR depend only on d and on the regularity
parameter of the problem (in the case of H p

kða;GÞ-on p + k). These constants describe the so-called preprocess-
ing operations, i.e., operations that are needed to be performed beforehand.

2.3. Error analysis results in functional spaces

Generally, we assume that the problem of integration is not solved exactly, that is SI(f) differs from AI(f).
We define the error as
rðAIÞ ¼ sup
f2F 0

jSIðf Þ � AIðf Þj
in the deterministic case and as
rðAR
I Þ ¼ sup

f2F 0

EljSIðf Þ � AR
I ðf ;xÞj ¼ sup

f2F 0

Z
Ed
jSIðf Þ � AR

I ðf ;xÞjdlðxÞ
(where AI(f,x) is R-measurable in x for each f) in the randomized case.
To get error estimates we will use some results of Bakhvalov and Korobov [24–28].
Let us now define the subset F0: Let d, p be integers, and d,p P 1. Consider the class Cp of real functions f

defined over the unit cube Ed � [0, 1]d, possessing all the partial derivatives
Drf ¼ orf ðxÞ
oxr1

1 . . . oxrd
d

; r1 þ . . .þ rd ¼ r 6 p;
which are continuous when r < p and bounded in sub norm when r = p. The semi-norm k.k on Cp is defined as
kf k ¼ supfjDpf j; jr1; . . . ; rd j ¼ p; x � ðx1; . . . ; xdÞ 2 Edg:

Now define the class H p

kða;EdÞ; ð0 < k 6 1Þ of functions from Cp, which derivatives of order p satisfy Hölder
condition with a parameter k
H p
kða;EdÞ � f 2 Cp : jDpf ðy1; . . . ; ydÞ � Dpf ðz1; . . . ; zdÞj 6 a

Xd

j¼1

jyj � zjjk
( )

:
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So, first we set
Plea
effic
F 0 � H p
kða;EdÞ:
In [24], Bakhvalov proved the following theorem:

Theorem 2.1 (Bakhvalov [24]). For any deterministic way of evaluation the integral
sup
f2Hp

k
ða;Ed Þ

rðAIÞP c0ðd; p þ kÞan�
pþk

d ð9Þ
and for any randomized way of evaluation the integral
sup
f2Hp

k
ða;Ed Þ

rðARÞP c00ðd; p þ kÞan�
pþk

d �
1
2: ð10Þ
The constants c 0(d,p + k) and c 0(d,p + k) depend only on d and p + k.

The proof of the Bakhvalov’s theorem is obtained by using a special construction allowing to obtain lower-
bound estimates [24–26,29]. This theorem gives the best possible order in the class of deterministic algorithms
A, as well as in the class of randomized algorithms AR.

In our work [14] we construct two algorithms AR
1 and AR

2 of randomized settings AR: and for both of them
the best possible rate (10) is reached. In fact, in [14] we consider the class Wp(a,Ed), but the proposed algo-
rithms allow to extend easily the estimates for the functional class H p

kða;EdÞ, where 0 < k 6 1. Later we shall
show how this could be done. Here we will give an example of two optimal algorithms with unimprovable rate
of convergence.

For each integer q,d,p P 1 we define a Monte Carlo integration formula, depending on an integer param-

eter m P 1 and
d þ p � 1

d

� �
points in Ed in the following way:

The
d þ p � 1

d

� �
points x(r) have to fulfill the condition that if for some polynomial P(x) of combined

degree less than p
P ðxðrÞÞ ¼ 0;
then P � 0. Let n = qd, q P 1. We divide the unit cube Ed into qd disjoint cubes Ed ¼
Sn

j¼1Kj, where Kj ¼Qd
i¼1½a

j
i ; b

j
iÞ, with bj

i � aj
i ¼ 1

q for all i ¼ 1; . . . ; d: Now in every cube Kj we calculate the coordinates of

d þ p � 1
d

� �
points y(r), defined by yðrÞi ¼ ar

i þ 1
n xðrÞi .

Suppose, we select m random points nðj; sÞ ¼ ðn1ðj; sÞ; . . . ; ndðj; sÞÞ from each cube Kj, such that all ni(j, s)
are uniformly distributed and mutually independent, calculate all f(y(r)) and f(n(j, s)) and consider the
Lagrange interpolation polynomial of the function f at the point z, which uses the information from the func-
tion values at the points y(r). We call it Lp(f,z). For all polynomials P of degree at most p � 1 we have
Lk(p,z) � z.

We approximate
Z
Kj

f ðxÞdx � 1

mn

Xm

s¼1

ðf ðnðj; sÞÞ � Lpðf ; nðj; sÞÞÞ þ
Z

Kj

Lkðf ; xÞdx:
Then we sum these estimates over all j ¼ 1; . . . ; n to achieve
Iðf Þ � 1

mn

Xn

j¼1

Xm

s¼1

ðf ðnðj; sÞÞ � Lpðf ; nðj; sÞÞÞ þ
Z

Kj

Lpðf ; xÞdx:
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Now, for the class H p
kða;EdÞ we can prove the following theorem:

Theorem 2.2. The cubature formula constructed above satisfies
Plea
effic
rnðf ; p þ k; d;mÞ 6 c0ðd; p þ kÞ 1

m
an�

1
2�

pþk
d

and
E
Z

Ed
f ðxÞdx� Iðf Þ

� �2
 !1=2

6 c00ðd; p þ kÞ 1

m
an�

1
2�

pþk
d ;
where the constants c 0(d,p + k) and c 0(d,p + k) depend implicitly on the points x(r), but not on n.

