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Abstract

The question ”what Monte Carlo can do and cannot do
efficiently” is discussed for some functional spaces that de-
fine the regularity of the input data. Important for practical
computations data classes are considered: classes of func-
tions with bounded derivatives and Hölder type conditions.

Theoretical performance analysis of some algorithms
with unimprovable rate of convergence is given. Estimates
of complexity of two classes of algorithms – deterministic
and randomized for the solution of a class of integral equa-
tions are presented.

Keywords: Monte Carlo algorithms, deterministic al-
gorithms, integral equations, unimprovable rate of conver-
gence.

1 Introduction: definitions and basic nota-
tions

The Monte Carlo method is a powerful tool in many
fields of mathematics, physics and engineering. It is known
that the algorithms based on this method give statistical es-
timates for any linear functional of the solution by perform-
ing random sampling of a certain random variable (r.v.)
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whose mathematical expectation is the desired functional.
The Monte Carlo method is a method for solving problems
using random variables. Usually Monte Carlo methods re-
duce problems to the approximate calculation of mathemat-
ical expectations. Let the variableJ be the desired solution
of the problem or some desired linear functional of the so-
lution. A r.v. ξ with mathematical expectation equal toJ
must be constructed:Eξ = J . Usingn independent values
(realizations) ofξ : ξ1, ξ2, . . . , ξn, an approximation toJ

J ≈
1

n
(ξ1 + . . . + ξn), (1)

can then be computed.
Monte Carlo numerical algorithms are usually used for

solving deterministicproblems by modeling random vari-
ables or random fields. It is clear, that in this case a statisti-
cal error appear. The error estimates are important issue in
studying Monte Carlo algorithms. It should be mentioned
here that one can only state that a certain Monte Carlo algo-
rithm can produce the result with a given probability error.
If the mean value ofn realizations of the r.v.ξ is denoted
by ξn = 1

n

∑n
i=1 ξi, then the following definition of the

probability error can be given:

Definition 1.1 If J is the exact solution of the problem, then
the probability error is the least possible real numberRn,
for which:

P = Pr
{

|ξn − J | ≤ Rn

}

, (2)

where0 < P < 1. If P = 1/2, then the probability error is
call probable error denoted byrn.
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So, dealing with randomized algorithms one has to ac-
cept that the result of the computation can be true only with
a certain (even high) probability.

Definition 1.2 A finite discrete Markov chainTi is defined
as a finite set of states{k1, k2, ..., ki}.

At each of the sequence of timest = 0, 1, . . . , i, . . . the sys-
tem Ti is in one of the following stateskj . The statekj

determines a set of conditional probabilitiespjl, such that
pjl is the probability that the system will be in the statekl

at the(τ + 1)th time given that it was in statekj at time
τ . Thus,pjl is the probability of the transitionkj ⇒ kl.
The set of all conditional probabilitiespjl defines a transi-
tion probability matrixP = {pjl}i

j,l=1, which completely
characterizes the given chainTi. In the general case, iter-
ative Monte Carlo algorithms can be defined asterminated
Markov chains:

T = kt0 → kt1 → kt2 → . . . → kti , (3)

wherektq , (q = 1, . . . , i) is one of the absorbing states.
This determines the value of some functionF (T ) = J(u),
which depends on the sequence (3). The functionF (T )
is a random variable. After the value ofF (T ) has been
calculated, the system is restarted at its initial statekt0 and
the transitions are begun anew. A number ofn independent
runs are performed through the Markov chain starting from
the statest0 to any of the absorbing states. The average

1

n

∑

T

F (T ) (4)

is taken over all actual sequences of transitions (3). The
value in (4) approximatesE{F (T )}, which is the required
linear form of the solution.

We also will be interested inperformance analysis of al-
gorithms. The performance analysis deals withcomputa-
tional costof the algorithms (see [12, 9]).

Definition 1.3 Computational cost of a randomized itera-
tive algorithmAR is defined by

cost(A, x, ω) = nE(q)t0,

whereE(q) is the mathematical expectation of the number
of transitions in the sequence (3) andt0 is the mean time
needed for value of one transition.

The question:what Monte Carlo can do and cannot do
efficiently?frequently arises among people dealing with nu-
merical methods, scientific computing and applications of
mathematics in theoretical and applied sciences. Often if
there are two algorithms people are interested which one is
better. What meansbetterin the case you cannot get the ex-
act solution of the problem and you are happy to have anε-
approximation to the true solution? Obviously, you will call

better the algorithm, which produces theε-approximation
to the solution faster, or with a smaller number of opera-
tions.

