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Abstract. In this paper we present error analysis for a Monte Carlo
algorithm for evaluating bilinear forms of matrix powers. An almost Op-
timal Monte Carlo (MAO) algorithm for solving this problem is formu-
lated. Results for the structure of the probability error are presented and
the construction of robust and interpolation Monte Carlo algorithms are
discussed.

Results are presented comparing the performance of the Monte Carlo
algorithm with that of a corresponding deterministic algorithm. The two
algorithms are tested on a well balanced matrix and then the effects of
perturbing this matrix, by small and large amounts, is studied.

Keywords: Monte Carlo algorithms, matrix computations, performance
analysis, iterative process.

1 Introduction

The problems of inverting a real n × n matrix (MI), solving a system of linear
algebraic equations (SLAE) or finding extreme eigenvalues are of unquestion-
able importance in many scientific and engineering applications: e.g real-time
speech coding, digital signal processing, communications, stochastic modelling,
and many physical problems involving partial differential equations. The direct
methods of solution for SLAE require O(n3) sequential steps when using the
usual elimination or annihilation schemes (e.g. Gaussian elimination, Gauss-
Jordan methods) [7] and, similarly, the direct methods for MI or calculating
extreme eigenvalues can be computationally expensive. Consequently the com-
putation time for very large problems, or for real-time solution problems, can be
prohibitive and this prevents the use of many established algorithms.

It is known that Monte Carlo methods give statistical estimates for elements
of the inverse matrix, or for components of the solution vector of SLAE, by
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performing random sampling of a certain random variable, whose mathematical
expectation is the desired solution [8, 9]. The problem of variance estimation,
in the optimal case, has been considered for extremal eigenvalues [10]. In this
paper we extend this by considering bilinear forms of matrix powers, which can
be used to formulate solutions for all three problems, and study the effects, on
the Monte Carlo algorithm, of perturbing a well balanced matrix.

The idea of Monte Carlo and an algorithm for the problem of bilinear forms
of matrix powers is presented in Section 2; in Section 3 we detail the implemen-
tation we used for the algorithm; the results of the experimental runs of this
implementation are also presented in this section; and we conclude the work in
Section 4.

2 Formulation of the Monte Carlo Algorithm

2.1 Bilinear Forms of Matrix Powers

We are interested in the bilinear form of matrix powers:

(v, Akh). (1)

For x, the solution of a SLAE Bx = b then

(v, x) =

(
v,

k∑
i=0

Aih

)
, (2)

where the Jacobi Over-relaxation Iterative Method has been used to transform
the SLAE into the problem x = Ax+h. In cases where the Neumann series does
not converge a resolvent method can be used [5, 6].

Matrix inversion is equivalent to solving (2) n times Bcj = e(j), j = 1, . . . , n
for the special case where cj ≡ (c1j , . . . , cnj)T and e(j) ≡ (0, . . . , 0, 1︸︷︷︸

j

, 0, . . . , 0)T .

For an arbitrary large natural number k the Rayleigh quotient can be used to
obtain an approximation for λ1, the dominant eigenvalue, of a matrix A:

λ1 ≈ (v, Akh)
(v, Ak−1h

.

Thus it is clear that having an efficient way of calculating (1) is important.
This is especially important in cases where we are dealing with large and/or
sparse matrices.

2.2 Almost Optimal Markov Chain Monte Carlo

We shall use the so-called Almost Optimal Monte Carlo (MAO) algorithm stud-
ied in [2, 3, 1, 5, 4]. Here we give a brief presentation of MAO.

Suppose we have a Markov chain

T = α0 → α1 → α2 → . . . → αk → . . .
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with n states. The random trajectory (chain) Tk of length k starting in the state
α0 is defined as follows:

Tk = α0 → α1 → . . . → αj → . . . → αk, (3)

where αj means the number of the state chosen, for j = 1, . . . , k.
Assume that

P (α0 = α) = pα, P (αj = β|αj−1 = α) = pαβ,

where pα is the probability that the chain starts in state α and pαβ is the
transition probability to state β after being in state α. Probabilities pαβ define
a transition matrix P . We require that

n∑
α=1

pα = 1 and
n∑

β=1

pαβ = 1, for any α = 1, 2, ..., n. (4)

