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Two quantum-kinetic models of ultrafast electron transport in quantum wires are derived from the general-
ized electron-phonon Wigner equation. The various assumptions and approximations allowing one to find
closed equations for the reduced electron Wigner function are discussed with an emphasis on their physical
relevance. The models correspond to the Levinson and Barker-Ferry equations, now generalized to account for
a space-dependent evolution. They are applied to study the quantum effects in the dynamics of an initial packet
of highly nonequilibrium carriers, locally generated in the wire. The properties of the two model equations are
compared and analyzed.
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I. INTRODUCTION

The early-time dynamics of highly nonequilibrium con-
fined carriers incorporates a variety of phenomena, which,
reflecting the uncertainty relations, are beyond the
Boltzmann-like picture of the transport process. An instanta-
neous scattering process occurring between electron states
with well-defined energy no longer provides an adequate de-
scription: Effects of time-dependent collisional broadening
�CB� and retardation of phonon replicas have been investi-
gated theoretically and experimentally in homogeneous
semiconductors.1–8 These effects are related to the lack of
energy conservation and the memory character of the
electron-phonon dynamics, and are due to the finite duration
of the interaction process. The effect of the action of the
electric field during the process of collision—the intracolli-
sional field effect9–14 �ICFE�—has attracted scientific atten-
tion for quite some time. It has been shown that the intrac-
ollisional field effect is not important in stationary high-field
transport in semiconductors when single-valley transport is
considered.15–17 Rather, the effect must be sought in the time
domain of the early-time evolution, which precedes the for-
mation of the classical energy-conserving � function.18,19

A natural representation in spatially homogeneous sys-
tems is provided by wave vector space, which reflects mo-
mentum conservation. Kinetic model equations accounting
for these effects were developed in the framework of Green’s
function20–22 or density matrix formalisms.1,10,23,24 Explicitly
or implicitly these approaches give rise the Levinson23

and/or Barker-Ferry10 equations. Indeed, a general model for
photoexcited semiconductors is the set of semiconductor
Bloch equations for the electron, hole, and phonon distribu-
tions and the interband polarization. Phenomena due to
carrier-light, carrier-carrier, and carrier-phonon interactions
are accounted for in a comprehensive way.8 The case of a
single-band model, in the low-density regime, focuses on the

carrier-phonon interaction. In this case the polarization can
be eliminated, giving rise to a generation rate, which further-
more is approximated by an initial condition. A set of equa-
tions is obtained for the electron and phonon distributions
and the phonon-assisted density matrix.1 Under the assump-
tion of equilibrium phonons the set gives rise to the Barker-
Ferry equation.25 The latter can be considered as a generali-
zation of the Levinson equation, which accounts for the finite
electron lifetime due to the interaction with the phonons.

Confined systems are characterized by small spatial scales
where another basic assumption of classical transport—this
for a scattering process occurring at a well-defined
position—loses its validity. In such systems the scattering is
no longer local in space due to the finite duration of the
carrier-phonon interaction. The introduction of a spatial co-
ordinate allows one to account for inhomogeneities which
can be due to the structure of the sample or due to the con-
finement of the initial condition. In such cases a convenient
description of the transport is given by the Wigner-function
formalism. It retains most of the basic classical notions, in
particular the concepts for phase space and a distribution
function. Averaged values of the physical quantities in Bolt-
zmann and Wigner pictures are expressed with the same
functionals of the corresponding distribution functions. An-
other advantage of the Wigner picture is the opportunity to
utilize Newton’s trajectories26,27 along with the properties of
the Liouville theorem. This allows one to interpret the entire
quantum evolution, and in particular the interaction with the
Wigner potential, in terms of particles.28 Both classical and
quantum particles evolve over segments of Newton’s trajec-
tories. However, because of the nonlocal nature of the scat-
tering, evolution trajectories inherent to Boltzmann particles
are generalized by Wigner paths.29 The latter in principle
lead to a different spatial distribution of the system.17 In
general, in contrast to a classical distribution, the Wigner
function can have negative values which manifests the un-
certainty relation and thus the quantum character of the
evolution.30
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Physical systems which combine short spatial and time
scales recently have become a field of active research inter-
est. An equation, which under homogeneous conditions re-
duces to the Levinson equation, has been derived within a
Green’s function approach by using the generalized
Kadanoff-Baym ansatz.31 Wigner equation models for na-
nometer and femtosecond transport regimes have been re-
cently proposed in Refs. 32 and 33. It has been shown that
the case of a constant electric field gives rise to a Levinson-
type equation which accounts for the spatial dimensions.32

The complex case of arbitrary band structure, general electric
field and inhomogeneous impurity distribution has been re-
solved by Krieger et al.33 The semiconductor Bloch equa-
tions have been generalized for spatially inhomogeneous ex-
citations by using a density matrix approach.19 The Wigner
counterparts of the equations are then obtained by using a
Fourier transform for two- and single-band models. The lat-
ter gives rise to an inhomogeneous generalization of the
Levinson equation. The models have been compared for the
case of spatiotemporal evolution of a local electron distribu-
tion, optically generated in a quantum wire. The comparison
shows that the typical quantum-kinetic features of the
carrier-phonon interaction in the singe-band model and the
physically comprehensive two-band model are essentially
the same. From here it can be concluded that the Levinson
and Barker-Ferry models provide a relevant description of
these features.

Quantum-kinetic effects in the evolution of carriers, con-
fined in quantum wires, have been investigated in the frame-
work of the Barker-Ferry model derived with the help of a
projection technique.34 Actually the Levinson model is de-
rived and a factor accounting for the finite electron lifetime
has been introduced by heuristic considerations.35 Memory
effects have been neglected by taking the Markovian limit of
the equation. This approach leads to a Boltzmann-like equa-
tion where the classical � function is replaced by a Lorentz-
ian. The equation has been solved by a modification of the
classical ensemble Monte Carlo method. The solutions, ob-
tained at different evolution times well demonstrate station-
ary ICFE and CB effects. However, we note that at larger
evolution times the approach based on stationary broadening
of the energy conservation can lead to unphysical solutions.
The reason is in the long-reaching wings of the Lorentzian
which can cause artificial heating of the carrier
system.12,36–38

In this paper we utilize the Wigner formalism to derive
the Levinson and Barker-Ferry equations for the carrier-
phonon kinetics in a quantum wire. First we obtain the gen-
eralized Wigner function39 �GWF� of the carrier-phonon sys-
tem in the wire. Of interest is the reduced, or electron,
Wigner function obtained from the diagonal with respect to
the phonon basis GWF elements. The latter are linked by the
corresponding equation of motion to first off-diagonal �FOD�
elements which differ by adding or subtracting a single pho-
non in a given mode q in the left or right basis. The FOD
elements are linked to second off-diagonal elements �SOD�,
etc., which gives rise to an infinite hierarchy of equations
coupled by the phonon degrees of freedom. A closure is ob-
tained by consecutive steps of assumptions and approxima-
tions. Frequently applied will be the random phase approxi-

mation which is used to neglect the rapidly oscillating “in-
time” terms. A Markov approximation will be used to derive
the factor accounting for the finite carrier lifetime of the
Barker-Ferry model. The trace operation is applied at the
very end, after the truncation of the hierarchy, which is an-
other peculiarity of our approach.

The physical relevance of the two models as well as the
heuristic aspects of the formal steps of finding closed equa-
tions for the electron function are discussed in the second
part of the paper. In particular the requirements ensuring an
equilibrium phonon system are analyzed beyond the Bloch
assumption.

Finally we present simulation results for the evolution of
an initial electron distribution in a rectangular quantum wire.
Extreme conditions of very low temperature are chosen. In
this case the evolution of classical electrons is very transpar-
ent as they can only lose energy to the phonons. Moreover,
quantum electrons can be considered in the ground state in
the plane normal to the wire. The classical evolution pro-
vides a background which is used to outline the quantum
effects introduced by the models explored. We analyzed the
behavior of the physical observables corresponding to the
first moments of the Wigner function: the concentration, the
wave vector distribution, and the energy density. The simu-
lation results are obtained by a backward Monte Carlo
method. This method allows a pointwise evaluation of the
Wigner function and the corresponding moments to a desired
precision.

II. GENERALIZED WIGNER EQUATION

A. Formulation of the transport problem

We consider a low-density system of electrons evolving in
a quantum wire and interacting with the lattice vibrations.
The description of the system is provided by both electron
and phonon degrees of freedom. We first generalize the
Wigner function and the Wigner equation for the coupled
electron-phonon system in the wire. The Hamiltonian of the
system,

H = H0 + V + Hp + He-p = −
�2

2m
�r + V�r� + �

q
bq

†bq��q

+ i��
q

F�q��bqeiq·r̂ − bq
†e−iq·r̂� , �1�

is given by the free electron part H0, the wire potential V�r�
the free-phonon Hamiltonian Hp, and the electron-phonon
interaction He-p. Here bq

† and bq are the creation and annihi-
lation operators for the phonon mode q, ��q is the energy of
the mode, and F�q� is the electron-phonon coupling element,
which depends on the type of phonon scattering analyzed.
The state of the phonon subsystem is represented by the set
�nq�= �nq1

,nq2
, . . . � where nq is the occupation number of the

phonons in mode q. Then the representation is given by the
vectors ��nq� ,r�= ��nq���r�. A homogeneous electric field E�t�
can be applied along the z direction of the wire; the carriers
are assumed confined in the normal plane. For a transparent
presentation we assume a stationary electric field and a
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ground state � in the normal to the wire axis:

H0 + V�r� = H� + Hz = H0� + V� + H0z + V�z� ,

where H��=E��, V�z�=−eEz and �r�= �r���z�. The gener-
alization for time-dependent fields and a set of subbands is
straightforward.