Proof. The proof is a modification of the proof given in [14]. Indeed, taking into account that f belongs to the
space H p

kða;EdÞ one can use the following inequality:
jf ðnðs; tÞ � Lpðf ; nðj; sÞj 6 cd ;pþkan�p�k: ð11Þ
Using the above inequality and applying the same technique that is used in the proof of Theorem 2.1 from [14]
we prove the theorem. h

It is clear that the algorithms AR
1 and AR

2 are both unimprovable by rate for all functions from Hp
kða;EdÞ.

Indeed,
rðAR
I1
Þ 6 c001ðd; p þ kÞan�

pþk
d �

1
2

for the algorithm AR
1 and
rðAR
I2
Þ 6 c002ðd; p þ kÞan�

pþk
d �

1
2

for the algorithm AR
2 .

For any particular d and p + k one can chose the algorithm with the smallest c 0(d,p + k). Algorithms
with the best possible order are called optimal. In this sense both algorithms AR

1 and AR
2 proposed in [14]

are optimal.

2.4. Performance analysis of algorithms with unimprovable convergence rate

In this subsection two algorithms reaching the unimprovable rate of convergence are given. Estimates of the
computational cost of both algorithms are presented.

In the fist algorithm the points x(r) are selected so that they fulfill certain conditions that would assure good
Lagrange approximation of any function from Hp

kða;EdÞ. Let us order all the monomials of d variables and

degree less than p � l1; . . . ; lt. Note that there are exactly
d þ p � 1

d

� �
of them. We use a pseudo-random

number generator to obtain many sets of points x(r), then we select the one for which the conditional number
of the matrix A = (aij) with aij = li(x

(j)) is the smallest.
Once it is selected for fixed p and d, the same set of points will be used for integrating every function from

the space Hp
kða;EdÞ. These calculations could be considered as preprocessing. The following theorem can be

proved:

Theorem 2.3. The computational cost of the numerical integration of a function from H p
kða;EdÞ using the above

mentioned algorithm AR
1 can be presented in the following form:
sðAR
1 ; f ;xÞ ¼ kRnþ cR;
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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where
Plea
effic
kR
6 mþ

d þ p � 1

d

� �� �
af þ m½dðbr þ 2Þ þ 1� ð12Þ

þ 2
d þ p � 1

d

� �
mþ 1þ d þ

d þ p � 1

d

� �� �
; ð13Þ
where br denotes the number of flops used to produce a uniformly distributed random number in [0,1), af stands for

the number of flops needed for each calculation of a function value, and cR = cR(d,p + k) depends only on d and
p + k.

Proof. The proof follows from the proof of Theorem 3.1 given in [14]. h

The second algorithm AR
2 is a modification of the first one. In AR

2 first some p different points zðjÞi 2 ð0; 1Þ are
selected in each dimension, and then the points x(r) have coordinates
fðzðj1Þ
1 ; . . . ; zðjd Þ

d Þ : ðj1 þ � � � þ jd < p þ kÞg:

In this case the interpolation polynomial is calculated in the form of Newton, namely if wðtÞr ¼ aj

r þ ðbj
r � aj

rÞzðtÞr ,
then
Lpðf ; nÞ ¼
X

j1þ...þjd<k

Rðj1; c; jd ; 0; . . . ; 0Þ
Yd

i¼1

ðni � wð1Þi Þ . . . ðni � wðji�1Þ
i Þ;
where
Rðj1; . . . ; jd ; l1; . . . ; ldÞ ¼ f ðwj1
1 ; . . . ;wjd

d Þ if all ji ¼ li;
and
Rðj1; . . . ; ji; . . . ; jd ; l1; . . . ; li; . . . ; ldÞ ¼
1

ðwji
i � wli

i Þ
½Rðj1; . . . ; ji; . . . ; jd ; l1; . . . ; li þ 1; . . . ; ldÞ

� Rðj1; . . . ; ji � 1; . . . ; jd ; l1; . . . ; li; . . . ; ldÞ� if ji > li: ð14Þ
This algorithm involves less operations for the same number of points n because the recurrence formula (14)

for calculating the divided differences simplifies the calculations exactly
p þ d � 1

d

� �
times. In this modifica-

tion we have the following theorem:

Theorem 2.4. The computational cost of the numerical integration of a function from H p
kða;EdÞ using the second

algorithm AR
2 can be presented in the form
sðAR
2 ; f ;xÞ ¼ kRnþ cR;
where
kR
6 mþ

d þ p � 1

d

� �� �
af þ m½dðbr þ 2þ kÞ þ 1� ð15Þ

þ 2
d þ p � 1

d

� �
ðd þ 1þ mÞ; ð16Þ
where af and bm are as above and cR = cR(d,p + k) depends only on d and p + k.

Proof. The proof follows from the proof of Theorem 3.2 given in [14]. h

Remark 2.1. When d and p are sufficiently large the second algorithm AR
2 would be still feasible even if the first

one AR
1 is ineffective.
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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Remark 2.2. The performance analysis results of Theorems 2.3 and 2.4 show that the computational cost of
both algorithms is linear with the number of nodes n. With such a cost an error of order n�

pþk
d �

1
2 is reached.

Such an order is unimprovable in the functional class under consideration.

