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Abstract whose mathematical expectation is the desired functional.

The Monte Carlo method is a method for solving problems

The question "what Monte Carlo can do and cannot do using random variables. Usually Monte Carlo methods re-

efficiently” is discussed for some functional spaces that de duce problems to the approximate calculation of mathemat-
fine the regularity of the input data. Important for practica ical expectations. Let the variablebe the desired solution

computations data classes are considered: classes of funcef the problem or some desired linear functional of the so-

tions with bounded derivatives andlder type conditions.  lution. A r.v. £ with mathematical expectation equal fo

Theoretical performance analysis of some algorithms must be constructed?¢ = J. Usingn independent values

with unimprovable rate of convergence is given. Estimates (realizations) ot : £1,&,, ..., &,, an approximation to

of complexity of two classes of algorithms — deterministic

and randomized for the solution of a class of integral equa- J =~ 1(51 +.. + &), 1)
n

tions are presented.
can then be computed.
Monte Carlo numerical algorithms are usually used for
Keywords: Monte Carlo algorithms, deterministic al- solving deterministicproblems by modeling random vari-
gorithms, integral equations, unimprovable rate of conver ables or random fields. Itis clear, that in this case a statist
gence. cal error appear. The error estimates are important issue in
studying Monte Carlo algorithms. It should be mentioned
1 Introduction: definitions and basic nota- here that one can only state that a certain Monte Carlo algo-
tions rithm can produce the re;ult ywth a given pro_bab|I|ty error.
If the mean value of: realizations of the r.v¢ is denoted

_ _ by &, = L350 | &, then the following definition of the
The Monte Carlo method is a powerful tool in many probabilitferrorcan be given:

fields of mathematics, physics and engineering. It is known
that the algorithms based on this method give statistical es Definition 1.1 If .J is the exact solution of the problem, then

timates for any linear functional of the solution by perferm  the probability error is the least possible real numbey,
ing random sampling of a certain random variable (r.v.) for which:
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So, dealing with randomized algorithms one has to ac-

cept that the result of the computation can be true only with
a certain (even high) probability.

Definition 1.2 A finite discrete Markov chaif; is defined
as afinite set of state$k, ko, ..., k; }.

At each of the sequence of times- 0,1, ...,4,...the sys-
tem 7} is in one of the following states;. The statek;
determines a set of conditional probabilitieg, such that
pji is the probability that the system will be in the staje
at the(r + 1) time given that it was in statg; at time
7. Thus,p;; is the probability of the transitiok; = £;.
The set of all conditional probabilitigs;; defines a transi-
tion probability matrixP = {p;}},_,, which completely
characterizes the given chai. In the general case, iter-
ative Monte Carlo algorithms can be definedesninated
Markov chains

3)
wherek; , (¢ = 1,...,i) is one of the absorbing states.
This determines the value of some functib(l’) = J(u),
which depends on the sequence (3). The funcfidf’)

is a random variable. After the value &f(T") has been
calculated, the system is restarted at its initial skgjeand

the transitions are begun anew. A numberafidependent
runs are performed through the Markov chain starting from
the states;, to any of the absorbing states. The average

LS RT)
T

T:kt0—>k}t1—>k}t2—>...—>k}t7’,

(4)

betterthe algorithm, which produces tlzeapproximation
to the solution faster, or with a smaller number of opera-
tions.

The mathematical expectation of the \s denoted by
E(6) (sometimes abbreviated fo9); the variance byD(9)
(or D) and the standard deviation la(0) (or 06). We
shall let~ denote the random number, that is a uniformly
distributed r.v. in[0,1] with E(v) = 1/2 and D(y) =
1/12). We shall further denote the values of the random
point§ oré by¢;, 6;(i = 1,2,...,n) respectively. I, is a
d-dimensional random point, then usually it is constructed

usingd random numbers, i.e..& = (v\V,...,4?V). The
density (frequency) function will be denoted byz) and

the transition density function by(x,y). F(z) will de-

note the distribution function. Finally the mean valuenof
values of the r.v.¢ will be denoted by¢, = 1Y% &.
Normally, after finding the mean value that approximates
the exact solution one has to estimate the probability error
R,, (see Definition 1.1).