The electron-phonon Wigner function is defined by the
Fourier transform of the density operator �̂t:

fw�z,pz,�nq�,�nq��,t� =
1

2��
� dz�� dr�

e−ipzz�/�	z +
z�

2
,�nq��
r���̂t�r����nq��,z −

z�

2
� .

Separating of the transport in the normal plane and the z
direction we have �̂t= ���
���̂tz:


r,�nq���̂t��nq��,r�� = �*�r�� ���r����z,z�,�nq�,�nq��,t� .

Finally the requirement for normalization of � leads to

fw�z,pz,�nq�,�nq��,t� =
1

2��
� dz�e−ipzz�/���z +

z�

2
,z

−
z�

2
,�nq�,�nq��,t .

B. Derivation of the generalized Wigner equation

The equation of motion of fw is obtained from the von
Neumann equation for the density matrix:

�fw�z,pz,�nq�,�nq��,t�
�t

=� dz�

i2��2 � dr�e−ipzz�/�

�	z +
z�

2
,�nq��
r���H, �̂t�−�r����nq��,z −

z�

2
� .

For convenience the right-hand side of this equation is de-
noted by WT�H�. By following the steps used to introduce
the common GWF,39–41 we evaluate WT�H� for each term of
the wire Hamiltonian �1�. WT�H�� gives zero for the ground
state in the normal direction. WT�H0z� and WT�−eEz� are
readily calculated by using integration by parts:

WT�H0z� = −
pz

m

�fw�z,pz,�nq�,�nq��,t�
�z

,

WT�− eEz� = − eE
�fw�z,pz,�nq�,�nq��,t�

�pz
.

The free phonon term gives rise to

WT�Hp� =
1

i�
�	��nq�� − 	��nq���fw�z,pz,�nq�,�nq��,t�� ,

where 	��nq��=�qnq��q. WT�He-p� consists of four contri-
butions arising from the commutator of the density operator

with the phonon creation and annihilation operators. They
are evaluated with the help of the decomposition of the
unity:

1 =� dz��z��
z�� � dr�� �r�� �
r�� � .

As q has been already used in the notation of the phonon
basis, the phonon mode in He-p, �1� is replaced by q�.

The first contribution of WT�He-p� is estimated as the sum
over q� of term as the following:

I =
1

2��
� dr�� dz�� dr�e−ipzz�/�

�	z +
z�

2
,�nq��
r��bq�e

iq�·r��r��
r���̂t�r����nq��,z −
z�

2
�

= �nq� + 1� dr�eiq�� ·r����r���2� dz�e−ipzz�/�eiqz��z+z�/2�

�	z +
z�

2
,�n1, . . . ,nq� + 1, . . . ���̂tz��nq��,z −

z�

2
�

= �nq� + 1G�q�� �eiqz�zfw�z,pz −
�qz�

2
,�nq�q�

+ ,�nq��,t ,

where G denotes the Fourier transform of ���r���2. We used
the normalization of the position basis 
r �r��=��r−r�� and
the fact that bq becomes a creation operator when operating
to the left. The shorthand notations �nq�q�

±

= �n1 , . . . ,nq�±1, . . . � are introduced. In this way �nq�q�
+

��nq�q�
− � are states of the phonon subsystem, obtained from

�nq� by increasing �decreasing� the number of phonons in the
mode q� by unity. In a similar way,

II = −
1

2��
� dr�� dz�e−ipzz�/�

� 	z +
z�

2
,�nq��
r��bq�

† e−iq�·r��̂t�r����nq��,z −
z�

2
�

= − �nq�G
*�q�� �e−iqz�zfw�z,pz +

�qz�

2
,�nq�q�

− ,�nq��,t .

We note that half of the z component of the phonon mode is
added to the electron momentum pz. The sign of qz� is oppo-
site to the sign of the argument in the corresponding expo-
nent. The phonon annihilation and creation operators of the
next two contributions change the right phonon basis:

III = −
1

2��
� dr�� dz�e−ipzz�/�

�	z +
z�

2
,�nq��
r���̂tbq�e

iq�·r��r����nq��,z −
z�

2
�

= − �nq�
� G�q�� �eiqz�zfw�z,pz +

�qz�

2
,�nq�,�nq��q�

− ,t .

Here the signs of the phonon mode added to pz and in the

WIGNER TRANSPORT MODELS OF THE ELECTRON-¼ PHYSICAL REVIEW B 74, 035311 �2006�

035311-3



exponent in front of fw are the same. Finally the fourth term
is

IV =
1

2��
� dr�� dz�� dr�e−ipzz�/�

�	z +
z�

2
,�nq��
r���̂tbq�

† e−iq�·r��r����nq��,z −
z�

2
�

= �nq�
� + 1G*�q�� �e−iqz�zfw�z,pz −

�qz�

2
,�nq�,�nq��q�

+ ,t .

By collecting all contributions we obtain the equation of mo-
tion of the GWF in the wire:

� �

�t
+

pz

m
�z + eE�pz

 fw�z,pz,�nq�,�nq��,t�

=
1

i�
�	��nq�� − 	��nq����fw�z,pz,�nq�,�nq��,t�

+ �
q�

F�q���G�q�� �eiqz�z�nq� + 1

�fw�z,pz −
�qz�

2
,�nq�q�

+ ,�nq��,t
− G*�q�� �e−iqz�z�nq�fw�z,pz +

�qz�

2
,�nq�q�

− ,�nq��,t
− G�q�� �eiqz�z�nq�

� fw�z,pz +
�qz�

2
,�nq�,�nq��q�

− ,t
+ G*�q�� �e−iqz�z�nq�

� + 1fw�z,pz −
�qz�

2
,�nq�,�nq��q�

+ ,t� .

�2�

The generalized Wigner equation couples an element
fw�. . . , �n� , �m� , t� to four neighboring elements with one pho-
non added or subtracted in the left or right basis for the
particular mode q� of the sum. For all modes q the number
of phonons nq can be any integer between 0 and infinity and
the sum over q� couples all modes.

The equation can not be solved without relevant criteria
aiming to neglect most of the GWF elements. A natural hi-
erarchy in the set of elements is introduced by the fact that
the pertinent physical information about the electron sub-
system is provided by the main diagonal of Eq. �2�: the re-
duced Wigner function is defined by the trace

fw�z,pz,t� = �
�nq�

fw�z,pz,�nq�,�nq�,t� �3�

of the generalized Wigner function fw�. . . , �n� , �n� , t�, diago-
nal with respect to the phonon coordinates.

In this respect appropriate hypotheses are the assumptions
for an initially decoupled electron-phonon system, weak in-
teraction, and equilibrium phonons. A useful tool for neglect-
ing terms is the random phase approximation42 �RPA�. In a
sum of the type �q,q� exp�i�f�q�− f�q���t� this approximation
essentially retains the terms q=q� and neglects the rapidly
oscillating terms which more or less average to zero. Con-

sider the imaginary term determined by the difference of the
energies of the left and right phonon states. As seen from the
integral form of the equation �Appendix A�, this term is re-
lated to the frequency of the oscillations in time of the GWF.
This frequency will be the main argument in the process of
comparison of the consecutive terms in the hierarchy.

According these consideration we must begin with the
equation for the diagonal elements.

C. Equation for the diagonal elements

By denoting FG� =F�q��G�q�� � the equation reads

� �

�t
+

pz

m
�z + eE�pz

 fw�z,pz,�nq�,�nq�,t�

= �
q�
�FG� eiqz�z�nq� + 1fw�z,pz −

�qz�

2
,�nq�q�

+ ,�nq�,t
− FG�

*e−iqz�z�nq�fw�z,pz +
�qz�

2
,�nq�q�

− ,�nq�,t
− FG� eiqz�z�nq�fw�z,pz +

�qz�

2
,�nq�,�nq�q�

− ,t
+ FG�

*e−iqz�z�nq� + 1fw�z,pz −
�qz�

2
,�nq�,�nq�q�

+ ,t� .

�4�

The equation requires an initial condition, corresponding to a
noninteracting system, where the phonons are assumed in
equilibrium.

