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Abstract. In this paper we consider bilinear forms of matrix polynomi-
als and show that these polynomials can be used to construct solutions
for the problems of solving systems of linear algebraic equations, matrix
inversion and finding extremal eigenvalues. An almost Optimal Monte
Carlo (MAO) algorithm for computing bilinear forms of matrix polyno-
mials is presented.

Results for the computational costs of a balanced algorithm for com-
puting the bilinear form of a matrix power is presented, i.e., an algorithm
for which probability and systematic errors are of the same order, and
this is compared with the computational cost for a corresponding deter-
ministic method.

Keywords: Monte Carlo algorithms, matrix computations, performance
analysis, computational cost, iterative process.

1 Introduction

Many scientific and engineering applications are based on the problems of finding
extremal eigenvalues, solving a system of linear algebraic equations (SLAE), or
inverting a real n×n matrix (MI). The computation time for very large problems,
or for finding solutions in real-time, can be prohibitive and this prevents the use
of many established algorithms. Monte Carlo methods give statistical estimates
of the required solution, by performing random sampling of a random variable,
whose mathematical expectation is the desired solution [10, 11].

Several authors have presented work on the estimation of computational com-
plexity of linear algebra problems [4, 5, 6, 12, 13, 14]. In this paper we consider
bilinear forms of matrix powers, which can be used to formulate solutions for all
three problems. Considering the set, A, of algorithms, A, for calculating bilinear
forms of matrix powers

A = {A : Pr{rn,N ≤ ε} ≥ c} ,
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with a probability error less than a given constant ε, there is the practical ques-
tion of which algorithm in the set has the smallest computational cost. In this
paper we compare the computational cost of two such method - a Monte Carlo
algorithm and a deterministic algorithm.

The formulation of MI, SLAE and finding extreme eigenvalues in terms of bi-
linear forms of matrix powers is presented in Section 2; in Section 3 we present a
Monte Carlo algorithm for finding the bilinear form of a matrix power; the com-
putational cost of the Monte Carlo algorithm and of the deterministic method
are presented in Section 4; and we conclude the work in Section 5.

2 Formulation of the Problems

In this paper we are interested in the evaluation of forms

(v, p(A)h) , (1)

where p(A) is a matrix polynomial and v, h ∈ IRn are arbitrary vectors.

2.1 Bilinear Form of Matrix Powers

In a special case of p(A) = Ak then (1) becomes

(v, Akh).
2.2 Eigenvalues of Matrices

The well-known Power method [9] gives an estimate for the dominant eigenvalue
λ1, of a matrix A. This estimate is called Rayleigh quotient :

λ1 = lim
k→∞

(v, Akh)
(v, Ak−1h)

,

where v, h ∈ IRn are arbitrary vectors. The Rayleigh quotient is used to obtain,
for an arbitrary large natural number k, an approximation:

λ1 ≈ (v, Akh)
(v, Ak−1h)

. (2)

To construct an algorithm for evaluating the minimal by modulo eigenvalue,
λn, one has to consider the following matrix polynomial:

p(A) =
∞∑

k=0

qkCk
m+k−1A

k, (3)

where Ck
m+k−1 are binomial coefficients, and the characteristic parameter, q, is

used as acceleration parameter of the algorithm [4, 7, 8].
If |qA| < 1, then the polynomial (3) becomes the resolvent matrix [6, 7]:

p(A) =
∞∑

k=0

qkCk
m+k−1A

k = [I − qA]−m = Rm
q ,
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where Rq = [I − qA]−1 is the resolvent matrix of the equation

x = qAx + h. (4)

Values q1, q2, . . . (|q1| ≤ |q2| ≤ . . .) for which equation (4) is fulfilled are called
characteristic values of the equation. The resolvent operator Rq = [I − qA]−1 =
A + qA2 + . . . exists if the sequence converges.

Let us consider the ratio:

λ =
(v, Ap(A)h)
(v, p(A)h)

=
(v, ARm

q h)
(v, Rm

q h)
.

If q < 0, then
(v, ARm

q h)
(v, Rm

q h)
≈ 1

q

(
1 − 1

μ(k)

)
≈ λn, (5)

where λn = λmin is the minimal by modulo eigenvalue, and μ(k) is the approxi-
mation to the dominant eigenvalue of Rq.