The analysis, studying and finding the number of opera-
tions (or the computational cost) we cpérformance anal-
ysis So, the performance analysis deals with the computa-
tional cost of algorithms. Here we consider the computa-
tional cost and complexity of solving integral equations. |
Section 2 we define what we meangnlving integral equa-
tions In fact we consider algorithms for computing bilinear
forms of the solution of the Fredholm integral equations of
second kind. In Section 3 the functional spaces, which de-
fine the regularity of thenput dataare defined and error
estimates are presented. Some results-odmplexity of
the problem under consideration are presented in Section 4.

is taken over all actual sequences of transitions (3). TheHere we also define the classalmost optimal randomized

value in (4) approximateE{F'(T")}, which is the required
linear form of the solution.

We also will be interested iperformance analysis of al-
gorithms The performance analysis deals wibmputa-
tional costof the algorithms (see [12, 9]).

Definition 1.3 Computational cost of a randomized itera-
tive algorithmAZ~ is defined by

cost(A, x,w) = nE(q)to,

whereE(q) is the mathematical expectation of the number
of transitions in the sequence (3) angis the mean time
needed for value of one transition.

The questionwhat Monte Carlo can do and cannot do
efficiently?frequently arises among people dealing with nu-

merical methods, scientific computing and applications of
mathematics in theoretical and applied sciences. Often if
there are two algorithms people are interested which one is

better What meansetterin the case you cannot get the ex-
act solution of the problem and you are happy to have-an
approximation to the true solution? Obviously, you willlcal

algorithms Results of the computational cost of a grid-free
almost optimal randomized algorithm are given in section
5.

2 Formulation of the problem of solving inte-
gral equations

Let us consider the following problem: Compute the
functional

() = [ ha)u(e)ds, ©)
G

whereh(z) is a given function and(z) is the solution of

the Fredholm integral equation of second kind:

@) = [ e+ f(a), ©)
or in an operator form: = Lu + f, whereL : C(G) —

C(G) denotes an integral operator. We should note here
that such a formulation of the problem is very often used in



theoretical and applied sciences. The meaning of the abovenalysis studies, because in practice very often the saluti

formulated functional is given in the Introduction. It cdul
be the mean value of the velocity of the particles (the first

integral moment of the velocity) or the energy (the second

integral moment of the velocity) in statistical physicsipro
lems, or effect of given pollution levels(z) (satisfying in-
tegral transport equation) on the life mattéf«) is sensi-
tivity to a given pollutant).

The solution operator for the above formulated problem
can be written in the following form:

Seall, f) = (huw) = (1= L) f.1).
Sometimes, the adjoint equation

v=Lv+h (7)
is used.

In (7) v,h € X*, L* € [X* — X*|,X* is the dual
functional space t& and L* is an adjoint operator. For
some important application = L; and|| f [v,= [ |

G

f(z) | dz. In this caséi(z) € Ly, henceL;* = L, and
| o ||lL..= sup |h(z)], = € G. Obviously, ifu € L; and
h € L the inner product (5) will be bounded.

For many applicationX = X* = Ls. Ls norms are
defined as follows:

=

I £ o= / (fo)dr |
G

2

12l sup | [ (oo
° \z

Note also, that ifu(x), u(x) € L, then the inner product
(5) is finite. One can see, thatifz) € Ly andi(z,z’) €
L2 (G x G) then Lu(xz) € L. It is trivial to show that
L?u(z),..., L'u(x), ... also belong td.x (G).

For simplicity and concreteness we assume Kat=
X* Lo. If it is also assumed that L™ |< 1,

wherem is any natural number, then the Neumann series

uw=>.2,L"f converges.

The condition|| L™ ||< 1 is not very strong, since, as
it was shown by K. Sabelfeld [10], it is possible to con-
struct a Monte Carlo algorithm for which the Neumann se-
ries does not converge. Analytically extending the resuive

of the adjoint problem is easier than the solution of the-orig
inal one.