We note the lack of the imaginary term, which means that
diagonal elements do not show the oscillatory behavior typi-
cal for the off-diagonal elements. A diagonal element is
linked to FOD elements, which are diagonal in all modes
but the current mode q� of the summation. In this mode
the four neighbors of nq� ,nq�—namely nq�±1,nq� and
nq� ,nq�±1—are concerned. We need to consider only the
FOD elements contained in the first two terms on the right:
From the definition of fw and �4� it follows that the third and
fourth terms are conjugated to the second and first terms,
respectively.

In general the equations for fFOD
± = fw�·�nq�q�

± , �nq� · � intro-
duce SOD elements. We pursue the idea to truncate the hier-
archy by neglecting the second- and higher-order off-
diagonal elements. It is necessary to write explicitly all
algebraic details in order to recognize the few terms which
must remain in the right-hand sides of the equations.

III. TRUNCATION AT THE FOD LEVEL

A. Equations for the FOD elements

In what follows we use the abbreviation FG� =FG�q��. The
equations of motion for fFOD

+ and fFOD
− can be unified as

follows:

NEDJALKOV et al. PHYSICAL REVIEW B 74, 035311 �2006�

035311-4



� �

�t
+

pz 

�qz�

2

m
�z + eE�pz

± i�q�� fw�z,pz −
�qz�

2
,�nq�q�

± ,�nq�,t
= �

q�
�FG� eiqz�z�nq� + 1fw�z,pz 


��qz� ± qz��
2

,��nq�q�
± �q�

+ ,�nq�,t − FG�
*e−iqz�z�nq�fw�z,pz 


��qz� 
 qz��
2

,��nq�q�
± �q�

− ,�nq�,t
− FG� eiqz�z�nq�fw�z,pz 


��qz� 
 qz��
2

,�nq�q�
± ,�nq�q�

− ,t + FG�
*e−iqz�z�nq� + 1fw�z,pz 


��qz� ± qz��
2

,�nq�q�
± �nq�q�

+ ,t� . �5�

Accordingly we refer to the separate equations as Eqs. �5±�.
On this stage we approximate the equations by neglecting all
SOD elements on the right. The only elements in Eq. �5+�.
which are not SOD are obtained from the second and fourth
terms on the right in the case q�=q�. In particular the factor
�nq� becomes �nq�+1 as by default the number of phonons
in q� mode is raised by unity. Similarly, in Eq. �5−� the first
and third terms on the right recover diagonal elements if
q�=q�. The factor �nq�+1 becomes �nq� since the number
of phonons in q� mode is lowered by unity.

We will make use of the integral forms of the approxi-
mated equations. According to Appendix A the integral for-
mulation is obtained with the help of the characteristics of

the Liouville operators in Eq. �5�. These are Newton’s trajec-
tories, Eq. �A1�, initialized by the time and phase space vari-
ables which identify the left-hand sides of Eqs. �5±�. Thus
the particular trajectories are initialized by �z , pz
�qz� /2 , t�

z
�t�� = z −
1

m
�

t�

t

pz

���d� ,

pz

�t�� = pz 


�qz�

2
− eE�t − t�� = pz�t�� 


�qz�

2
. �6�

As the electron-phonon system is initially decoupled, the ini-
tial conditions for fFOD

± are zero:

fw�z,pz 

�qz�

2
,�nq�q�

± ,�nq�,t = FG

�q���nq� +

1

2
±

1

2
�

0

t

dt�e
i�q��t−t��e
iqz�z
�t���
 fw�z
�t��,pz�t��,�nq�,�nq�,t��

± fw�z
�t��,pz�t�� 
 �qz�,�nq�q�
± �nq�q�

± ,t��� . �7�

Here FG
+ =FG, FG

− =FG
* and, consistently with Eq. �6�, pz�t��

= pz−eE�t− t��.

B. Inhomogeneous Levinson equation

A substitution of Eq. �7� into Eq. �4� yields an equation
which contains only diagonal elements of the GWF:

� �

�t
+

pz

m
�z + eE�pz

 fw�z,pz,�nq�,�nq�,t�

= 2 Re��
q�

�FG�q���2�
0

t

dt���nq�

+ 1�eiqz�ze−i�q��t−t��e−iqz�z−�t���fw„z
−�t��,�pz − �qz���t��,

�nq�q�
+ �nq�q�

+ ,t�… − fw„z
−�t��,pz�t��,�nq�,�nq�,t�…�

− nq�e
−iqz�zei�q��t−t��eiqz�z+�t���fw„z

+�t��,pz�t��,�nq�,�nq�,t�…

− fw„z
+�t��,pz�t�� + �qz�,�nq�q�

− �nq�q�
− ,t�…�� . �8�

The arguments of the exponent are evaluated with the help of
Eq. �6�:

±qz�z 
 �q��t − t�� 
 qz�z

�t��

= − �
t�

t �qz�

m
�pz − eE�t − �� 


�qz�

2
 
 �q��d�

= 
 �
t�

t 1

�
�	„pz���… − 	„pz��� 
 �qz�… 
 ��q��d� .

Furthermore, we modify Eq. �8� by switching the sign of q�
in the last row �for this we rely on the symmetry of �q� and
FG� and by introducing the variable pz�= pz−�qz�.

The electron Wigner function �3� is obtained with the help
of the assumption that the phonon system remains in equi-
librium during the evolution. Formally this means that the
variables in the diagonal elements can be separated as fol-
lows:
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fw�z,pz,�nq�,�nq�,t�� = fw�z,pz,t���
q

Peq�nq� . �9�

Here Peq�nq� is the equilibrium probability for finding nq
phonons in mode q. The mean equilibrium phonon number
n�q� is given by the Bose-Einstein distribution:

n�q� = �
nq=0

�

nqPeq�nq�, �
nq=0

�

Peq�nq� = 1. �10�

We replace Eq. �9� into the modified equation �8� and per-
form the trace operation. The phonon coordinates are en-
countered with the help of the equalities

n�q� +
1

2



1

2
= �

nq

�nq +
1

2
±

1

2
Peq�nq ± 1� . �11�

An equation of Levinson type is obtained:

� �

�t
+

pz

m
�z + eE�pz

 fw�z,pz,t�

= �
q�� ,pz�

�
0

t

dt��S�pz,pz�,q�� ,t,t��fw„z
−�t��,pz��t��,t�…

− S�pz�,pz,q�� ,t,t��fw„z
−�t��,pz�t��,t�…� , �12�

S�pz,pz�,q�� ,t,t�� = 2�FG�q���2

��n�q�cos��
t�

t �	„pz���… − 	„pz����… − ��q��d�

�


+ �n�q� + 1�cos��
t�

t �	„pz���… − 	„pz����… + ��q��d�

�
� ,

�13�

which describes the inhomogeneous evolution of carriers ex-
cited in a quantum wire. The discussion of its properties is
postponed to Sec. V.

The physically transparent manner of the derivation of
Eq. �12� encourages us to make a further step and to take into
account the next level in the hierarchy of linked GWF ele-
ments.

IV. TRUNCATION AT THE SOD LEVEL

A. Closure of the equation for fFOD
+

We first consider Eq. �5+� and look for a criteria by which
to retain also certain SOD elements on the right-hand side of
the equation. Four types of such elements, shortly denoted by
fSOD

++, , fSOD
+−, , fSOD

+,− , and fSOD
+,+ , appear consecutively in the terms

on the right. In this notation the comma separates the left
from the right basis so that  means two extra phonons in
states q� and q� in the left basis, etc. fSOD

+−, and fSOD
+,+ , which

give rise to the only diagonal elements, have already been
used above. We then analyze the SOD elements of the first
and third terms: fSOD

++, and fSOD
+,− . They contain two extra

phonons in the left basis. The corresponding equations of
motion involve a frequency of i2� added to the Liouville
operator on the left-hand side. As compared to the diagonal
elements, these SOD elements oscillate rapidly in time. A
straightforward application of the RPA requires them to be
neglected. Then the second and fourth terms remain to be
combined to give additional corrections to the diagonal
terms. However, a careful analysis shows that also fSOD

++, and
fSOD

+,− give contributions: it is correct to compare elements
linked within an equation. Jumps in the hierarchy such as,
e.g., a comparison between SOD and diagonal elements can
lead to erroneous conclusions.

We evaluate consecutively the contributions from the
SOD elements to the right-hand side of Eq. �5+�. The corre-
sponding equations of motion in general introduce third off-
diagonal elements. We follow the same strategy for approxi-
mation of the right-hand sides of these equations. Namely,
we consider only special cases where third off-diagonal ele-
ments reduce to FOD elements. Then the SOD equations are
solved and replaced in Eq. �5+�. An equation is obtained
which contains FOD elements only. This equation along with
the counterpart obtained from Eq. �5−� is used to close Eq.
�4�. In what follows we need to assume a constant phonon
frequency �q=�.