If |q| > 0, then
(v, ARm

q h)
(v, Rm

q h)
≈ λ1, (6)

where λ1 = λmax is the dominant eigenvalue.
The approximate equations (2), (5) and (6) can be used to formulate efficient

Monte Carlo algorithms for evaluating both the dominant and the minimal by
modulo eigenvalue of real symmetric matrices.

2.3 Bilinear Forms of Solution of LAE Systems

Consider the bilinear form:
(v, x), (7)

where x is the solution of the system:

Bx = b. (8)

For a non-singular matrix B one can use the presentation of Jacobi Over-
relaxation Iterative Method:

x = Ax + h. (9)

Assume that matrix A satisfies:

n∑

j=1

|aij | < 1, i = 1, . . . , n. (10)

Now, we can consider the first-order stationary linear iterative process for the
system (9):

x(k) = Ax(k−1) + h, k = 1, 2, . . . . (11)
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In fact, the presentation (11) defines a Neumann series

x(k) = h + Ah + . . . + Ak−1h + Akx(0). (12)

It is a well-known fact that the property (10) is a sufficient condition for
convergence of the Neumann series, i.e.,

x = lim
k→∞

x(k).

It is clear, that every iterative algorithm (including those based on MC) uses a
finite number of iterations k. If a MC algorithm is applied, then the kth iteration
can be computed with an additional statistical error. In practice the truncat-
ing parameter k is not a priori given parameter. Normally it is obtained from
the condition that the difference between the stochastic approximation of two
successive approximations is smaller than a given sufficiently small parameter ε.
Thus, we approximate the bilinear form (7) by

(v, x) ≈
(

v,
k∑

i=0

Aih

)
. (13)

One can see now, that for this problem, the matrix polynomial is of special type,
i.e., p(A) =

∑k
i=0 Ai.

If the Neumann series (12) does not converge the technique of mapping can
be applied. This gives us a resolvent method, with the bilinear form (7):

(v, x) ≈
(

v,

k∑

i=0

g
(k)
i Aih

)
. (14)

This procedure leads to matrix polynomial of type: p(A) =
∑k

i=1 g
(k)
i Ai.

2.4 Matrix Inversion

Assume B ∈ IRn×n is a non-singular matrix. The problem of finding the inverse
matrix

C = B−1

of B is equivalent to solve n times the problem (8) written in the following form:

Bcj = e(j), j = 1, . . . , n,

where e(j) ≡ (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0)T and cj ≡ (c1j , . . . , cnj)T is the jth column

of the inverse matrix C = B−1. This leads to the following bilinear form:

cij = (e(i), cj) ≈
(

e(i),
k∑

i=0

Aidje
(j)

)
. (15)

It is easy to see, that the latter form (15) is the same as (13) for a special choice
of vectors v and h: v = e(i) and h = dje

(j).
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3 Formulation of the MC Algorithm

We shall use the so-called MAO algorithm, studied in [1, 2, 3, 5, 6], where

pi =
|vi|
‖ v ‖ , ‖ v ‖ =

n∑

i=1

|vi| and pij =
|aij |
‖ ai ‖ , ‖ ai ‖=

n∑

j=1

|aij |. (16)

3.1 MC Algorithm for Computing Bilinear Forms of Matrix Powers
(v, Akh)

From the pair of density distributions (16) we obtain a finite chain, which induces
the matrix/vector powers Ak

v = vα0

∏k
s=1 aαs−1αs and ‖ Ak

v ‖=‖ v ‖ ×∏k
s=1 ‖

aαs−1 ‖ . With such densities we have that E{hαk
} = sign{Ak

v}
‖Ak

v‖
(
v, Akh

)
.

If we consider N realizations of the Markov chain Tk = α0 → α1 → . . . → αk,
then

θ̄(k) =
N∑

i=1

θ
(k)
i = sign{Ak

v} ‖ Ak
v ‖

N∑

i=1

{hαk
}i (17)

is an MC approximation of the bilinear matrix power (v, Akh). The probability
error of this approximation is

R
(k)
N =

∣∣∣(v, Akh) − θ̄(k)
∣∣∣ = cpσ{θ(k)}N− 1

2 . (18)

From (17), together with the sampling rules using (16), leads us to a MC
algorithm for estimating (v, Akh) with a probability error R

(k)
N . The quality of

the MC algorithm depends on the behaviour of the standard deviation σ{θ(k)}.