The mathematical expectation of the r.v.θ is denoted by
E(θ) (sometimes abbreviated toEθ); the variance byD(θ)
(or Dθ) and the standard deviation byσ(θ) (or σθ). We
shall letγ denote the random number, that is a uniformly
distributed r.v. in[0, 1] with E(γ) = 1/2 and D(γ) =
1/12). We shall further denote the values of the random
pointξ or θ by ξi, θi(i = 1, 2, . . . , n) respectively. Ifξi is a
d-dimensional random point, then usually it is constructed
usingd random numbersγ, i.e.,ξi ≡ (γ

(1)
i , . . . , γ

(d)
i ). The

density (frequency) function will be denoted byp(x) and
the transition density function byp(x, y). F (x) will de-
note the distribution function. Finally the mean value ofn
values of the r.v.ξ will be denoted byξn = 1

n

∑n
i=1 ξi.

Normally, after finding the mean value that approximates
the exact solution one has to estimate the probability error
Rn (see Definition 1.1).

The analysis, studying and finding the number of opera-
tions (or the computational cost) we callperformance anal-
ysis. So, the performance analysis deals with the computa-
tional cost of algorithms. Here we consider the computa-
tional cost and complexity of solving integral equations. In
Section 2 we define what we mean bysolving integral equa-
tions. In fact we consider algorithms for computing bilinear
forms of the solution of the Fredholm integral equations of
second kind. In Section 3 the functional spaces, which de-
fine the regularity of theinput dataare defined and error
estimates are presented. Some results ofε-complexity of
the problem under consideration are presented in Section 4.
Here we also define the class ofalmost optimal randomized
algorithms. Results of the computational cost of a grid-free
almost optimal randomized algorithm are given in section
5.

2 Formulation of the problem of solving inte-
gral equations

Let us consider the following problem: Compute the
functional

(h, u) =

∫

G

h(x)u(x)dx, (5)

whereh(x) is a given function andu(x) is the solution of
the Fredholm integral equation of second kind:

u(x) =

∫

G

l(x, y)u(y)dy + f(x), (6)

or in an operator formu = Lu + f , whereL : C(G) →
C(G) denotes an integral operator. We should note here
that such a formulation of the problem is very often used in
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theoretical and applied sciences. The meaning of the above
formulated functional is given in the Introduction. It could
be the mean value of the velocity of the particles (the first
integral moment of the velocity) or the energy (the second
integral moment of the velocity) in statistical physics prob-
lems, or effect of given pollution levelsu(x) (satisfying in-
tegral transport equation) on the life matter (h(x) is sensi-
tivity to a given pollutant).

The solution operator for the above formulated problem
can be written in the following form:

SEq(l, f) = (h, u) =
(

(I − L)
−1

f, h
)

.

Sometimes, the adjoint equation

v = L∗v + h (7)

is used.
In (7) v, h ∈ X

∗, L∗ ∈ [X∗ → X
∗],X∗ is the dual

functional space toX andL∗ is an adjoint operator. For
some important applicationsX = L1 and‖ f ‖L1

=
∫

G

|

f(x) | dx. In this caseh(x) ∈ L∞, henceL1
∗ ≡ L∞ and

‖ h ‖L∞
= sup |h(x)|, x ∈ G. Obviously, ifu ∈ L1 and

h ∈ L∞ the inner product (5) will be bounded.
For many applicationsX = X

∗ = L2. L2 norms are
defined as follows:

‖ f ‖L2
=





∫

G

(f(x))2dx





1
2

;

‖ L ‖L2
≤ sup

x





∫

G

(l(x, x′))2dx′





1
2

.

Note also, that ifh(x), u(x) ∈ L2 then the inner product
(5) is finite. One can see, that ifu(x) ∈ L2 andl(x, x′) ∈
L2(G × G) thenLu(x) ∈ L2. It is trivial to show that
L2u(x), . . . , Liu(x), . . . also belong toL2(G).

For simplicity and concreteness we assume thatX =
X

∗ = L2. If it is also assumed that‖ Lm ‖< 1,
wherem is any natural number, then the Neumann series
u =

∑

∞

i=0 Lif converges.
The condition‖ Lm ‖< 1 is not very strong, since, as

it was shown by K. Sabelfeld [10], it is possible to con-
struct a Monte Carlo algorithm for which the Neumann se-
ries does not converge. Analytically extending the resolvent
by a change of the spectral parameter gives a possibility to
obtain a convergent algorithm when Neumann series for the
original problem does not converge or to accelerate the con-
vergence when it converges slowly. It is easy to show that
J = (h, u) = (f, v). This equality means that the solu-
tion of the adjoint problem is equivalent to the solution of
the original one. The last fact is important for performance

analysis studies, because in practice very often the solution
of the adjoint problem is easier than the solution of the orig-
inal one.