1. Contribution from fSOD
++,

We begin with the equation of motion of fSOD
++, :

� �

�t
+

pz − ��qz� + qz��/2
m

�z + eE�pz
+ i2� fw�z,pz −

��qz� + qz��
2

,��nq�q�
+ �q�

+ ,�nq�,t
= + �

q�
�FG�q��eiqz�z�nq� + 1fw�z,pz −

��qz� + qz� + qz��
2

,���nq�q�
+ �q�

+ �q�
+ ,�nq�,t

− FG
* �q��e−iqz�z�nq�fw�z,pz −

��qz� + qz� − qz��
2

,���nq�q�
+ �q�

+ �q�
− ,�nq�,t

− FG�q��eiqz�z�nq�fw�z,pz −
��qz� + qz� − qz��

2
,��nq�q�

+ �q�
+ ,�nq�q�

− ,t
+ FG

* �q��e−iqz�z�nq� + 1fw�z,pz −
��qz� + qz� + qz��

2
,��nq�q�

+ �q�
+ ,�nq�q�

+ ,t� . �14�
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We approximate this equation by neglecting all terms but
those containing FOD elements. Only two terms on the right
can give rise to FOD elements. These are the second and
fourth terms, provided that q�=q� or q�=q�. The equation
is integrated with the help of a trajectory obtained from Eq.

�6� for the initialization point (z , pz−
��qz�+qz��

2 , t) identifying

the Liouville operator in Eq. �14�. The free term is zero, as
the electron-phonon system is initially decoupled:

FG�q��eiqz�zfw�z,pz −
��qz� + qz��

2
,��nq�q�

+ �q�
+ ,�nq�,t

= − �
0

t

dt��FG�q���2eiqz�ze−iqz�z�t��e−i2��t−t���nq� + 1fw�z�t��,pz�t�� −
�qz�

2
,�nq�q�

+ ,�nq�,t�
− �

0

t

dt�FG
* �q��FG�q��eiqz�ze−iqz�z�t��e−i2��t−t���nq� + 1fw�z�t��,pz�t�� −

�qz�

2
,�nq�q�

+ ,�nq�,t�
+ �

0

t

dt��FG�q���2eiqz�ze−iqz�z�t��e−i2��t−t���nq�fw�z�t��,pz�t�� −
��qz� + 2qz��

2
,��nq�q�

+ �q�
+ ,�nq�q�

+ ,t�
+ �

0

t

dt�FG
* �q��FG�q��eiqz�ze−iqz�z�t��e−i2��t−t���nq�fw�z�t��,pz�t�� −

��2qz� + qz��
2

,��nq�q�
+ �q�

+ ,�nq�q�
+ ,t� . �15�

Equation �15� can be replaced in Eq. �5+�, so that its right-
hand side appears as a correction attached to the right-hand
side of Eq. �5+�. We evaluate the oscillations in time of the
correction terms. However, the integro-differential form is
not convenient for an analysis in the time domain. In particu-
lar the left-hand side of Eq. �5+� depends on i� while the
correction terms depend on e−i2��t−t��. Convenient for this
purpose is the integral form of the equation, which appears to
be Eq. �7+� with additional terms on the right-hand side aris-
ing from Eq. �15�. The corrections due to these terms are
additive, so that their contributions can be evaluated sepa-
rately. We begin with the first term in Eq. �15� rewritten so

that the qz� dependent arguments of the exponents are ex-
pressed in terms of electron energies:

qz�z − qz�z�t��

= �
t�

t 	„pz��� − �qz�/2… − 	„pz��� − �qz�/2 − �qz�…d�

�
. �16�

For notational convenience we denote the energy difference
in the numerator by �	���. The term under consideration
gives rise to the following contribution to the right-hand side
of Eq. �7+�:

fw�z,pz −
�qz�

2
,�nq�q�

+ ,�nq�,t = ¯ − �
q�

�nq� + 1��FG�q���2�
0

t

dt��
0

t�
dt�e−i��t−t��e−i2��t�−t��ei�

t�
t�

�	���d�/�fw�z�t�,t��,pz�t��

−
�qz�

2
,�nq�q�

+ ,�nq�,t� , �17�

where z�t� , t�� is expressed with the help of Eq. �6�,

z�t�,t�� = z−�t�� −
1

m
�

t�

t� �pz��� −
��qz� + qz��

2
d� . �18�

Equation �17� has a convenient form for analysis of the time
dependence. The time integrals can be transformed with the

help of the equality �0
t dt��0

t�dt�=�0
t dt��t�

t dt�:

�
0

t

dt��
0

t�
dt�e−i��t−t��e−i2��t�−t��ei�

t�
t�

�	���d�/�fw

= �
0

t

dt�e−i��t−t���
t�

t

dt�ei�
t�
t���	���−���d�/�fw. �19�

Next the inner integral is approximated by taking the classi-
cal limit �→0. The limit is discussed in detail in Appendix
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B. It gives rise to a � function and a principle value accord-
ing to the formal relation

lim
�→0

1

�
�

0

t

d� ei	�/� = ���	� + VP
i

	
.

We note that this limit conveniently sets t� to t� so that
z�t� , t�� in fw, Eq. �17�, becomes z−�t��. If only the � function
is accounted for, Eq. �17� takes the form

fw�z,pz −
�qz�

2
,�nq�q�

+ ,�nq�,t
= ¯ − �

0

t

dt�e−i��t−t���
q�

�nq� + 1��FG�q���2����	�pz�t��

−
�qz�

2
 − 	�pz�t�� −

�qz�

2
− �qz� − �� fw�z�t��,pz�t��

−
�qz�

2
,�nq�q�

+ ,�nq�,t� . �20�

This equation is of the type �A3�, which along with Eq. �A5�
have a common differential counterpart given by Eq. �A4�,
Appendix A. In other words, if we take the time derivative of
Eq. �20�, we obtain Eq. �5+� with an additional term �efFOD

+

appearing on the right-hand side of the equation. If trans-
ferred to the left this term gives rise to the correction

�e�pz −
�qz�

2
 = �

q�

�nq� + 1��FG�q���2����	�pz −
�qz�

2


− 	�pz −
�qz�

2
− �qz� − ��� �21�

added to the Liouville operator in the brackets of Eq. �5+�.
We note that the summation over q� involves only positive
contributions to �e. The imaginary term with the principal
value affects the phonon frequency—an effect known as a
polaron shift in the energies. Here this effect is neglected.

Consider the rest of the terms in Eq. �15�. The prefactor of
the third term in Eq. �15� can be evaluated in the same way
leading to Eq. �20�. However, now the corresponding GWF
element depends on qz� and thus would contribute as a com-
plex quantity to the sum in Eq. �5+�. The same holds for the
GWF elements in the second and fourth terms, which, more-
over, depend on the oscillatory prefactor ei�qz�−qz��z. By refer-
ring to the RPA we can neglect these three terms.

Essentially the same steps will be applied for the rest of
the terms. Next we evaluate the contribution from the third
term since the derivations closely follow the steps already
considered.

2. Contribution from fSOD
+,−

We write down the equation for fw(z , pz

−
��qz�−qz��

2 , �nq�q�
+ , �nq�q�

− , t) and consider only the FOD ele-
ments which appear on the right. The equation is integrated
with the help of a trajectory initialized by the phase space

variables (z , pz−
��qz�−qz��

2 , t). The solution is obtained explic-
itly in terms of FOD elements:

FG�q��eiqz�zfw�z,pz −
��qz� − qz��

2
,�nq�q�

+ ,�nq�q�
− ,t

= − �
0

t

dt��FG�q���2eiqz�ze−iqz�z�t��e−i2��t−t���nq�fw�z�t��,pz�t�� −
��qz� − 2qz��

2
,��nq�q�

+ �q�
− ,�nq�q�

− ,t�
− �

0

t

dt�FG
* �q��FG�q��eiqz�ze−iqz�z�t��e−i2��t−t���nq� + 1fw�z�t��,pz�t�� +

�qz�

2
,�nq�,�nq�q�

− ,t�
+ �

0

t

dt��FG�q���2eiqz�ze−iqz�z�t��e−i2��t−t���nq�fw�z�t��,pz�t�� −
�qz�

2
,�nq�q�

+ ,�nq�,t�
+ �

0

t

dt�FG
* �q��FG�q��eiqz�ze−iqz�z�t��e−i2��t−t���nq� + 1fw�z�t��,pz�t�� −

��2qz� − qz��
2

,�nq�q�
+ ,��nq�q�

− �q�
+ ,t� .

Only the third term on the right survives after the RPA. Tak-
ing into account the particular trajectory z�t�� we can express
qz�z−qz�z�t�� in the exponent as

− �
t�

t 	„pz��� − �qz�/2… − 	„pz��� − �qz�/2 + �qz�…

�
d� . �22�

This differs from Eq. �16� by the leading sign and the sign of
qz�. As before we denote the energy difference by �	��� and
evaluate the contribution of the term to the integral form of
Eq. �5+�. An expression is obtained, which differs from Eq.
�17� in the following: �i� the factor �nq�+1� is replaced by
nq�; �ii� �	��� is updated according to Eq. �22�; �iii� z�t� , t��
is updated from Eq. �18� by changing the sign of qz� from
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plus to minus. The evaluation of the time integrals follows
exactly Eq. �19�. By taking the classical limit and following
the arguments leading to Eq. �21�, we obtain the term

�a�pz −
�qz�

2
 = �

q�

nq��FG�q���2����	�pz −
�qz�

2


− 	�pz −
�qz�

2
+ �qz� + ��� , �23�

which must be added to the Liouville operator in Eq. �5+�.