4 Performance Analysis

In this section we formulate the computational cost of a Monte Carlo algorithm
and a deterministic algorithm for computing the bilinear forms of matrix powers
(v, Akh). To do this we use the following notation: α is a cost of an addition or
subtraction; β is a cost of a multiplication; and δ is a cost of a logical operation.

4.1 Computational Cost of MC Algorithm for Computing Bilinear
Forms of Matrix Powers (v, Akh)

To estimate the computational cost one needs to consider the following expres-
sion:

sign{vα0}
∑

α

|vα|
(

k∏

i=1

sign{aαi−1αi}
∑

αi

|aαi−1αi |
)

hαk
. (19)

The computational cost of (19) is thus:

δ + β + (n − 1)α + β + (k − 1)β + kδ + k(β + (n − 1)α) + β

= (k + 1)(n − 1)α + (2k + 2)β + (k + 1)δ. (20)
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For the generation of the required random numbers and for the selection of
the elements of v and A the following operations are required:

m + δ log n + k (m + δ log n) , (21)

where m is the number of operations required to generate a random number.
The δ log n term is from the binary search method [15] used to select the next
element in the Markov Chain, as used in [1].

To compute the MC approximation to (v, Akh) one needs to perform N re-
alizations of the Markov chain, so that the computational cost of the algorithm
is

N [(k + 1)(n − 1)α + 2(k + 1)β
+(k + 1)δ + m + δ log n + k (m + δ log n)] . (22)

4.2 Computational Cost of a Deterministic Method for Computing
Bilinear Forms of Matrix Powers (v, Akh)

For a matrix-vector multiplication:
∑n

j=1 aijhj, ∀i ∈ 1, . . . , n, the computa-
tional cost is:

n ((n − 1)α + nβ) = n(n − 1)α + n2β.

For a vector-vector multiplication:
∑n

j=1 vjhj the computational cost is:

(n − 1)α + nβ.

To compute the bilinear form of a matrix power, (v, Akh), one needs to per-
form k matrix-vector multiplications and one vector-vector multiplication. Thus,
the computational cost of the deterministic method is:

k[n(n − 1)α + n2β] + (n − 1)α + nβ

= (kn2 − kn + n − 1)α + (kn2 + n)β. (23)

4.3 Comparison of the Monte Carlo and Deterministic Method

For a rough estimation of the cost we may assume that α = β = δ = 1. Then,
from (22), the computational cost for the Monte Carlo algorithm becomes:

N(kn + n + k log n + log n + km + m + 2k + 2) = Nkn + O(Nn) (24)

and the computational cost for the deterministic method, from (23), is:

2kn2 − kn + 2n − 1 = 2kn2 + O(kn). (25)

A comparison of costs (24) and (25) shows that, for a sufficiently large matrix, the
Monte Carlo algorithm will be quicker than the deterministic method, provided
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that one can keep the number of Markov chains required to reach a suitably
accurate solution low enough. As a rough criteria for choosing the proposed
Monte Carlo algorithm we can use the following inequality:

1
2

N

n
≤ 1.

If the required accuracy to compute (v, Akh) is ε, then (according to (18))
the following inequality

2ε2n ≥ c2
pσ

2(Θ(k))

should be fulfilled. Let us note that for many real-life applications the matrix
size n is 107 − 108 and the typical number of Markov chains N is 104 − 105. In
such cases the Monte Carlo algorithm is definitely preferable. However, it should
be mentioned that if the matrix size n is close to N , then more accurate analysis
of the computational cost taking into account weights α, β and δ of different
operations has to be done.

5 Conclusion

In this paper we introduced the matrix polynomial form (1). Further (2), (5) and
(6) show how this form can be used to find extreme eigenvalues; (13) and (14)
show how this form can be used to solve SLAE; and (15) show how to extend
the solution of SLAE to MI.

From there we concentrated on the bilinear form of matrix polynomials and
constructed a Monte Carlo algorithm for solving this problem. This allowed us
to estimate the computational cost of the Monte Carlo algorithm, as well as the
cost of the deterministic approach. These results on computational cost show
that the Monte Carlo algorithm will out perform the deterministic method on
sufficiently large problems, which are common to many areas of mathematical
modelling. In cases when the matrix size n is close to the required number of
Markov chains N a careful error analysis of the MC algorithm is needed.
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