Let us consider the Monte Carlo algorithm for evaluating
the functional (5). It can be seen that whenl(x, x′) ≡ 0
evaluation of the integrals can pose a problem. Consider a
random pointξ ∈ G with a densityp(x) and let there ben
values of the random pointξi(i = 1, 2, ..., n). Let a random
variableθ(ξ) be defined inG, such thatEθ(ξ) = J .

Then the computational problem becomes one of calcu-
lating repeated values ofθ and of combining them into an
appropriate statistical estimator ofJ . The nature of the
every process realization ofθ is a Markov process. We
will consider discrete Markov processes with a finite set
of states, the so calledMarkov chains(see, Definition 1.2
given in the Introduction).

An approximate value of the linear functionalJ , defined
by (5) is J ≈ 1

n

∑n
s=1{θ}s = θ̂n, where(θ)s is the s-th

value of the random variableθ.
The r.v. whose mathematical expectation is equal to

J(u) is given by the following expression

θ[h] =
h(ξ0)

p(ξ0)

∞
∑

j=0

Qjf(ξj),

whereQ0 = 1; Qj = Qj−1
l(ξj−1, ξj)

p(ξj−1, ξj)
, j = 1, 2, . . . , and

ξ0, ξ1, . . . is a Markov chain inG with initial density func-
tion p(x) and transition density functionp(x, y).

Iterative randomized algorithms are characterized by two
types of errors:

• systematicerrorri, i ≥ 1 (obtained from the truncat-
ing of the Markov chain) which depends on the number
of iterationsi of the used iterative process:

|ri| ≤
‖ L ‖i+1

L2
‖f‖L2

1 − ‖ L ‖
L2

,

and

• statisticalerrorRn, which depends on the number of
samplesn of Markov chain:

Rn = cβ σ2(θ[h])n−1/2, 0 < β < 1, β ∈ IR.

The constantcβ (and therefore also the complexity esti-
mates of algorithms) depends on the confidence levelβ.
Probable errorrn is often used, which corresponds to a1/2
confidence level. Such a level is often acceptable for prac-
tical computations.

The problem to achieve a good balance between the sys-
tematic and statistical error has a great practical importance.
To ensure a statistical errorε, it is necessary to performi

3



transitions in the Markov process, wherei is chosen from
the inequality

i > ln−1 α [ln ε + ln (1 − α) − ln ‖f‖L2
] − 1

(assuming‖f‖L2
> ε (1 − α)),

whereα = ‖L‖2 and the initial approximation is chosen to
be the right-hand sidef . To achieve a probable errorε, it is
necessary to performn samples depending on the following
inequality:

n >

[

c0.5
σ(θ)

ε

]2

, c0.5 ≈ 0.6745,

whereθ is the random variable, whose mathematical expec-
tation coincides with the desired linear functional (5).

3 Error analysis results

For the errorr(AEq) associated with an algorithmAEq

the following theorem is proved:

Theorem 3.1 (Emelyanov and Il’in [7]) For the problem
SEq of solvingd-dimensional Fredholm integral equations
of second kind withp smooth data

r(AEq) ≤ c′n−
p
2d (8)

for the deterministic algorithmsA and

r(AR
Eq) ≤ c′′n−

p
2d−

1
2 (9)

for the randomized algorithmsAR.

This result can be slightly improved if one assumes that
the ”input” data(l, f) satisfy a kind of Hölder conditions.
Let us define the clasŝHp

λ(α, Ed) for p, d ∈ N , β, γ >
0, 0 < δ < 1:

X = W p(E2d) × W p(Ed)

Ĥp
λ(α, Ed) =

{

(l, f) ∈ X : ‖ f ‖W p(Ed) ≤ γ,

‖ l ‖W p(E2d) ≤ β, ‖ l ‖C0(E2d) ≤ δ,

|Dpf(y1, . . . , yd) − Dpf(z1, . . . , zd)|

≤ α

d
∑

j=1

|yj − zj|
λ,

∣

∣

∣l
(p)

y
r1
1

...y
rd
d

(x1, . . . , xd; u1, . . . , ud)

−l
(p)

y
r1
1

...y
rd
d

(x1, . . . , xd; v1, . . . , vd)
∣

∣

∣

≤ α(x1, . . . , xd)

d
∑

j=1

|uj − vj |
λ







.

We should comment here that the condition‖ l ‖C0(E2d) ≤
δ ensures the existence and uniqueness of the solution of the
integral equation under consideration.