Let us consider the Monte Carlo algorithm for evaluating
the functional (5). It can be seen that whigm, z’) = 0
evaluation of the integrals can pose a problem. Consider a
random point € G with a densityp(z) and let there be.
values of the random poigt(i = 1,2, ...,n). Letarandom
variabled(¢) be defined inG, such thatFé (&) = J.

Then the computational problem becomes one of calcu-
lating repeated values éfand of combining them into an
appropriate statistical estimator df The nature of the
every process realization of is a Markov process. We
will consider discrete Markov processes with a finite set
of states the so calledMarkov chaing(see, Definition 1.2
given in the Introduction).

An approximate value of the linear functiongldefined
by (5)isJ ~ 13" {6}, = 6,, where(f), is the s-th
value of the random variable

The r.v. whose mathematical expectation is equal to
J(u) is given by the following expression

_ &) o~
o[h] - p(ﬁo) J;ij(é'])v
whereQo = 1; Q; = Q-1 léj‘_lléj)),j =1,2,...,and

o, &1, ... is a Markov chain inG with initial density func-
tion p(z) and transition density function(z, y).

Iterative randomized algorithms are characterized by two
types of errors:

e systemati@rrorr;, i > 1 (obtained from the truncat-
ing of the Markov chain) which depends on the number
of iterationsi of the used iterative process:

i+1
1L N, 11

il <
T 1Ly,

and

e statisticalerror R,,, which depends on the number of
samples: of Markov chain:

R, = c5 o*(0[h))n~ Y2, 0<B<1, el

The constant (and therefore also the complexity esti-

by a change of the spectral parameter gives a possibility tomates of algorithms) depends on the confidence Igvel
obtain a convergent algorithm when Neumann series for theProbable error,, is often used, which corresponds ta &
original problem does not converge or to accelerate the con-confidence level. Such a level is often acceptable for prac-
vergence when it converges slowly. It is easy to show thattical computations.

(h,u) = (f,v). This equality means that the solu-
tion of the adjoint problem is equivalent to the solution of
the original one. The last fact is important for performance

The problem to achieve a good balance between the sys-
tematic and statistical error has a great practical impada
To ensure a statistical errer it is necessary to perform



transitions in the Markov process, wheres chosen from  We should comment here that the condit]thCo(Ezd) <
the inequality 0 ensures the existence and uniqueness of the solution of the
integral equation under consideration.

i>In"tallne+In(1—a)—In|flw,] -1 Theorem 3.2 For the problem Sg, of solving d-
dimensional Fredholm integral equations of second
(assuming| f|L, > (1 — a)), kind withp smooth data, which is &lder with a rate of),

L . Lo i 71 d :
wherea = ||L||; and the initial approximation is chosento & (I, f) € HX(a, E) we have:

be the right-hand sid¢. To achieve a pr_obable erroyit Is r(Agg) < - (10)
necessary to performsamples depending on the following
inequality: for the deterministic algorithmsl and
9)712 R\ o« o —B2—1
n > [cm@} . cos A~ 0.6745, r(Ag,) < ¢'n 2 (11)

for the randomized algorithmg™.
wheref is the random variable, whose mathematical expec-

tation coincides with the desired linear functional (5). 4 Complexity of the problem of computing
_ functionals of Fredholm integral equations
3 Error analysis results of second kind

For the erron(Ag,) associated with an algorithtg,,
the following theorem is proved: Theorem 4.1 For X, = H%(a, E?) the e-complexity of
solving d-dimensional Fredholm integral equation of sec-

Theorem 3.1 (Emelyanov and II'in [7]) For the problem ond kindSys, is

Skq Of solvingd-dimensional Fredholm integral equations
of second kind witlp smooth data

L _2d 1\ p+tx
r(Apq) < dn” 2 (8) comp,(Sgq) =k (d(d,p+ )\))pfx (E)
for the deterministic algorithmsl and for the class of deterministic algorithro$, and
r(Ag,) < ¢'n"%i73 9) .
R/ 1 24 1\ pFr+d
for the randomized algorithmd™. comp,(Spq) = k" (¢ (d,p + X)) 7FAT -