Optimal algorithms are also proposed in [30–36]. Some of the proposed algorithms use the construction pro-
posed by Dupach in [37]. Various methods for Monte Carlo integration that achieve the order OðN�1

2�
p
dÞ are

known. While in the case of p = 1 and p = 2 these methods are fairly simple and are widely used (see, for exam-
ple, [38,34,36,39]), when p P 3 such methods become much more sophisticated. The first optimal stochastic
method was probably proposed by Mrs. Dupach [37] for k = 1. This method uses the idea of separation of
the domain of integration into uniformly small (according both to the probability and to the sizes) disjoint sub-
domains and generating one or small number of points in every subdomain. This idea was largely used [34] for
creation Monte Carlo methods with high rate of convergence. So, there is at least one algorithm AR

I for which
Plea
effic
rðAR
I Þ 6 c002ðd; p þ kÞan�

pþk
d �

1
2:
Using the same construction as in [14] it is easy to show that for the deterministic case there exists an algorithm
for which
rðAIÞ 6 c0Aðd; p þ kÞan�
pþk

d :
As an example of such an algorithm could be considered the algorithm AR
1 proposed in [14] in which the nodes

are fixed points.

2.5. Complexity of the integration problem for Hölder spaces

Now we are ready to formulate a theorem given the estimates of the e-complexity of the problem.

Theorem 2.5. For X 0 � H p
kða;EdÞ the e-complexity of the problem of integration SI is
CeðSIÞ ¼ kðc0Aðd; p þ kÞaÞ
d

pþk
1

e

� � d
pþk
for the class of deterministic algorithms A, and
CeðSIÞ ¼ kRðc00Aðd; p þ kÞaÞ
d

pþkþd=2
1

e

� � d
pþkþd=2
for the class of randomized algorithms AR.

Proof. According to the definition of the cost of the algorithm we should take the worst algorithm in sense of
s(AI, f) corresponding to f 2 Hp

aðk;EdÞ. According to the Bakhvalov theorem [24] one can write
sup
x2Hp

aðk;Ed Þ
sðAI ; f Þ ¼ k � nþ c ¼ k � ðc0Aðd; p þ kÞaÞ

d
pþk

1

rðAIÞ

� � d
pþk

þ c:
Now, for a given e > 0 we should take
inf kðc0Aðd; p þ kÞaÞ
d

pþk
1

rðAIÞ

� � d
pþk

: rðAIÞ 6 e

( )
:

Let us note, that this is a non-uniform notion: for each e > 0 a separate AI can be designed. However, follow-
ing the remark that the algorithms AI are uniform over the set of problems, and the fact that the infimum of
the number of preprocessing operations described by c is zero, one can get
CeðSIÞ ¼ kðc0Aðd; p þ kÞaÞ
d

pþk
1

e

� � d
pþk

;

which proves the first part of the theorem concerning the deterministic algorithms. h

The result for the randomized algorithms can be proved by the same way.
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Corollary 2.1. The e-complexity of the problem of integration strongly depends on the dimension of the problem

for the class of deterministic algorithms. With the increasing of dimensionality the e-complexity goes

exponentially to infinity for the class F 0 ¼ H p
aðk;EdÞ.

Corollary 2.2. In the case of randomized algorithms the e-complexity of the integration problem for functions
from F 0 ¼ H p

aðk;EdÞ goes asymptotically to
Plea
effic
1

e

� �2

:

Remark 2.3. The fact that the e-complexity exponentially depends on d makes the class of deterministic algo-
rithms infeasible for large dimensions. It was demonstrated by the example given in Section 2.7. This conclu-
sion is also confirmed by our practical experience.

Remark 2.4. In the last case the e-complexity does not increase exponentially with d. This is why for high-
dimensional integration Monte Carlo is a right choice. Nevertheless, Bakhvalov’s results demonstrated that
the smoothness can be exploited to improve the rate of convergence by a factor of n�

pþk
d over the rate of stan-

dard randomized algorithms n�
1
2. This fact allows to decrease the e-complexity from (1/e)2 by a factor of
1

e

� �� 4ðpþkÞ
2ðpþkÞþd

:

Some authors are interested to relax the assumptions under which the optimal rate of convergence of algo-
rithms are obtained. We shall give an example of how the assumptions can be made weaker without much loss
in the rate of convergence. Consider spaces of functions with bounded mixed derivatives corresponding to
parameters satisfying the following inequalities:
0 6 ai 6
p
d
;

where p is the smoothness parameter and d is the dimensionality. For this class of functions the rate c(log n)bnp/d

can be reached for some parameter b > 0. Results of this type are obtained and discussed in [40,41].

2.6. Complexity of the integration problem for Korobov-like spaces

Now we shall consider two other functional spaces F0, in which there are deterministic algorithms with a
good asymptotic behaviour of their e-complexity. By good we mean linear asymptotic behaviour O(d) or
weaker.

Let us introduce some notations following Korobov [27,28]: d P 1, l > d, am = am(l) – integer numbers,
a P 1, c = c(a,d) > 0 – real numbers, {x} – fractional part of x. Define the class K(a) for a > 0 by the following
condition:
f ðx1; . . . ; xdÞ ¼
P1

m1;...;md¼�1
cðm1; . . . ;mdÞe2piðm1x1þ���þmd xd Þ

jcðm1; . . . ;mdÞj 6 c1

½ðjm1jþ1Þ...ðjmd jþ1Þ�a

9>=>;;

where c1 is some constant.

In [28], it is shown that for n = p (p is a prime number) there exist a recursive process for finding a1; . . . ; ad

such that
Z 1

0

. . .

Z 1

0

f ðx1; . . . ; xdÞdx1 . . . dxd �
1

n
umn

k¼1f
ka1

p

� �
; . . . ;

kad

p

� �				 				� �
¼ Oðn�alogadnÞ: ð17Þ
Such a recursive process is proposed in [28].
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It is also proved that a set of integer numbers a1; . . . ad such that for any function from K(a) one can replace
a by a 0, where a 0 > a in the above inequality does not exist.