Theorem 3.2 For the problem SEq of solving d-
dimensional Fredholm integral equations of second
kind withp smooth data, which is Ḧolder with a rate ofλ,
e.i.,(l, f) ∈ Ĥp

λ(α, Ed) we have:

r(AEq) ≤ c′n−
p+λ
2d (10)

for the deterministic algorithmsA and

r
(

AR
Eq

)

≤ c′′n−
p+λ
2d −

1
2 (11)

for the randomized algorithmsAR.

4 Complexity of the problem of computing
functionals of Fredholm integral equations
of second kind

Theorem 4.1 For X0 ≡ Ĥp
λ(α, Ed) the ε-complexity of

solvingd-dimensional Fredholm integral equation of sec-
ond kindSEq is

compε(SEq) = k (c′(d, p + λ))
2d

p+λ

(

1

ε

)
2d

p+λ

for the class of deterministic algorithmsA, and

compε(SEq) = kR (c′′(d, p + λ))
2d

p+λ+d

(

1

ε

)
2d

p+λ+d

for the class of randomized algorithmsAR.

Corollary 4.1 If there is not edditional regularity, i.e.,p +
λ = 0 the deterministic algorithms are not feasible while
the randomized algorithms are feasible with a rate ofε-
complexity of order

(

1

ε

)2

.

It is reasonable to consider a class of randomized algo-
rithms with a slightly higherε- complexity.

Definition 4.1 Randomized algorithms withε- complexity
of order:

(

1

ε

)2

log ε

will be called almost optimal randomized algorithms.

In the next section an almost optimal Monte Carlo al-
gorithm with a rate ofε- complexity of order

(

1
ε

)2
log ε

for evaluation functionals of solution of Fredholm integral
equation of second kind in casep+λ = 0 will be presented.
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5 Computational cost of a grid-free random-
ized algorithm for evaluating functionals of
the solution of Fredholm integral equations
of second kind

In this section we consider a grid-free Monte Carlo al-
gorithm called (in the simplest case)spherical processfor
computing of the bilinear forms of the solution of Fredholm
integral equations of second kind. We will denote this al-
gorithm byAR

GF . As a first step of this algorithm a∆-strip
∂G∆ of the boundary∂G is chosen (on the supposition that
the solution is known on the boundary) to ensure the con-
vergence of the constructed iterative process. The following
number of operations is necessary for one random walk:

• generation ofd (this number depends on initial proba-
bility π) random numbers to determine the initial point
in the Markov chain:d(kA + kL) operations (kA and
kL are the arithmetic and logical operations necessary
for the generation of one random number)or mod-
elling of an isotropic vector that needs a number of
operations of orderR∗d(kA +kL) (the constantR de-
pends on the efficiency of the modelling method and
transition probability);

• calculating the coordinates of the initialor next point:
pnext (depends on the modelling method and the di-
mensiond of the domainB(x));

• calculating one value of functions:pf ; pπ, pϕ or
pk, pP ;

• calculating one sample of the random variable (it needs
less than3 arithmetic operations);

• calculating the distance from the current point to the
boundary∂G: γA arithmetic andγL logical operations
(depends on the dimensiond of the domainG);

• verification if the current point belongs to the chosen
∆-strip∂G∆.

The following logarithmic estimate for the average num-
berE{i} of spheres on a single trajectory holds for a wide
class of boundaries [11]:

E {i} ≤ const |ln ∆|, const > 0, (12)

whereconst depends on the boundary∂G.
Calculating the linear functional with a preliminary

given accuracyε and attainment of a good balance between
thestatisticaland thesystematicerror is an important issue
in performance analysis studies. To ensure a statistical er-
ror ε, it is necessary to performi transitions in the Markov
process, wherei is chosen from the inequality:

i ≥ ln−1 α (ln ε + ln (1 − α) − ln F (0)) − 1 (13)

(assumingF (0) > ε (1 − α)),

whereα = VB(x) L, L = max
x,t

|l(x, t)| and the initial

approximation is chosen to be the right-hand sidef(x).
On the other hand, the estimate (12) can be used to chose
the value of the parameter∆ of the boundary strip. The
value of ∆ explicitly depends on the number of transi-
tions i of the Markov process according to (13), that is
∆ ≈ exp(−i/const).