We will consider a special choice of density distributions pi and pij defined as
follows:

pi =
|vi|
‖ v ‖ , ‖ v ‖ =

n∑
i=1

|vi| and pij =
|aij |
‖ ai ‖ , ‖ ai ‖=

n∑
j=1

|aij |. (5)

2.3 Monte Carlo Algorithm for Computing Bilinear Forms of
Matrix Powers (v, Akh)

The pair of density distributions (5) defines a finite chain of vector and matrix
entrances:

vα0 → aα0α1 → . . . → aαk−1αk
. (6)

The latter chain induces the following product of matrix/vector entrances and
norms:

Ak
v = vα0

k∏
s=1

aαs−1αs ; ‖ Ak
v ‖=‖ v ‖ ×

k∏
s=1

‖ aαs−1 ‖ .

Note, that the product of norms ‖ Ak
v ‖ is not a norm of Ak

v . The rule for creating
the value of ‖ Ak

v ‖ is the following: the norm of the initial vector v, as well as
norms of all row-vectors of matrix A visited by the chain (6), defined by densities
(5), are included. For such a choice of densities pi and pij we have

E{hαk
} =

sign{Ak
v}

‖ Ak
v ‖

(
v, Akh

)
. (7)

The standard deviation σ{hαk
} is finite. Since random variable

θ(k) = sign{Ak
v}× ‖ Ak

v ‖ hαk
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is an unbiased estimate of the form (v, Akh), (7) can be used to construct a MC
algorithm.

Let us consider N realizations of the Markov chain Tk (3) defined by the pair
of density distributions (5). Denote by θ

(k)
i the ith realization of the random

variable θ(k). Then the value

θ̄(k) =
N∑

i=1

θ
(k)
i = sign{Ak

v} ‖ Ak
v ‖

N∑
i=1

{hαk
}i (8)

can be considered as a MC approximation of the form (v, Akh). The probability
error of this approximation can be presented in the following form:

R
(k)
N =

∣∣∣(v, Akh) − θ̄(k)
∣∣∣ = cpσ{θ(k)}N− 1

2 , (9)

where the constant cp only depends on the probability P = Pr{|θ̄ − J | ≤ RN}
(where J is the exact solution of the problem, RN is the probability error and
0 < P < 1) and does not depend on N and on θ(k). Because of the finiteness of
the standard deviation the probability error is always finite.

In fact, (8) together with the sampling rules using probabilities (5) defines
a MC algorithm. The expression (8) gives a MC approximation of the form
(v, Akh) with a probability error R

(k)
N . Obviously, the quality of the MC algo-

rithm depends on the behaviour of the standard deviation σ{θ(k)}. So, there is
a reason to consider a special class of robust MC algorithms.

2.4 Robust and Interpolation Monte Carlo Algorithms

Definition. A MC algorithm for which the standard deviation does not increase
with the increasing of the matrix power k is called a robust MC algorithm.

Thus, if the MC algorithm is robust, then there exists a constant M such that

lim
k→∞

σ{θ(k)} ≤ M.

Definition. A MC algorithm for which the probability error is zero is called an
interpolation MC algorithm.

So, using the the following notations:

ĥ = {h2
i }n

i=1, v̄ = {|vi|}n
i=1, Ā = {|aij |}n

i,j=1

we can prove that

σ2{θ(k)} =‖ Ak
v ‖
(
v̄, Ākĥ

)
− (v, Akh)2,

where σ2{θ(k)} is the variance. A finite and small variance means that the as-
sociated Monte Carlo method should converge, and the probable error will be
small.
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Now we can formulate an important result that gives a sufficient condition for
constructing an interpolation MC algorithm.

Let h = (1, . . . , 1), v = ( 1
n , . . . , 1

n ) and

A =

⎛
⎜⎝

1
n . . . 1

n
...
1
n . . . 1

n

⎞
⎟⎠ .

Then MC algorithm defined by density distributions (5) is an interpolation MC
algorithm. Matrices A of the above form are stochastic matrices.