The set of integer numbers a1; . . . ; ad proposed by Korobov [28] are called optimal. It means that the esti-
mation (17) cannot be improved significantly.

Let us assume that AI is the algorithm that uses exactly the numbers a1; . . . ; ad proposed by Korobov in
[28]. Then one can write
Plea
effic
rðAIÞ 6 cn�alogadn;
where c is some constant.
The randomized version of the Korobov’s algorithms can be obtained by sampling one uniformly distrib-

uted random vector
ðb1; . . . ; bdÞ 2 Ed
and adding it to all the points of the sequence (modulo 1) [42] (see, also [43,44]). The integral is thus approx-
imated via
Z 1

0

. . .

Z 1

0

f ðx1; . . . ; xdÞdx1 . . . dxd �
1

n

Xn

k¼1

f
ka1

p
þ b1

� �
; . . . ;

kad

p
þ bd

� �				 				� �
: ð18Þ
The standard deviation and consequently the probable error of the randomized algorithm can be estimated
but we are not dealing with it in this paper.

In [28], Korobov formulated a wider functional class K 0(a)(K(a) � K 0(a) in the following way: Let
w(m) P jmj be an even function, for which the inverse series converges, w(0) = 1; the ratio w(m)/m for
m > 0 is monotonic and for any e > 0 w(m) = o(jmj1+e). Now the class K 0(a) for a P 1 can be defined by
the following conditions:
f ðx1; . . . ; xdÞ ¼
P1

m1;...;md¼�1
cðm1; . . . ;mdÞe2piðm1x1þ...þmd xd Þ

jcðm1; . . . ;mdÞj 6 c1

½wðm1Þ...wðmd Þ�a

9>=>;: ð19Þ
In [28], it is shown how to find optimal coefficients a1; . . . ; ad in order to get the following estimate:
Z 1

0

. . .

Z 1

0

f ðx1; . . . ; xdÞdx1 . . . dxd �
1

n

Xn

k¼1

f
ka1

p

� �
; . . . ;

kad

p

� �� �
¼ c1ða; dÞn�a; ð20Þ
where c1 is some constant.
It is shown by Korobov [28] that the estimate (20) does not allow significant improvement. Moreover, it is

shown [28] that the result (20) cannot be improved by order. It means that for the best possible algorithm for
solving integrals when f 2 K 0(a) one can write
rðAIÞ 6 cða; dÞn�a: ð21Þ

It is clear that c(a,d) could be different from c1(a,d) found in the Korobov construction [28]. Next we shall
consider only the class K 0(a).

Theorem 2.6. For F0 � K 0(a) the e-complexity of the problem of integration SI is
CeðSIÞ ¼ k½cða; dÞ�
1
a

1

e

� �1
a

for the class of deterministic algorithms A.

Proof. Assume that the set of optimal coefficients a1, . . . ,ad defines the algorithm A �A. For the algorithm A
we have
sup
x2K 0ðaÞ

sðAI ; f Þ ¼ k � nþ c ¼ k � ½cða; dÞ�
1
a

1

rðAIÞ

� �1
a

þ c:
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Now we can use the uniformity of the notion
Plea
effic
CeðSIÞ ¼ inffsðAIÞ : rðAIÞ 6 eg
because, as it was discussed above, the error estimation of the best possible algorithm for solving integrals
when f 2 K 0(a) can be expressed as it is written in (21). Thus,
CeðSIÞ ¼ k½cða; dÞ�
1
a

1

e

� �1
a

: �
Corollary 2.3. The e-complexity of the problem of integration for functions from K 0(a) has a good asymptotic

behaviour with increasing of dimensionality d.

Remark 2.5. The idea of the Korobov’s algorithm is to use the decay of the Fourier coefficients as (19). It is
clear that the parameter a is linked to the regularity of the integrand. A practical problem, which appear here
is that the constant c1 grows very quickly with a. This is especially true for high dimensions (see, for instance
[45]). To apply the Korobov’s algorithm for non-periodic functions one has to use a periodization method
(see, for instance [46]), such that the obtained periodical function has to satisfy the same condition of decay
as (19) and its integral should be the same as the one of the original function. The growth of the constant c1 is
especially large after applying the periodization method (for more details see [47, p. 226, 48, p. 158]).

In case of non-regular input data (discontinues functions and/or singularities) there are special techniques
well developed in Monte Carlo algorithms [14,49,50,19,51,52,10]. These techniques allow the inclusion of the
singularity into the density function of choice (see, for instance [30,8,19,20]).

For high-dimensional problems with low regularity Quasi-Monte Carlo sequences [53–56,10,57] are very
promising as their speed of convergence is
O
ðlog nÞd

n

 !
:

Although the factor O(logn)d) seems prohibitively large for reasonable values of n, the method achieves good
practical results. These methods are outside the scope of this paper. For more information see [55,53,57]. This
class of algorithms is close to algorithms that use good lattice points. They are based on number theoretic con-
structions. Another interesting approaches of this kind are the quantization [58] and the hyperbolic cross tech-
nique developed in [35].