The phonon energy is now added to �	 due to the minus sign
in front of Eq. �22�.

3. Correction from fSOD
+−,

The second term in Eq. �5+� already provided a diagonal
element. We pursue what additional contribution �fSOD

+−, can
be obtained from the corresponding equation of motion. Ap-
parently �fSOD

+−, is

�1 − �q�,q��fw�z,pz −
��qz� − qz��

2
,��nq�q�

+ �q�
− ,�nq�,t� ,

so that the equation of motion assumes that q��q�:

�� �

�t
+

pz − ��qz� − qz��/2
m

�z + eE�pz
�fSOD

+−, �z,pz −
��qz� − qz��

2
,��nq�q�

+ �q�
− ,�nq�,t

= + �
q�
�FG�q��eiqz�z�nq� + 1fw�z,pz −

��qz� − qz� + qz��
2

,���nq�q�
+ �q�

− �q�
+ ,�nq�,t − FG

* �q��e−iqz�z�nq�fw�z,pz

−
��qz� − qz� − qz��

2
,���nq�q�

+ �q�
− �q�

− ,�nq�,t − FG�q��eiqz�z�nq�fw�z,pz −
��qz� − qz� − qz��

2
,��nq�q�

+ �q�
− ,�nq�q�

− ,t
+ FG

* �q��e−iqz�z�nq� + 1fw�z,pz −
��qz� − qz� + qz��

2
,��nq�q�

+ �q�
− ,�nq�q�

+ ,t� . �24�

The four terms on the right-hand side contain FOD elements
obtained, respectively, by the combinations q�=q�, q�=q�,

q�=q�, and q�=q�. We recall that in this case nq� must be
updated according to the actual number of phonons in modes

q� or q�, respectively. The reduced equation is integrated
with the help of the trajectory (z�t�� , pz�t��) initialized by the

phase space variables (z , pz−
��qz�−qz��

2 , t). The correction �fSOD
+−,

is expressed in terms of FOD elements:

FG
* �q��e−iqz�z�fSOD

+−, �z,pz −
��qz� − qz��

2
,��nq�q�

+ �q�
− ,�nq�,t

= + �
0

t

dt��FG�q���2e−iqz�zeiqz�z�t���nq�fw�z�t��,pz�t�� −
�qz�

2
,�nq�q�

+ ,�nq�,t�
− �

0

t

dt�FG
* �q��FG

* �q��e−iqz�ze−iqz�z�t���nq� + 1fw�z�t��,pz�t�� +
�qz�

2
,��nq��q�

− ,�nq�,t�
− �

0

t

dt��FG�q���2e−iqz�zeiqz�z�t���nq�fw�z�t��,pz�t�� + �qz� −
�qz�

2
,��nq�q�

− �q�
+ ,�nq�q�

− ,t�
+ �

0

t

dt�FG
* �q��FG

* �q��e−iqz�z�t��e−iqz�z�nq� + 1fw�z�t��,pz�t�� − �qz� +
�qz�

2
,��nq�q�

+ �q�
− ,�nq�q�

+ ,t� . �25�
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We evaluate the contribution of the first term to Eq. �7�. As
before the arguments of the exponents introduce the energy
difference �	���,

qz�z�t�� − qz�z

= �
t�

t 	„pz��� − �qz�/2… − 	„pz��� − �qz�/2 + �qz�…

�
d� ,

�26�

under the time integral. This contribution is obtained as fol-
lows:

fw�z,pz −
�qz�

2
,�nq�q�

+ ,�nq�,t = ¯

− �
q�

nq��FG� �2�
0

t

dt��
0

t�
dt�e−i��t−t��ei�

t�
t�

�	���d�/�

�fw�z�t�,t��,pz�t�� −
�qz�

2
,�nq�q�

+ ,�nq�,t� , �27�

where

z�t�,t�� = z−�t�� −
1

m
�

t�

t� �pz��� −
��qz� − qz��

2
d� . �28�

The time integrals are processed accordingly:

�
0

t

dt��
0

t�
dt�e−i��t−t��ei�

t�
t���	����d�/�fw

= �
0

t

dt�e−i��t−t���
t�

t

dt�ei�
t�
t���	���+���d�/�fw. �29�

After taking the classical limit in the inner integral and ne-
glecting the principal value we obtain the contribution to the
Liouville operator in Eq. �5+�:

�a�pz −
�qz�

2
 = �

q�

nq��FG�q���2����	�pz −
�qz�

2


− 	�pz −
�qz�

2
+ �qz� + ��� .

The rest of the terms in Eq. �25� are neglected with the help
of the RPA.

4. Correction from �fSOD
+,+

The correction �fSOD
+,+ originating with the fourth term in

Eq. �7� satisfies the equation

�� �

�t
+

pz − ��qz� + qz��/2
m

�z + eE�pz
�fSOD

+,+ �z,pz −
��qz� + qz��

2
,�nq�q�

+ ,�nq�q�
+ ,t

= + �
q�
�FG�q��eiqz�z�nq� + 1fw�z,pz −

��qz� + qz� + qz��
2

,��nq�q�
+ �q�

+ ,�nq�q�
+ ,t − FG

* �q��e−iqz�z�nq�fw�z,pz

−
��qz� + qz� − qz��

2
,��nq�q�

+ �q�
− ,�nq�q�

+ ,t − FG�q��eiqz�z�nq�fw�z,pz −
��qz� + qz� − qz��

2
,��nq�q�

+ �,��nq�q�
+ �q�

− ,t
+ FG

* �q��e−iqz�z�nq� + 1fw�z,pz −
��qz� + qz� + qz��

2
,�nq�q�

+ ,��nq�q�
+ �q�

+ ,t� �30�

under the condition q��q�. The four terms on the right-hand side contain FOD elements obtained, respectively, by the
combinations q�=q�, q�=q�, q�=q�, and q�=q�. The equation is integrated with the help of a trajectory initialized by

(z , pz−
��qz�+qz��

2 , t):

FG
* �q��e−iqz�z�fSOD

+,+ �z,pz −
��qz� + qz��

2
,�nq�q�

+ ,�nq�q�
+ ,t

= + �
0

t

dt��FG�q���2e−iqz�zeiqz�z�t���nq� + 1fw�z�t��,pz�t�� − �qz� −
�qz�

2
,��nq�q�

+ �q�
+ ,��nq��q�

+ ,t�
− �

0

t

dt�FG
* �q��FG

* �q��e−iqz�ze−iqz�z�t���nq� + 1fw�z�t��,pz�t�� −
�qz�

2
,�nq�,��nq��q�

+ ,t�
− �

0

t

dt��FG�q���2e−iqz�zeiqz�z�t���nq� + 1fw�z�t��,pz�t�� −
�qz�

2
,�nq�q�

+ ,�nq�,t�
+ �

0

t

dt�FG
* �q��FG

* �q��e−iqz�z�t��e−iqz�z�nq� + 1fw�z�t��,pz�t�� − �qz� −
�qz�

2
,�nq�q�

+ ,��nq�q�
+ �q�

+ ,t� . �31�
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An application of the RPA filters all terms but the third.
Taking into account the particular form of the trajectory z�t��
we obtain the exponential factor −qz�z+qz�z�t�� expressed in
terms of electron energies:

− �
t�

t �	„pz��� − �qz�/2… − 	„pz��� − �qz�/2 − �qz�…�d�

�
.

�32�

This expression differs from Eq. �26� by the leading sign and
the sign of qz�. The contribution of �fSOD

+,+ to the FOD element
accounted in the integral form of Eq. �5+� gives rise to an
expression which differs from Eq. �27� in the following: �i�
the factor nq� in front of �FG�2 becomes �nq�+1�; �ii� the

energy difference in the exponent is updated according to Eq.
�32�; �iii� z�t� , t�� is updated according to Eq. �28� by chang-
ing the sign of qz� from plus to minus. Processing the time
integrals as in Eq. �29� and repeating the same steps we
obtain the additive term

�e�pz −
�qz�

2
 = �

q�

�nq� + 1��FG�q���2����	�pz −
�qz�

2


− 	�pz −
�qz�

2
− �qz� − ��� ,

which appears in the bracket on the left-hand side of Eq.
�5+�. By denoting �=2��a+�e� we are ready to formulate the
truncated equation for the first FOD element:

� �

�t
+

pz − �qz�/2

m
�z + eE�pz

+ ��pz −
�qz�

2
 + i�� fw�z,pz −

�qz�

2
,�nq�q�

+ ,�nq�,t
= FG

* �q��e−iqz�z�nq� + 1�fw�z,pz − �qz�,�nq�q�
+ �nq�q�

+ ,t� − fw�z,pz,�nq�,�nq�,t�� . �33�

B. Closure of the equation for fFOD
−

The right-hand side of Eq. �5−� refers to SOD elements,
whose number of phonons in mode q� of the left basis is
reduced by 1. These elements are denoted by fSOD

−+, , fSOD
−−, ,

fSOD
−,− , and fSOD

−,+ according to the order of their appearance the
right. Diagonal elements are provided by the first and the
third terms fSOD

−+, and fSOD
−,− . Accordingly, we pursue the equa-

tions of motion of the corrections �fSOD
−+, and �fSOD

−,− for appro-
priate contributions to Eq. �5−�. The equations for the re-
maining two terms—namely, fSOD

−−, and fSOD
−,+ —are also

explored for such contributions. The analysis follows the
same steps of retaining the FOD elements on the right-hand
side of the corresponding equations and applying the RPA.