Therefore, the following estimate holds for the mathe-
matical expectation of the time required to obtain an ap-
proximation with accuracyε using the considered grid-free
Monte Carlo algorithm:

cost(AR
GF , x, ω)

≈ τ n[(d kA + pnext + pf + pπ + pϕ + γA + 4) lA+
(d kL + γL + 1) lL +

((R dkA + pnext + pf + pk + pP + 4 + γA) lA
+(R dkL + γL + 1) lL)×

×
(ln ε + ln (1 − α) − ln3 F (0)

ln3 α
]
{cβ σ(Θ[h])}2

ε2
.

Remark 5.1 From the avobe estimate it is easy to see that
the computational cost of the grid-free randomized algo-
rithm AR

GF for evaluating bilinear forms of Fredholm inte-
gral equations of second kind has a rate ofε- complexity of
order

(

1
ε

)2
log ε. Since not additional regularity is required

this algorithm has almost optimal rate.

Remark 5.2 If some additional regularity is assumed, then
it is possible that some deterministic algorithm or grid
Monte Carlo algorithm could be applied (see, for instance,
[6]).

The bounds for theε- complexity for randomized and
deterministic algorithms are given in Theorem 4.1. But it
is interesting to compare two randomized algorithms - the
above described grid-free Monte Carlo algorithmAR

GF with
the grid Monte Carlo algorithmAR

G. The description of the
grid Monte Carlo algorithm is given in [5]. This algorithm
is based on the approximation of the integral equation un-
der consideration by a system of linear algebraic equations.
This transformation represents the initial step of the consid-
ered class of grid randomized algorithms. The linear system
is obtained using some approximate cubature rule (cubature
method, Nystrom method, [1, 8]). The next step is to ap-
ply the resolvent Monte Carlo algorithm [2] for solving lin-
ear systems of equations. We should mention here that (ac-
cording to my knowledge) it is still not proved that the grid
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Monte Carlo algorithm presented in [4] is almost optimal
in sense of reaching the correspondent rate of complexity,
as it was shown for the grid-free algorithmAR

GF . Never-
theless, we can mention some conditions under which the
grid Monte Carlo algorithm could be competitive with the
grid-free Monte Carlo algorithm:

• the input data functions for the integral equation
l(x, t), f(x), h(x) should have comparatively small
maximum norm in the corresponding domain and it
should be a possibility to calculate their values with
a relatively low complexity;

• the initial and transition probability used in the
grid-free algorithm are complicated for modeling
(acceptance-rejection method);

• the dimensiond of the integration domain is large.

It has to be noted that the grid Monte Carlo algorithms
are admissible only for integral equations with smooth func-
tions, but some techniques of avoiding singularities of this
kind exist (see [11]).

6 Concluding remarks

Consider the summary results of the work presented on
Table 1 and compared with the results for multidimensional
integration.

Table 1. ε-complexity of problems for the
classes of deterministic and randomized al-
gorithms for Hp

λ(α, Ed) and Hp
λ(α, E2d) spaces

Problem ε-complexity
Determ.

Integration k (c′A(d, p + λ)α)
d

p+λ
(

1

ε

) d
p+λ

Random.

Integration kR (c′′A(d, p + λ)α)
d

p+λ+d/2

(

1

ε

) d
p+λ+d/2

Determ.

Int. eq. k (c′(d, p + λ))
2d

p+λ
(

1

ε

) 2d
p+λ

Random.

Int. eq. kR (c′′(d, p + λ))
2d

p+λ+d
(

1

ε

) 2d
p+λ+d

One can conclude that as smaller is the regularity as sim-
pler randomized algorithm should be used. Even for small
dimensions(d = 1, 2) Monte Carlo is a right choice if the
functional class has no smoothness. In this case you have to
accept that the error estimate will be obtained with a given
probability. If the computational problem you are treating

allows such an interpretation, then Monte Carlo will be the
best choice. Here we will note that this is a kind of game:
to win in the rate of convergence you have to lose in the re-
liability. It means that the increased rate of convergence is
paid by accepting uncertainty in the answer.

As a general remark it should be emphasized that for
both problems: numerical integration and evaluation linear
functionals of integral equations the randomized algorithms
have better convergence rate for the same regularity of the
input data.

But one should be careful because

• the better convergence rate for randomized algorithms
is reached with a given probability less than1, so the
advantage of Monte Carlo algorithms is a matter of
definition of the probability error.

• If the nature if the problem under consideration do not
allow to use the probability error for estimates or the
answer should be given with a guaranteed error then
the higher convergence order randomized algorithms
are not acceptable.

• An important obvious advantage of randomized algo-
rithms is the case ofbad functions, i.e., functions that
do not satisfy some additional conditions of regularity.
The main problem with the deterministic algorithms is
that normally they need some additional approxima-
tion procedure that require additional regularity. The
randomized algorithms do not need such procedures.
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