2.7. A simple example

Let us now consider a simple example of evaluating multidimensional integrals which demonstrates the
power of the Monte Carlo algorithms. This is a case of practical computations showing high efficiency of
the randomized approach versus the deterministic one. Consider the classical problem of integral evaluation.
Suppose f(x) is a continuous function and let a quadrature formula of Newton–Cotes or Gauss type be used
for calculating the integrals. Consider an example with d = 30 (this is a typical number for some applications
in control theory and mathematical economics). In order to apply such formulae, we generate a grid in the d-
dimensional domain and take the sum (with the respective coefficients according to the chosen formula) of the
function values in the grid points. Let a grid be chosen with 10 nodes on the each of the coordinate axes in the
d-dimensional cube Ed = [0,1]d. In this case we have to compute about 1030 values of the function f(x).

Suppose a time of 10�7 s is necessary for calculating one value of the function. Therefore, a time of order
1023 s will be necessary for evaluating the integral (let us remember that 1 year = 31536.103 s, and that there
has been less than 9.1010 s since the birth of Pythagoras). Suppose the calculations have been done for a func-
tion f(x) 2W(2)(a, [0,1]d). If the formula of rectangles (or some similar formula) is applied then the error in the
approximate integral calculation is
e 6 cMh3 ðh ¼ 0:1Þ; ð22Þ
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where h is the mesh-size and c is a constant independent of h. More precisely, if f(x) 2 C2 then the error is
1
12

f ð2ÞðcÞh3, where c is a point inside the domain of integration [47,34].
Consider a Monte Carlo algorithm for this problem with a probable error e of the same order. We have to

generate n random points in Ed and to calculate the values of f(x) at these points. For each uniformly distrib-
uted random point in Ed we have to generate 30 random numbers uniformly distributed in [0,1].

To apply the Monte Carlo method it is sufficient that f(x) is continuous. The probable error is
Plea
effic
e 6 0:6745rðhÞ 1ffiffiffi
n
p ; ð23Þ
where r(h) = (Dh)1/2 is the standard deviation of the r.v. h for which Eh ¼
R

E d f ðxÞpðxÞdx and n is the number
of the values of the r.v. (in this case it coincides with the number of random points generated in Ed).

We can estimate the probable error using (23) and the variance properties
e 6 0:6745

Z
Ed

f 2ðxÞpðxÞdx�
Z

Ed
f ðxÞpðxÞdx

� �2
 !1=2

1ffiffiffi
n
p

6 0:6745

Z
Ed

f 2ðxÞpðxÞdx
� �1=2

1ffiffiffi
n
p ¼ 0:6745kf kL2

1ffiffiffi
n
p :
In this case, the estimate simply involves the L2-norm of the integrand.
The computational complexity of this commonly-used Monte Carlo algorithm will now be estimated. From

(22) and (23), we may conclude: n � ð0:6745kf kL2

cM Þ2 � h�6.

Suppose that the expression in front of h�6 is of order 1. (For many problems it is significantly less than 1 as
M is often the maximal value of the second derivative; further the Monte Carlo algorithm can be applied even
when it is infinity). For our example (h = 0.1), we have n � 106; hence, it will be necessary to generate
30 · 106 = 3.107 pseudo random values. Usually, two operations are sufficient to generate a single PRV. Sup-
pose that the time required to generate one PRV is the same as that for calculating the value of the function at
one point in the domain Ed. Therefore, in order to solve the problem with the same accuracy, a time of
3.107 · 2 · 10�7 � 6 s will be necessary. The advantage of employing Monte Carlo algorithms to solve such
problems is obvious.

The crude Monte Carlo integration is often considered as the best algorithm for evaluating multidimen-
sional integrals in case of very high dimensions (see [45,5,47]). In the case of low dimensions (less than 3)
Gauss product rules seems to be the most efficient choice. Between these two bound cases should be used algo-
rithms that exploit the regularity of the integrand. An example of such an approach can be found in our work
[14]. In fact, we use a variance reduction technique to build randomized algorithms with an increased rate of
convergence. The proposed algorithms are based on piecewise interpolation polynomials and on the use of
control variate method. It allowed as for smooth functions in a particular space to build two algorithms reach-
ing the optimal rate of convergence. Randomized algorithms with increased rate of convergence are presented
in [59–64].

It is known that for some problems (including one-dimensional problems) Monte Carlo algorithms have
better convergence rates than the optimal deterministic algorithms in the appropriate function spaces
[26,30,65,8,66,6,67,34]. For example, as it is shown in Section 2 if f(x) 2W1(a; [0,1]d), then instead of (23)
we have the following estimate of the probability error Rn ¼ e 6 c1a 1

n1=2þ1=d , where c1 is a constant independent
of n and d. For the one-dimensional case we have a rate of Oðn�3

2Þ instead of Oðn�1
2Þ, which is a significant

improvement.
Let us stress on the fact that we compare different approaches assuming that the integrand belongs to a

certain functional class. It means that we do not know the particular integrand and our consideration is
for the worst function from a given class. Another approach is considered in [68], where Monte Carlo and
Quasi–Monte Carlo quadratures are compared with adaptive and interpolation deterministic type quadrature.
To be able to apply adaptive or interpolation quadrature one should know the integrand, so this problem is
much easier for consideration. It is also shown in [68] that some dimensions and test-functions adaptive type
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quadrature outperform the crude Monte Carlo. Such a result is not surprising since such type of deterministic
quadrature should be compared with interpolation and adaptive Monte Carlo quadrature [10,30].

3. Cost and complexity of integral equations

Here we consider the computational cost and complexity of solving integral equations. In Section 3.1, we
define what we mean by solving integral equations. In fact we consider algorithms for computing on bilinear
forms of the Fredholm integral equations of second kind. In Section 3.2, the functional spaces, which char-
acterizes the regularity of the input data are defined and error estimates are presented. Some results of e-com-
plexity of the problem under consideration are presented in Section 3.3. Here we also define the class of almost

optimal randomized algorithms. Results of the computational cost of a grid-free almost optimal randomized
algorithm are given in Section 3.4.