Next the contributions obtained are approximated by taking
the classical limit. We skip the long but straightforward al-
gebraic steps and summarize the terms added to the Liouville
operator in Eq. �5−� by the following scheme:

fSOD
−+, → �e�pz +

�qz�

2
, fSOD

−−, → �a�pz +
�qz�

2
 ,

fSOD
−,+ → �e�pz +

�qz�

2
, fSOD

−,− → �a�pz +
�qz�

2
 .

Collecting all terms into �=2��a+�e�, we formulate the trun-
cated equation for the second FOD element:

� �

�t
+

pz + �qz�/2

m
�z + eE�pz

+ ��pz +
�qz�

2
 − i�� fw�z,pz +

�qz�

2
,�nq�q�

− ,�nq�,t
= FG�q��eiqz�z�nq��fw�z,pz,�nq��nq�,t� − fw�z,pz + �qz�,�nq�q�

− ,�nq�q�
− ,t�� . �34�

C. Inhomogeneous Barker-Ferry equation

Equations �33� and �34� generalize Eq. �5�. Aiming at a
closed equation for the electron Wigner function we follow
essentially the same steps used to obtain the Levinson equa-
tion. The corresponding integral equations resemble Eq. �7�
corrected by the exponents e−�t�

t
�(pz���
�qz�/2)d�, which appear

on the right-hand sides. A replacement into Eq. �4� gives rise

to a generalization of Eq. �8�, where e−�t�
t

��pz(��−�qz�/2)d� is at-
tached to the exponents of the second row and

e−�t�
t

�(pz���+�qz�/2)d� is attached to the exponents of the last row.
In the latter we switch the sign of q�, introduce the variable
pz�, and perform the trace operation. However, now, the
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evaluation of the trace is not as straightforward as in the
Levinson case. The reason is that � brings a nonlinear de-
pendence from the phonon degrees of freedom so that Eq.
�11� can be applied after additional considerations of the
phonon system. We postpone the discussion of this for the
next section and formulate the inhomogeneous Barker-Ferry
model obtained:

� �

�t
+

pz

m
�z + eE�pz

 fw�z,pz,t�

= �
q�� ,pz�

�
0

t

dt��S�pz,pz�,q�� ,t,t��fw„z
−�t��,pz��t��,t�…

− S�pz�,pz,q�� ,t,t��fw„z
−�t��,pz�t��,t�…� , �35�

where

S�pz,pz�,q�� ,t,t�� = 2�FG�q���2e−�
t�
t

�̄„��pz+pz��/2��au�…d�

� �n�q�cos��
t�

t �	„pz���… − 	„pz����… − ��q��d�

�


+ �n�q� + 1�cos��
t�

t �	„pz���… − 	„pz����… + ��q��d�

�
� ,

�36�

�̄�p� = �
q�

2���FG�q���2��n�q�� + 1��„	�p� − 	�p − �qz��

− ��… + n�q���„	�p� − 	�p + �qz�� + ��…� . �37�

We note that the Boltzmann out-scattering rate �̄ is formally
obtained from � by replacing the phonon coordinates nq� by
their expectation value n�q��.

V. PHYSICAL ASPECTS

A. Two models

We consider the derivation of the two models from a heu-
ristic point of view. A basic step is the truncation of the GWF
hierarchy at the first or the second off-diagonal level. A rea-
sonable argument for such truncation is the assumption of a
weak electron-phonon coupling. That is, F, multiplied by the
corresponding momentum scale and the time scale �t of the
transitions between the GWF elements, must be small. An
initially decoupled electron-phonon system is assumed,
where all off-diagonal elements are zero. A typical Levinson
transition links a diagonal element to a first off-diagonal el-
ement which is linked back to a diagonal element. Two tran-
sitions related to the left phonon basis are shown in Fig. 1. A
single-phonon mode q� is involved in both links. After the
transition, the electron-phonon system returns back to the
diagonal state. The assumption for a weak coupling means
that only single events occur at a given time. Events where
two or more transitions involving two or more phonon
modes occur at the same time are highly unprobable. Such
events are neglected along with events involving higher off-
diagonal elements in the path diagonal→diagonal element.

As inferred by the integral form of Eq. �12�, the duration of
such transition is given by the time interval t− t� in Eq. �13�.
The evolution of the system proceeds on a different time
scale �e which is larger than �t. This time scale is relevant to
the duration T of the measurement of the state of the system.
The Levinson transport picture can be established if the sys-
tem is mainly decoupled during the process of measurement;
i.e., the cumulative time of all transitions is a very small part
of the averaging time T: �e��t. This is in accordance with
the assumption �9� for an equilibrium phonon system �Bloch
assumption�, which associates a vast mechanism recovering
the phonon equilibrium between the transitions.

A nice feature of the Levinson equation is that the classi-
cal limit of Eq. �13� recovers the Boltzmann equation. This
feature leads to a model that explains the evolution in a wide
time range in terms of Levinson transitions. In the long-time
limit these transitions become the instantaneous Boltzmann
scattering events. However, this model cannot be valid: A
mechanism which keeps the transitions bounded in time is
lacking in the Levinson equation. Indeed, the scattering func-
tion S, Eq. �13�, is not vanishing for large transition times
�t− t�� so that the time of a transition can become of order of
the evolution time, �t��e. From these considerations it is
anticipated that the Levinson model can be relevant up to
moderate evolution times.

The Barker-Ferry equation enters one level deeper in the
hierarchy by incorporating the interaction of the FOD with
the SOD elements. The main transitions are still of the
Levinson type: The diagonal element n ,n in Fig. 2 is linked
to the diagonal element n+1� ,n+1� via the FOD element
n+1� ,n. Here the prime is for the mode q� involved in the
link. However, the FOD element is modified now by the
coupling with the SOD elements as shown in the figure. The
coupling involves a second mode q� and corresponds to in-
stantaneous transitions from FOD to SOD elements and
back. These transitions are integrated into the exponent of
Eq. �36�: To see this we compare Eq. �7� with Eq. �A3� and
recall the equivalence of the latter with Eq. �A5� �with �1 set
to zero�. We note that the bounds of the time integral in the
exponent correspond to the duration of the main transition,
while the classical limit makes the interaction with the SOD
elements instantaneous. All such SOD elements are ac-
counted for by a sum over the second mode q�. The Barker-
Ferry model already introduces a mechanism, which takes
care of the duration of the transitions: the exponent effec-
tively damps the long lasting correlations. However, in the
long-time limit the model fails to recover the classical �
function, giving rise to a Lorentzian energy distribution in-
stead.

These considerations suggest the existence of a time limit
T of validity of the two models. The correlations with the
higher off-diagonal elements can no more be neglected after
this time. An estimation of T, which certainly depends on the
physical parameters of the system, can be obtained by nu-
merical experiments. A credibility guess for T is the time
when the behavior of the observables begins to become un-
physical. As already noted, the Lorentzian gives rise to arti-
ficial carrier heating, so that the total energy of the system is
one of the candidate observables. Is the carrier density also
such an observable? An integration of Eq. �12� or �35� with

NEDJALKOV et al. PHYSICAL REVIEW B 74, 035311 �2006�

035311-12



respect to pz shows that the two models give rise to the
continuity equation. Hence, if the initial condition is physi-
cally relevant, one cannot expect surprises in the evolution of
the carrier density such as appearance of negative carrier
concentrations. However, nothing can be set in advance for
the evolution of the momentum density. While in the classi-
cal case the non-negative Boltzmann scattering rate guaran-
tees a physical momentum distribution, the rates �13� and
�36� allow negative values. Thus the behavior of the momen-
tum density at longer evolution times could be another can-
didate for probing the validity of the models.

B. Phonon system

The appearance of the Boltzmann out-scattering rate �̄ in
Eq. �37� can be established in two ways. One can follow the
quite common approach of replacement of complicated func-
tions by appropriate averages. As the phonons are assumed
in equilibrium, the probability to find nq phonons in mode q
is P�nq�. By recalling the dependence of � on �nq� it suffi-
cient to average � to obtain

�̄ = �
�nq�

�
q

Peq�nq�� . �38�

Further on �̄ is replaced in the generalized equation �8� and
the steps associated with Eqs.�9�–�11� are applied afterwards.