This result can be slightly im|_oroved iflone assumes that 5y the class of randomized algorithmi?.
the "input” data(/, f) satisfy a kind of Holder conditions.
Let us define the claséf(a, EYforp,d e N, B,y > Corollary 4.1 If there is not edditional regularity, i.ep +
0, 0<d<: A = 0 the deterministic algorithms are not feasible while
the randomized algorithms are feasible with a ratecef

complexity of order
= WP(E) x WP(E) <1>2

B, BY = {0 X g <7 e

H l HWP(EN) S ﬁa H l HCO(EZd) S 5,
|Dpf(y1a oo ayd> - Dpf(zlv .. ~;Zd)|

3

It is reasonable to consider a class of randomized algo-
rithms with a slightly highee- complexity.

Definition 4.1 Randomized algorithms with- complexity

d
<a) |y -z of order: ey
=t (—) loge

1 9
‘l,(‘ﬁ)l g (T, o TG UL, - Ug) _ : _ _

Y1 -Ya will be called almost optimal randomized algorithms.

(p) .
—Ln Lyl (@1, 2301, -, va) In the next section an almost optimal Monte Carlo al-
d gorithm with a rate ofs- complexity of order(%)Qloga
<oz, ... xq) Z luj — ;] 3. for evaluation functionals of solution of Fredholm intelgra
J=1 equation of second kind in cage- A = 0 will be presented.



5 Computational cost of a grid-free random-
ized algorithm for evaluating functionals of
the solution of Fredholm integral equations
of second kind

In this section we consider a grid-free Monte Carlo al-
gorithm called (in the simplest casgpherical processor
computing of the bilinear forms of the solution of Fredholm
integral equations of second kind. We will denote this al-
gorithm by AZ .. As a first step of this algorithm A-strip
0G a of the boundaryG is chosen (on the supposition that

the solution is known on the boundary) to ensure the con-

vergence of the constructed iterative process. The folgwi
number of operations is necessary for one random walk:

e generation ofl (this number depends on initial proba-
bility ) random numbers to determine the initial point
in the Markov chaind(k4 + k1) operationsk 4 and

kp, are the arithmetic and logical operations necessary

for the generation of one random number) mod-
elling of an isotropic vector that needs a number of
operations of ordeR x d(k 4 + k1) (the constank de-
pends on the efficiency of the modelling method and
transition probability);

e calculating the coordinates of the initiat next point:
Pnezt (depends on the modelling method and the di-
mensiond of the domainB(z));

e calculating one value of functionsypys;pr,p, Or
Pk DPP;

i>Inta(lne+In(l—a)—InFO)—1 (13)

(assuming™® > £ (1 — a)),
wherea = V)L, L = ma;x|l(:c,t)| and the initial

approximation is chosen to be the right-hand sfte).

On the other hand, the estimate (12) can be used to chose
the value of the parametek of the boundary strip. The
value of A explicitly depends on the number of transi-
tions i of the Markov process according to (13), that is
A ~ exp(—i/const).

Therefore, the following estimate holds for the mathe-
matical expectation of the time required to obtain an ap-
proximation with accuracy using the considered grid-free
Monte Carlo algorithm:

cost(A8 ., z,w)

~ Tn[(dkA + Dneat +pf + Pr +p¢ + 74 +4)ZA+
(dkp +~vr + 1)1 +

((deA + Pneaxt +pf + pr +pp +4 +7A)lA
H(Rdkr +~r +1)11)x
(ne+1n(1—a) ~I0* FO fe5 0(O[r])*

X -
In g2

Remark 5.1 From the avobe estimate it is easy to see that
the computational cost of the grid-free randomized algo-
rithm AZ . for evaluating bilinear forms of Fredholm inte-
gral equations of second kind has a ratecetomplexity of

order (%)2 log ¢. Since not additional regularity is required

e calculating one sample of the random variable (it needs thjs algorithm has almost optimal rate.

less thar8 arithmetic operations);

e calculating the distance from the current point to the
boundanpG: v 4 arithmetic andy;, logical operations
(depends on the dimensidrof the domain);

o verification if the current point belongs to the chosen
A-strip G .