3.1. Formulation of the problem of solving integral equations

Let us consider the following problem: compute the functional
Plea
effic
ðh; uÞ ¼
Z

G
hðxÞuðxÞdx; ð24Þ
where h(x) is a given function and u(x) is the solution of the Fredholm integral equation of second kind
uðxÞ ¼
Z

G
lðx; yÞuðyÞdy þ f ðxÞ ð25Þ
or in an operator form
u ¼ Luþ f ; ð26Þ
where L : C(G)! C(G) denotes an integral operator. We should note here that such a formulation of the
problem is very often used in theoretical and applied sciences. The meaning of the above formulated func-
tional is given in Section 1. It could be the mean value of the velocity of the particles (the first integral moment
of the velocity) or the energy (the second integral moment of the velocity) in statistical physics problems, or
effect of given pollution levels u(x) (satisfying integral transport equation) on the life matter (h(x) is sensitivity
to a given pollutant).

The solution operator for the above formulated problem can be written in the following form:
SEqðl; f Þ ¼ ðh; uÞ ¼ ððI � LÞ�1f ; hÞ:
Sometimes, the adjoint equation
v ¼ L	vþ h ð27Þ
is used.
In (27) v,h 2 F*, L* 2 [F*! F*], F* is the dual functional space to F and L* is an adjoint operator.
For some important applications F = L1 and
kf kL1
¼
Z

G
jf ðxÞjdx; kLkL1

6 sup
x

Z
G
jlðx; x0Þjdx0: ð28Þ
In this case h(x) 2 L1, hence L1
* � L1 and
khkL1
¼ sup jhðxÞj; x 2 G:
Obviously, if u 2 L1 and h 2 L1 the inner product (24) will be bounded.
For many applications F = F* = L2. L2 norms are defined as follows:
kf kL2
¼

Z
G
ðf ðxÞÞ2dx

� �1
2

; kLkL2
6 sup

x

Z
G
ðlðx; x0ÞÞ2dx0

� �1
2

:
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Note also, that if h(x), u(x) 2 L2 then the inner product (24) is finite. One can see, that if u(x) 2 L2 and
l(x,x 0) 2 L2(G · G) then Lu(x) 2 L2. It is trivial to show that L2uðxÞ; . . . ; LiuðxÞ; . . . also belong to L2(G).

For simplicity and concreteness we assume that F = F* = L2. If it is also assumed that kLmk < 1, where m is
any natural number, then the Neumann series u ¼

P1
i¼0Lif converges.

The condition kLmk < 1 is not very strong, since, as it was shown by Sabelfeld [33,52], it is possible to con-
struct a Monte Carlo algorithm for which the Neumann series does not converge. Analytically extending the
resolvent by a change of the spectral parameter gives a possibility to obtain a convergent algorithm when Neu-
mann series for the original problem does not converge or to accelerate the convergence when it converges
slowly. It is easy to show that J = (h,u) = (f,v). This equality means that the solution of the adjoint problem
is equivalent to the solution of the original one. The last fact is important for performance analysis studies,
because in practice very often the solution of the adjoint problem is easier than the solution of the original one.

Let us consider the Monte Carlo algorithm for evaluating the functional (24). It can be seen that when
l(x,x 0) � 0 evaluation of the integrals can pose a problem. Consider a random point n 2 G with a density
p(x) and let there be n values of the random point ni ði ¼ 1; 2; . . . ; nÞ. Let a r.v. h(n) be defined in G, such that
Plea
effic
EhðnÞ ¼ J :
Then the computational problem becomes one of calculating repeated values of h and of combining them into
an appropriate statistical estimator of J. The nature of the process for calculating every realization of h is a
Markov process. We will consider discrete Markov processes with a finite set of states, the so called Markov

chains (see Definition 1.3 given in Section 1).
An approximate value of the linear functional J, defined by (24) is
J � 1

n

Xn

s¼1

fhgs ¼ ĥn;
where (h)s is the sth value of the r.v. h.
The r.v. whose mathematical expectation is equal to J(u) is given by the following expression:
h½h� ¼ hðn0Þ
pðn0Þ

X1
j¼0

Qjf ðnjÞ;
where Q0 = 1; Qj ¼ Qj�1
lðnj�1;njÞ
pðnj�1;njÞ

; j ¼ 1; 2; . . ., and n0; n1; . . . is a Markov chain in G with initial density func-

tion p(x) and transition density function p(x,y).

Iterative randomized algorithms are characterized by two types of errors:

• systematic error ri, i P 1 (obtained from the truncating of the Markov chain) which depends on the number
of iterations i of the used iterative process
jrij 6
kLkiþ1

L2
kf kL2

1� kLkL2
and
• statistical error Rn, which depends on the number of samples n of Markov chain
Rn ¼ cbr
2ðh½h�Þn�1=2; 0 < b < 1; b 2 R:
The constant cb (and therefore also the complexity estimates of algorithms) depends on the confidence level
b. Probable error rn is often used, which corresponds to a 1/2 confidence level. Such a level is often accept-
able for practical computations.

The problem to achieve a good balance between the systematic and statistical error has a great practical
importance. To ensure a statistical error e, it is necessary to perform i transitions in the Markov process.
Assuming kf kL2

> eð1� aÞ one can chose the value of i from the inequality
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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Plea
effic
i > log�1a½log eþ logð1� aÞ � log kf kL2
� � 1; ð29Þ
where a = kLk2 and the initial approximation is chosen to be the right-hand side f. To achieve a probable error
e, it is necessary to perform n samples depending on the following inequality:
n > c0:5

rðhÞ
e

� �2

; c0:5 � 0:6745;
where h is the r.v., whose mathematical expectation coincides with the desired linear functional (24).