There is an alternative approach, which throws more in-
sight in the assumptions hidden in Eq. �38�. We adopt the
treatment of the phonon system developed in Ref. 43 and
accomplish the proof with the help of combinatorial consid-
erations. In the generalized equation �8� we first expand

e−�t�
t

� into a series and truncate to a term K corresponding to
a desired precision. Then we apply the trace operation to-
gether with the ansatz �9�. Terms are obtained of the form

�
�nq�

nq0�
q1

nq1�
q2

�nq2
+ 1� ¯ Peq�nq0

+ I� �
q�q0

Peq�nq�

��FG�q1��2�FG�q2��2 ¯ �qz1
�qz2

¯ . �39�

Here the sum of the trace runs over the natural numbers from
zero to infinity for any mode. As shown below, we can take
the average of any phonon mode q independently on the rest
of the modes in Eq.�39�. That is, under a reasonable assump-

tion, with repeating modes of the form nqnq¯Peq�nq� can be
neglected. The first factor nq0

corresponding to q� in Eq. �8�
is distributed according Peq�nq0

+ I�, where I is ±1 or 0. With
the help of Eq. �11� it is evaluated as n�q0� or n�q0�+1 and
can be skipped in the further discussions. The modes q1q2¯

come from the product ��¯ in the expansion of the expo-
nent. The phonons in these modes are distributed according
Peq�nq�. After averaging, the equilibrium phonon numbers
n�qi� replace the corresponding phonon coordinates nqi

in
Eq. �39�. These terms are summed to recover the exponent,
which settles the appearance of �̄ in Eq. �36�.

Now we show that, if the number of the modes in the
plane normal to the wire is large enough, the trace can be
taken by neglecting the terms with repeating modes in the
product �39�. The � functions in � affect only the z coordi-
nates of the wave vectors as indicated by the index in �qz1

.
With this, Eq. �39� can be further decomposed into products
with fixed combinations of z coordinates qz1qz2¯qzk:

�
nq1

¯nk=0

�

�
q�1

nq1
¯ �

q�k

nqk
Peq�nq1

� ¯ Peq�nqk
�

��FG�q1��2 ¯ �FG�qk��2.

We note that modes where FG is zero �e.g., in the zeros of the
electron state in the normal plane� can be skipped in the sum.
We assume that the number of these modes is negligible
compared to the number N of the modes in the normal plane
�normal modes�. Consider the product

�
nq1

¯nqk
=0

�

nq1
¯ nqk

Peq�nq0
�Peq�nq1

� ¯ Peq�nqk
� . �40�

This expression is evaluated as

n�q1� ¯ n�qk�, if q1 � q2 � ¯ � qk, �41�

or if some modes coincide to

n�q1� ¯ n����q j� ¯ n����qm� ¯ n�qk� ,

n����q� = �
nq=0

�

nq
�Peq�nq� . �42�

Now let l be the infinimum and mk the supremum defined as

L = inf
q

n�q��FG�q��2

FIG. 1. Levinson transitions link diagonal with FOD elements.
The FOD element is presented by the open circle, and n and n stand
for the left and right phonon sets �nq� and �nq�.

FIG. 2. The Barker-Ferry counterpart of the first Levinson tran-
sition shown on Fig. 1. Here ±1� denotes an increase or decrease by
unity of the phonons in mode q� in the left or right basis.
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Mk = sup
��¯;q0¯qk

n�q1� ¯ n����q j� ¯ n���

��qm� ¯ n�qk�; �FG�q1��2 ¯ �FG�qk��2.

These numbers exist due to the discrete character of the
modes. Moreover, l is different from zero since the zeros of
FG are already skipped. We evaluate the relative contribu-
tions of the terms �42� to the sum �40�. As the number of the
terms �41� is N�N−1�¯ �N−k+1� �we assume the worst
case scenario of equal z coordinates� this contribution is less
than

Mk�Nk − N�N − 1� ¯ �N − k + 1��
LkN�N − 1� ¯ �N − k + 1�

.

The latter tends to zero if N tends to infinity for any fixed
k�K. It is concluded that if the number of the normal modes
is very large we can keep only the terms �41�. This result
concerns also the Bloch assumption: An initially equilibrium
phonon system can be considered as equilibrium at later
times provided that the number of modes is large enough. In
this case the assumption for a vast mechanism of phonon
relaxation is no longer indispensable.

VI. RESULTS

The implemented numerical approach is a backward
Monte Carlo method. The method has been developed and
refined for both classical and quantum transport.25,39,44–50

The idea of the approach is to express the solution of the
equation in a Neumann series and to evaluate the consecutive
terms with the help of Markov chains. The latter are con-
structed by consecutive application of an a priori transition
probability. The Markov chains begin from the fixed point
and time where the value of the solution is to be determined.
The chains “evolve” backward in time, which gives the name
of the approach. In general the precision depends on the
number of chains N as N−1/2. High precision is obtained by
increasing the number N, which is the expense of a corre-
sponding increase of the computational time.

The approach is readily generalized for evaluation of
functionals of the solution. In the indirect way the solution is
computed at selected points which are used in the chosen
quadrature for computation of the functional. In the direct
way the functional is computed with the help of an initial
probability used to select the initial points of the Markov
chains.

A GaAs quantum wire with a square cross section of
10 nm is chosen for the simulations. The material parameters
are taken from, Ref. 25; in particular, a single polar optical
phonon having a constant energy �� is considered. The elec-
tric field is zero. The initial condition is a product of two
Gaussian distributions of energy and space. The kz

2 distribu-
tion corresponds to a generating laser pulse with an excess
energy of about 150 meV. The z distribution is centered
around the origin of the coordinate system. We first regard

the evolution of the wave vector �and similarly the energy�
and the density distributions given by the integrals

f�kz,t� =� dzfw�z,�kz,t�, n�z,t� =� dpzfw�z,pz,t� .

Here it is assumed that the initial condition is normalized to
unity. The behavior of the energy distribution at very low
temperatures can be used as a test of the correctness of our
approach: as the wire electrons remain in the ground state in
the normal plane the peculiarities of the evolution in the wire
must be the same as in the homogeneous case. We recall the
major features of the homogeneous evolution.18,43 Semiclas-
sical electrons can only emit phonons and lose energy equal
to a multiple of the phonon energy ��. They evolve accord-
ing to an energy distribution, patterned by replicas of the
initial condition shifted towards low energies.52 Such elec-
trons cannot appear in the region above the initial distribu-
tion. Because of the lack of an energy-conserving � function,
the quantum solutions demonstrate two effects of a deviation
from semiclassical behavior. The replicas are broadened and
the broadening reduces with time. A finite density of elec-
trons appears in the semiclassically forbidden region above
the initial condition. The wire electrons show the same be-
havior. The function f�kz , t� is symmetric with respect to the
origin, and thus f�kz�0, t� is a representative for the behav-
ior of the energy distribution. Figure 3 shows the initial con-
dition and the well-broadened curve f��kz � , t� at time t
=50 fs of the evolution. The presence of electrons above the
initial condition is visible at around kz=60��10−2 /nm�. At
such small times there is no difference between the solutions
of the Levinson and Barker-Ferry models. The broadening
begins to shrink with an increase of the time �Fig. 4�; the first
peak to the left of the initial condition is already formed after
150 fs of evolution, and the second one comes up. The dis-
tance between the initial and first peaks corresponds to a
shift with the phonon energy; however the curve is still wider
as compared to an exact replica. The 175-
fs curve is obtained by a direct evaluation of the functional
for the wave vector density. The curves at earlier times are
computed indirectly via the Wigner function evaluated in
800�260 z and kz mesh points. The points are regularly
distributed in the simulation domain with steps of 1 nm and
0.5��10−2 /nm�, respectively. With the increase of the evo-
lution time the indirect way becomes more inexact. Figure 5
compares the 175-fs densities obtained by direct and indirect
computations from the Levinson model. The indirect curve is
already unphysical. The result is independent on how pre-
cisely the Wigner function is evaluated in the chosen points
provided that the mesh is kept fixed. This feature is associ-
ated with the fact that with the increase of the evolution time
the Wigner function �Fig. 6� becomes less smooth and thus
an increased number of mesh points are needed for a precise
evaluation of the corresponding functionals. The Barker-
Ferry curve plotted with the solid line in Fig. 5 is obtained by
the direct way. A comparison with the Levinson counterpart
shows that the exponent has a pronounced effect on the wave
vector distri-bution. It causes an effective retardation to the
evolution process. The difference between the two models is
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expected to become more pronounced at larger times. Unfor-
tunately the computational burden increases exponentially
with the evolution time. Special numerical approaches are
needed to achieve hundreds of femtoseconds, which is a task
beyond the aims of this work.