The following logarithmic estimate for the average num-
ber E{i} of spheres on a single trajectory holds for a wide
class of boundaries [11]:

E{i} < const|InA|, const > 0, (12)
whereconst depends on the boundady-.

Calculating the linear functional with a preliminary
given accuracy and attainment of a good balance between
thestatisticaland thesystemati@rror is an important issue

Remark 5.2 If some additional regularity is assumed, then
it is possible that some deterministic algorithm or grid
Monte Carlo algorithm could be applied (see, for instance,

[6)).

The bounds for the- complexity for randomized and
deterministic algorithms are given in Theorem 4.1. But it
is interesting to compare two randomized algorithms - the
above described grid-free Monte Carlo algorithfi,. with
the grid Monte Carlo algorithmlZ. The description of the
grid Monte Carlo algorithm is given in [5]. This algorithm
is based on the approximation of the integral equation un-
der consideration by a system of linear algebraic equations
This transformation represents the initial step of the @bns
ered class of grid randomized algorithms. The linear system
is obtained using some approximate cubature rule (cubature
method, Nystrom method, [1, 8]). The next step is to ap-

in performance analysis studies. To ensure a statistieal er ply the resolvent Monte Carlo algorithm [2] for solving lin-

ror ¢, it is necessary to perforrtransitions in the Markov
process, wheréis chosen from the inequality:

ear systems of equations. We should mention here that (ac-
cording to my knowledge) it is still not proved that the grid



Monte Carlo algorithm presented in [4] is almost optimal allows such an interpretation, then Monte Carlo will be the
in sense of reaching the correspondent rate of complexity,best choice. Here we will note that this is a kind of game:

as it was shown for the grid-free algorithAf: .. Never-

to win in the rate of convergence you have to lose in the re-

theless, we can mention some conditions under which theliability. It means that the increased rate of convergence i
grid Monte Carlo algorithm could be competitive with the paid by accepting uncertainty in the answer.

grid-free Monte Carlo algorithm:

e the input data functions for the integral equation
I(x,t), f(x), h(x) should have comparatively small

As a general remark it should be emphasized that for

both problems: numerical integration and evaluation linea
functionals of integral equations the randomized algargh
have better convergence rate for the same regularity of the

maximum norm in the corresponding domain and it input data.

should be a possibility to calculate their values with
a relatively low complexity;

e the initial and transition probability used in the
grid-free algorithm are complicated for modeling
(acceptance-rejection method);

o the dimensioni of the integration domain is large.

It has to be noted that the grid Monte Carlo algorithms
are admissible only for integral equations with smooth func
tions, but some techniques of avoiding singularities of thi
kind exist (see [11]).

6 Concluding remarks

Consider the summary results of the work presented on
Table 1 and compared with the results for multidimensional
integration.

Table 1. e-complexity of problems for the
classes of deterministic and randomized al-
gorithms for HY (a, E?) and HY(«, E*?) spaces

Problem e-complexity
Determ.
_d_
Integration k(a(dyp + X)) 7 (2)7
Random.
d d
Integration | k% (c4(d, p + A)a) PFA+ar2 (é) PIATd/2
Determ.
_2d_ 24
Int. eq. k(d(d,p+A)7x (2) 7+
Random.
2d
Int. eq. KR (" (dyp + ) TP (2) 7

One can conclude that as smaller is the regularity as sim-
pler randomized algorithm should be used. Even for small
dimensiongd = 1,2) Monte Carlo is a right choice if the

functional class has no smoothness. In this case you have to

accept that the error estimate will be obtained with a given
probability. If the computational problem you are treating

But one should be careful because

¢ the better convergence rate for randomized algorithms
is reached with a given probability less thanso the
advantage of Monte Carlo algorithms is a matter of
definition of the probability error.

o If the nature if the problem under consideration do not
allow to use the probability error for estimates or the
answer should be given with a guaranteed error then
the higher convergence order randomized algorithms
are not acceptable.

e An important obvious advantage of randomized algo-
rithms is the case dfad functionsi.e., functions that
do not satisfy some additional conditions of regularity.
The main problem with the deterministic algorithms is
that normally they need some additional approxima-
tion procedure that require additional regularity. The
randomized algorithms do not need such procedures.
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