3.2. Error analysis results

Theorem 3.1 (Emelyanov and Il’in [69]). For the problem SEq of solving d-dimensional Fredholm integral

equations of second kind with p smooth data
rðAEqÞ 6 c0n�
p

2d ð30Þ
for the deterministic algorithms A and
rðAR
EqÞ 6 c00n�

p
2d�

1
2 ð31Þ
for the randomized algorithms AR.

This result can be slightly improved if one assumes that the ‘‘input’’ data (l, f) satisfy a kind of Hölder con-

ditions. Let us define the class bH p
kða;EdÞ for p; d 2N (N is the set of natural numbers), b,c > 0, 0 < d < 1
F ¼ W pðE2dÞ � W pðEdÞ

bH p
kða;EdÞ ¼

(
ðl; f Þ 2 F : kf kW pðEd Þ 6 c; klkW pðE2d Þ 6 b; klkC0ðE2d Þ:

6 d; jDpf ðy1; . . . ; ydÞ � Dpf ðz1; . . . ; zdÞj 6 a
Xd

j¼1

jyj � zjjk;

lðpÞ
y

r1
1

...y
rd
d

ðx1; . . . ; xd ; u1; . . . ; udÞ � lðpÞ
y

r1
1

...y
rd
d

ðx1; . . . ; xd ; v1; . . . ; vdÞ
			 			
6 aðx1; . . . ; xdÞ

Xd

j¼1

juj � vjjk
)
:

We should comment here that the condition
klkC0ðE2d Þ 6 d
ensures the existence and uniqueness of the solution of the integral equation under consideration.

Theorem 3.2. For the problem SEq of solving d-dimensional Fredholm integral equations of second kind with p

smooth data, which is Hölder with a rate of k, i.e., ðl; f Þ 2 bH p
kða;EdÞ we have
rðAEqÞ 6 c0n�
pþk
2d ð32Þ
for the deterministic algorithms A and
rðAR
EqÞ 6 c00n�

pþk
2d �

1
2 ð33Þ
for the randomized algorithms AR.

Proof. The proof of the theorem combines the proof of the theorem of Emelyanov and Il’in with the special
construction of Bakhvalov used in [24,26], as well as inequalities like (11) used in the proof of Theorem 2.2 for
u(x) and l(x,x 0). h
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3.3. Complexity of the problem of computing functionals of Fredholm integral equations of second kind

Theorem 3.3. For F 0 � bH p
kða;EdÞ the e-complexity of solving d-dimensional Fredholm integral equation of second

kind SEq is
Plea
effic
CeðSEqÞ ¼ kðc0ðd; p þ kÞÞ
2d

pþk
1

e

� � 2d
pþk
for the class of deterministic algorithms A, and
CeðSEqÞ ¼ kRðc00ðd; p þ kÞÞ
2d

pþkþd
1

e

� � 2d
pþkþd
for the class of randomized algorithms AR.

Proof. The proof of this theorem follows the technique used in the proof of Theorem 2.5. h

Corollary 3.1. If there is not additional regularity, i.e., p + k = 0 the deterministic algorithms are not feasible

while the randomized algorithms are feasible with a rate of e-complexity of order
1

e

� �2

:

According to our best knowledge random algorithms with such a low complexity do not exist at present. Such
a complexity corresponds to an iterative method with a number of iterations O(1), i.e. method for which the
number of iterations does not depend on e. Therefore, it is reasonable to consider a class of randomized algo-
rithms with a slightly higher e-complexity.

Definition 3.1. Randomized algorithms with e-complexity of order
1

e

� �2

log e
will be called almost optimal randomized algorithms.

In the next subsection an almost optimal Monte Carlo algorithm with a rate of e-complexity of order
ð1e Þ

2 log e for evaluation functionals of solution of Fredholm integral equation of second kind in case
p + k = 0 will be presented.

3.4. Computational cost of a grid-free randomized algorithm for evaluating functionals of the solution of

Fredholm integral equations of second kind

In this subsection we consider a grid-free Monte Carlo algorithm called (in the simplest case) spherical pro-

cess for computing of the bilinear forms of the solution of Fredholm integral equations of second kind. We
will denote this algorithm by AR

GF. As a first step of this algorithm a D-strip oGD of the boundary oG is chosen
(on the supposition that the solution is known on the boundary) to ensure the convergence of the constructed
iterative process. The following number of operations is necessary for one random walk:

• generation of d (this number depends on initial probability p) random numbers to determine the initial
point in the Markov chain: d(kA + kL) operations (kA and kL are the arithmetic and logical operations nec-
essary for the generation of one random number) or modeling of an isotropic vector that needs a number of
operations of order R * d(kA + kL) (the constant R depends on the efficiency of the modeling method and
transition probability);

• calculating the coordinates of the initial or next point: pnext (depends on the modeling method and the
dimension d of the domain B(x));
se cite this article in press as: E. Atanassov, I.T. Dimov, What Monte Carlo models can do and cannot do
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• calculating one value of functions: pf; pp, pu or pk, pP;
• calculating one sample of the r.v. (it needs less than 3 arithmetic operations);
• calculating the distance from the current point to the boundary oG: cA arithmetic and cL logical operations

(depends on the dimension d of the domain G);
• verification if the current point belongs to the chosen D-strip oGD.