Figure 7 shows the initial electron density �dashed line�
centered around the origin. It splits into two peaks which
move in the positive and negative directions of the wire. The
50-fs density is presented by the solid line. A comparison
with the ballistic curve �dotted line� shows that at early times
the spatial transport is mainly ballistic. An exception is the
central part, already filled with electrons slowed down by the
interaction with the phonons. The situation changes entirely
with the increase of the time. Figure 8 compares the ballistic
density with the densities obtained from the two models. The
fronts of the ballistic peaks, placed above �below� 200 nm
�−200 nm� are formed by the fastest classical electrons since
processes of phonon absorption are suppressed at T=0 K.
The quantum fronts are placed farther away from the origin.

They are formed by electrons which gained velocity from the
interactions: such electrons reside in the classically forbidden
energy region and thus move faster. This picture is asserted
by the distribution of the mean energy per particle,

e�z,t� =� dkz	�kz�f�z,kz,t�/n�z,t� .

Figure 9 shows e�z , t� for t=175 fs. The thin solid curve
gives an initial reference for the energy range of the ballistic
electrons. Outside the 200-nm region around the origin the
quantum electrons are much hotter than the ballistic ones.

FIG. 3. Initial peak �dashed line� and the 50-fs wave vector
density presented in a window of positive kz.

FIG. 4. Time evolution of the wave vector distribution obtained
from the Levinson model. The 175-fs curve is obtained by direct
evaluation of f�kz , t�. The distributions at earlier times are computed
indirectly, via the Wigner function.

FIG. 5. The 175-fs wave vector distribution obtained from the
Levinson model by direct �L� and indirect �LW� computations via
the Wigner function. The difference between the two results is sig-
nificant; the LW curve becomes negative in the valley between the
peaks. The Barker-Ferry curve �solid line� is obtained by direct
computations.

FIG. 6. �Color online� The Wigner function after 175 fs of evo-
lution. The two main peaks are truncated for better resolution. The
secondary peaks are formed by electrons which transferred part of
their energy to the phonons. The classically forbidden regions are
placed on the opposite side of the main peaks, in the nearest left and
far right corners of the picture. The regions are populated with
rapidly moving electrons.
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The difference of the energy distribution provided by the two
models is already well pronounced in the central part. The
Barker-Ferry curve is closer to the ballistic distribution
which is in accordance with the delay in the evolution of the
replicas caused by the exponential damping of the interaction
durations.

VII. CONCLUSIONS

The generalized Wigner function provides a convenient
approach for derivation of quantum-kinetic models of the
electron-phonon interaction. The corresponding hierarchy of
Wigner function elements can be truncated at different lev-
els, giving rise to closed equations for the electron system.
The inhomogeneous counterparts of the Levinson and
Barker-Ferry equations, which describe the femtosecond
evolution of local electron packets in a quantum wire, are

derived. Basic to this are the hypotheses for an initially de-
coupled system, equilibrium phonons, and the Markov ap-
proximation. The physical aspects of the set of assumptions
are discussed. In particular, it is argued that the relevance of
both models is bounded at the long-time limit. The solutions
of the equations are rich in quantum effects already in the
case of zero electric field. Along with collisional broadening
and retardation, an effect of ultrafast spatial transport is ob-
served. This effect has been reported recently for the case of
infinite electron lifetime.19 The solutions of the two models
begin to differ after around 200 fs of evolution. The next few
hundred femtoseconds are the most interesting time domain
for analysis of the features of the two models. Unfortunately
the numerical burden increases rapidly with the evolution
time. Novel numerical approaches and implementation tech-
niques, including GRID technologies, aiming to explore this
time domain along with the effect of the electric field are
currently under development.
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APPENDIX A

The integral form of Eq. �2� is obtained with the help of
the characteristics of the Liouville operator on the left, which
are Newton’s trajectories of the form

z�t�� = z −
1

m
�

t�

t

pz���d�, pz�t�� = pz − eE�t − t�� .

�A1�

The particular trajectory is initialized at �z , pz , t�. The
equation includes explicitly the initial condition
f0�z , pz , �nq� , �nq�� ,0�. The phonon coordinates of the particu-
lar terms remain the same in the integral form and the
integro-differential counterpart. Referring to this correspon-
dence we keep them implicit in the GWF elements:

FIG. 7. Electron densities at time 0 and 50 fs. The ballistic
curve �dotted line� coincides everywhere with the 50-fs solution
apart from the central region. There reside electrons slowed down
by the scattering events.

FIG. 8. Electron density after 175 fs evolution. The fastest clas-
sical electrons form the fronts of the two ballistic peaks �solid line�
slightly above �below� 200 nm �−200 nm�. The fastest quantum
electrons of the Levinson �bold line� and Barker-Ferry �dashed line�
models reach distances placed farther away from the origin.

FIG. 9. Ballistic �solid line�, Levinson �bold line�, and Barker-
Ferry �dashed line� distributions of the mean energy per particle at
175 fs.
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fw�z,pz, · ,t� = f0„z�0�,pz�0�, · ,0…e−i/��	��nq��−	��nq����t

+ �
0

t

dt�e−i/��	��nq��−	��nq�����t−t���
q�

F�q���G�q�� �eiqz�z�t���nq� + 1fw�z�t��,pz�t�� −
�qz�

2
, · ,t�

− G*�q�� �e−iqz�z�t���nq�fw�z,pz�t�� +
�qz�

2
, · ,t� − G�q�� �eiqz�z�t���nq�

� fw�z,pz�t�� +
�qz�

2
, · ,t�

+ G*�q�� �e−iqz�z�t���nq�
� + 1fw�z�t��,pz�t�� −

�qz�

2
, · ,t�� . �A2�

The integral form can be proved by taking the time deriva-
tive of Eq. �A2�, which should lead us to Eq. �2�. To see this
we rewrite Eq. �A2� by keeping only the relevant variables:

f�z,pz,t� = f„z�0�,pz�0�,0…e�t�
0

t

dt�K„z�t��,pz�t��…e��t−t��

�f„z�t��,pz�t��,t�… , �A3�

which can be augmented to

�f„z�t��,pz�t��,t�…�t�=t = �f„z�0�,pz�0�,0…e�t��t�=t

+ �
0

t�
�dt�K„z�t��,pz�t��…e��t�−t��

�f„z�t��,pz�t��,t�…�t�=t.

Written in this way, the equation reminds us that the time
derivative is taken over the trajectory: first we differentiate
with respect to t� and set t�= t in the final result. The left-
hand side readily gives the Liouville operator L acting on f ,
while the right-hand side gives �f�z , pz , t�+K�z , pz�f�z , pz , t�
�compare Eq. �2��:

�L − ��f�z,pz,t� = K�z,pz�f�z,pz,t� . �A4�

Equation �A3� can be formulated in an alternative way
provided that �=�1+�2:

f�z,pz,t� = f„z�0�,pz�0�,0…e�1t + �
0

t

dt��K„z�t��,pz�t��…

+ �2�e�1�t−t��f„z�t��,pz�t��,t�… . �A5�

The equivalence between Eqs. �A3� and �A5� will be used in
finding models which approximate Eq. �2�. Note that Eqs.
�A3� and �A5� continue to hold if � is time dependent: then
the argument of the exponents �of the form ��t− t1�, t1

=0 , t�� must be replaced by �t1
t ����d�. We also note the

equivalence between the expressions pz�t��+�qz and �pz

+�qz��t��.

APPENDIX B

Denoting fw�. . . , t� , . . . � shortly by ��t�� and introducing
relative time variables t1= t�− t�, �1=�− t� we rewrite the in-
tegral of interest I as follows:

I = �
t�

t

dt�ei�
t�
t���	���+���d�/���t��

= �
0

t−t�
dt1ei�0

t1��	��1+t��+���d�1/���t1 + t��

= �
0

t−t�
dt1e�i/����	�t��+��+�2qz�eEt1/2m�t1��t1 + t�� .

The time integration in the last row has been performed with
the help of the definition of the trajectory �A1� by using the
explicite expression for �	. Denote by � and � the scales of
the energy and time, respectively. A dimensionless variable
t�= t /� is introduced. We assume that � is a common scale
for the electron and phonon energies and also for the term
determined by the electric field, so that

	 = 	��, 	ph = �� = 	ph
� �, 	E =

�2qzeE�

2m
= 	E

�� .

A new integration variable

x =
t1�

�
=

t1
���

�
=

t1

��

=
t1
�

���

,

where ��=� /� and ���=� / ����, is introduced. Further-
more, the shortening T= �t− t�� /��= �t− t��� /��� will be
used. With the help of these variables the integral is rewritten
as

I = ���
0

T

dx ei��	�+	ph
� +	E

�x����x���x��� + t�� .

We assume that the energy and time scales are large enough
to allow us to apply the limit ���→0. Then T→�, while the
term related to the electric field vanishes. The time integral
in I becomes the Fourier transform of the step function ��t�
which is expressed with the help of generalized functions:

I = ���
0

�

dx ei��	�+	ph
� �x��t�� = ������	 + ���

+ VP
i

�	 + ��
��t�� .
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