3 Experimental Results

For this paper two programs were implemented; one for the proposed Monte
Carlo algorithm and one for a deterministic matrix-vector and vector-vector
multiplication solving the same problem. The algorithms were written in Fortran
90 and compiled with the Intel Fortran 9.0 compiler. For all real numbers double
precision was used to lower the influence of rounding errors. Random numbers
were generated with the help of the Fortran 90 RANDOM NUMBER() sub-routine
which creates random numbers with a uniform distribution.

The results were generated on a SGI Prism equipped with 8 x 1.5 GHz Itanium
II processors and 16 GByte of main memory. For the input data the vectors h
and v and matrix A were generated for the sizes 100, 1000 and 5000. The vector
h was filled with ones and v was filled with 1

n . The matrix A was filled with
elements of size 1

n and then perturbed by 2, 5, 10, 50 and 90%. The norm of
such matrices is around 1. For comparison random non-balanced matrices were
generated too. In Figure 1 we show the results for different perturbations for the
Monte Carlo algorithm and for the deterministic code. We see that the results
are very close for perturbations of up to 10% whereas the results for 50 and 90%
differ up to 2% for matrices of size 1000 and 5000 and differ up to 14% for a
matrix of size 100.

 0.01

 0.1
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 1  10  100
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k  h
)

Pertubation in %

n=100, k=5, chains=100
n=1000, k=5, chains=100
n=5000, k=5, chains=100
n=100, k=5, chains=1000

n=1000, k=5, chains=1000
n=5000, k=5, chains=1000

deterministic n=100, k=5
deterministic n=1000, k=5
deterministic n=5000, k=5

Fig. 1. The dependence of MC results on perturbation of A
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Fig. 2. The dependence of MC relative error on power of A
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Fig. 3. The dependence of MC variance on perturbation of A

Since the deterministic computations were performed with a double precision
we accept the results obtained as exact results and use them to analyse the
accuracy of the results produced by our Monte Carlo code. In Figure 2 the
relative error of the results for Monte Carlo algorithm is shown. The Monte
Carlo relative error was computed by using the following formulas:

MC error = |MC result - exact result|,
MC relative error =

MC error
exact result

.

From Figure 2 we can see that the error increases linearly if k is increas-
ing. The larger the matrix is, the smaller the influence of the perturbation. For
comparison, the results for non-balanced matrices were included.

The variance of the results for the different perturbations are shown in
Figure 3. In this figure we compare results for different sizes of the matrix and
different chain lengths. Again it is obvious that the influence of the perturbation
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Fig. 4. The dependence of MC error on power of matrices with ”small” spectral norms
(‖ A ‖≈ 0.1)

is a lot bigger for smaller matrix of size 100. But over all a variance of 10e-06
is a good result and shows that the Monte Carlo algorithm works well with this
kind of balanced matrices.

In order to test the robustness of the Monte Carlo algorithm, a re-run of
the experiments was done with matrices of norm smaller than 1. Therefore the
randomly generated matrices were re-used and their elements were divided by
10. The results for these experiments are shown in Figure 4 and Figure 5.

In Figure 4 the Monte Carlo errors for matrix size of n = 1000 and chain
length of 1000 are shown. We can see that the Monte Carlo algorithm is very
robust because with an increasing k the error is decreasing enormously.

The variance shown in Figure 5 is 1010 smaller than the variance shown in
Figure 3.
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Fig. 5. The dependence of MC variance on perturbation of matrices with ”small”
spectral norms (‖ A ‖≈ 0.1)
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4 Conclusion

In this paper we have analysed the error and robustness of the proposed MC
algorithm for computing bilinear form of matrix powers (v, Akh). We have shown
that with increasing the perturbations the error and the variance are increasing
too. Especially small matrices have a high variance. For a rising power of A an
increase of the relative error can be observed. The robustness of the Monte Carlo
algorithm with balanced matrices with matrix norms much smaller than 1 has
been demonstrated. In these cases the variance has improved a lot compared to
cases were matrices have norms close to 1. We can conclude that the balancing of
the input matrix is very important for MC computations. A balancing procedure
should be performed as an initial (preprocessing) step in order to improve the
quality of Monte Carlo algorithms. For matrices that are ”close” in some sense
to the stochastic matrices the accuracy of the MC algorithm is very high.
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