The following logarithmic estimate for the average number E{i} of spheres on a single trajectory holds for a
wide class of boundaries [19]:
Plea
effic
Efig 6 constj log Dj; const > 0; ð34Þ
where const depends on the boundary oG.
Calculating the linear functional with a preliminary given accuracy e and attainment of a good balance

between the statistical and the systematic error is an important issue in performance analysis studies. To
ensure a statistical error e, it is necessary to perform i transitions in the Markov process, where i is chosen
from the inequality (29). On the other hand, the estimate (34) can be used to chose the value of the parameter
D of the boundary strip. The value of D explicitly depends on the number of transitions i of the Markov pro-
cess according to (29)
D � expð�i=constÞ:
Therefore, the following estimate holds for the mathematical expectation of the time required to obtain an
approximation with accuracy e using the considered grid-free Monte Carlo algorithm:
sðAR
GF; f ;xÞ � sn

�
ðdkA þ pnext þ pf þ pp þ pu þ cA þ 4ÞlA þ ðdkL þ cL þ 1ÞlL

þððRdkA þ pnext þ pf þ pk þ pP þ 4þ cAÞlA þ ðRdkL þ cL þ 1ÞlLÞ

� ðlog eþ logð1� aÞ � log3F ð0Þ

log3a

�
fcbrðH½h�Þg2

e2
:

Remark 3.1. From the above estimate it is easy to see that the computational cost of the grid-free randomized
algorithm AR

GF for evaluating bilinear forms of Fredholm integral equations of second kind has a rate of
e-complexity of order ð1e Þ

2 log e. Since not additional regularity is required this algorithm has almost optimal
rate.
Remark 3.2. If some additional regularity is assumed, then it is possible that some deterministic algorithm or
grid Monte Carlo algorithm could be applied (see, for instance [70,71,8,7]).

The bounds for the e-complexity for randomized and deterministic algorithms are given in Theorem 3.3.
But it is interesting to compare two randomized algorithms – the above described grid-free Monte Carlo algo-
rithm AR

GF with the grid Monte Carlo algorithm AR
G. The description of the grid Monte Carlo algorithm is given

in [72,70,71]. This algorithm is based on the approximation of the integral equation under consideration by a
system of linear algebraic equations. This transformation represents the initial step of the considered class of
grid randomized algorithms. The linear system is obtained using some approximate cubature rule (cubature
method, Nystrom method [29,73,74]). The next step is to apply the resolvent Monte Carlo algorithm
[72,71] for solving linear systems of equations. We should mention here that (according to our knowledge)
it is still not proved that the grid Monte Carlo algorithm presented in [70] is almost optimal in sense of reach-
ing the correspondent rate of complexity, as it was shown for the grid-free algorithm AR

GF. Nevertheless, we can
mention some conditions under which the grid Monte Carlo algorithm could be competitive with the grid-free
Monte Carlo algorithm:
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Table 1
e-complexity of problems for the classes of deterministic and randomized algorithms

Problem F0 Deterministic Randomized

Integration H p
kða;EdÞ kðc0AaÞ

d
pþkð1e Þ

d
pþk kRðc00AaÞ

d
pþkþd=2ð1e Þ

d
pþkþd=2

Integration K 0(a) k½cða; dÞ�
1
að1e Þ

1
a

Int. eq. H p
kða;E2dÞ kðc0Þ

2d
pþkð1e Þ

2d
pþk kRðc00Þ

2d
pþkþdð1e Þ

2d
pþkþd
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• the input data functions for the integral equation l(x, t), f(x), h(x) should have comparatively small maxi-
mum norm in the corresponding domain and it should be a possibility to calculate their values with a rel-
atively low complexity;

• the initial and transition probability used in the grid-free algorithm are complicated for modeling (accep-
tance–rejection method);

• the dimension d of the integration domain is large.

It has to be noted that the grid Monte Carlo algorithms are admissible only for integral equations with
smooth functions, but some techniques of avoiding singularities of this kind exist (see [29]).
4. Concluding discussion

The results presented here deal with the performance analysis of algorithms for most important data clas-
ses: classes of functions with bounded derivatives and Korobov-like spaces. It should be mentioned that in
practical computations in physics, bio-informatics and finance the problems usually involve various functions
from very different classes. Some problems involve discontinues functions and/or singularities, which makes
the problem of choosing the optimal algorithm hard.

Considering the summary of current results in Table 1, one can conclude that as the regularity decreases,
the simpler randomized algorithm should be used. Even for small dimensions (d = 1,2) Monte Carlo is a right
choice if the functional class has no smoothness. If the computational problem allows probability interpreta-
tion, then Monte Carlo will be the best choice. To win in the rate of convergence one has to lose in the
reliability (it means that the increased rate of convergence is paid by accepting some uncertainty in the
answer).

As a general remark it should be emphasized that for both problems under consideration

• numerical integration and
• evaluation linear functionals of integral equations

the randomized algorithms have better convergence rate for the same regularity of the input data.
But one should be careful because

• The better convergence rate for randomized algorithms is reached with a given probability, so the advan-
tage of Monte Carlo algorithms is a matter of definition of the probability error.

• If the nature of the problem under consideration does not allow the use of the probability error for esti-
mates or the answer should be given with a guaranteed error then the higher convergence order randomized
algorithms are not acceptable.

• An important obvious advantage of randomized algorithms is the case of bad functions, i.e., functions that
do not satisfy some additional conditions of regularity. The main problem with the deterministic algorithms
is that normally they need some additional approximation procedure requiring additional regularity. The
randomized algorithms do not need such procedures.
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