
A Monte Carlo Approach for the Cook-Torrance
Model�

I.T. Dimov, T.V. Gurov, and A.A. Penzov

Inst. for Par. Proc. - Bulg. Acad. of Sci.,
Acad. G. Bonchev st, bl. 25 A,1113 Sofia, Bulgaria,

ivdimov@bas.bg
{gurov, apenzov}@parallel.bas.bg

Abstract. In this work we consider the rendering equation derived from
the illumination model called Cook-Torrance model. A Monte Carlo
(MC) estimator for numerical treatment of the this equation, which is the
Fredholm integral equation of second kind, is constructed and studied.

1 Introduction

Photorealistic image creation is the main task in the area of computer graph-
ics. The classical Radiosity and Ray Tracing algorithms have been developed
to solve the global illumination for diffuse and specular scenes, respectively.
However, application of these algorithms to general environments with multiple
non-ideal reflection is restricted [8], due to local illumination model usage for
image calculation. Monte Carlo algorithms provide with a proper rule for global
illumination estimation of a scene, where the light radiated from the light sources
is propagated through the scene objects to the human eye.

In order to estimate the global illumination in the scene, it is required to apply
a suitable illumination model. The illumination model (see [14] for a survey of
illumination models) describes the interaction of the light with a point on the
surface in the scene. The simplest illumination model is independent of viewer
direction and applicable for perfectly diffuse light reflecting scenes. It considers
the light reflection as a sum of two components: ambient and Lambertian diffuse,
reflecting light equally in all directions. In 1975 Phong [7] introduces an empirical
three-component model with adding to illumination a new specular reflecting
component. For the calculation of specular part, the viewer direction becomes
more significant.

The first physical based illumination has been developed by Blinn [1] in 1977.
And after that in 1982 Cook and Torrance [2] have suggested the complete im-
plementation of the illumination model based on closer look to the physics of a
surface. Cook-Torrance illumination model is an isotropic model and considers
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the geometry of object surface to be non-ideally smooth but as composed of
many microfacets. The microfacet surfaces are V shaped grooves where some
microfacets shadow or mask each other. This fact leads up to some attenuation
of reflected light. The roughness of the surface is defined by the microfacet dis-
tribution. Surface reflectance is described by Fresnel term of a single microfacet
and may be obtained theoretically from the Fresnel equations [13].

Many others physical based illumination models develop and/or extend the
Cook-Torrance model. An extension presented in [4] splits the diffuse reflection
component into directional-diffuse and uniform-diffuse components. Anisotropic
model of Ward [9] extends the scope of physical based illumination models.
The physical illumination models are also applicable for photorealistic rendering
when transparent objects exist in the scene [3].

Further in this paper we consider basically Cook-Torrance illumination model
at construction of the Monte Carlo estimator for photorealistic image creation.

2 Rendering with Cook-Torrance Illumination Model

The goal of rendering is to calculate an image from a described 3D scene model.
Photorealistic rendering requires realistic description of the scene model with
accounting all physical characteristics of the surfaces and environment. The scene
model consists of numerical definition of all objects and light sources in the
scene, as well the virtual camera from which the scene is observed. Colours in
computer graphics are frequently simulated in the RGB colour space, so the
radiance L = (r, g, b), where r, g, and b are the intensities for the selected
wavelenghts of primary monitor colours (red, green and blue).

2.1 Basic Assumptions

The objects represent real physical objects including solid light sources like lamps
with arbitrary defined position and orientation in the scene space. Usually the
real solid objects are well modeled by approximation with planar surface prim-
itives like triangles or rectangles. The number M of all surface primitives Aj

is very large to ensure good object approximation for realistic rendering. Since

the objects are independent scene units the scene domain, S =
M⋃

j=1
Aj , is union

of disjoint two-dimensional surface primitives Aj . The physical properties like
reflectivity, roughness, and colour of the surface material are characterized by
the bidirectional reflectance distribution function (BRDF), fr. This function de-
scribes the light reflection from a surface point as a ratio of outgoing to incoming
light. It depends on the wavelength of the light, incoming, outgoing light direc-
tions and location of the reflection point. The BRDF expression receives various
initial values for the objects with different material properties. The same val-
ues for the BRDF expression are assigned to all surface primitives with equal
material characteristics in the scene. Therefore, the number of surfaces with dif-
ferent material properties in the scene is m and the inequality 1 ≤ m ≤ M
is hold.
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The light sources can be both point light sources or solid light sources. The
point light sources are defined by own position in the scene space and radiate
light equally to all directions. The solid light sources are treated like ordinary
scene objects itself radiating light. The total light intensity of solid light sources
is distributed equally in a characteristic set of points generated on its surface
and each point is considered like point light source.

The virtual camera frequently is assumed to be a pinhole camera and defines
the eye view point position xeye and orientation of scene observation. The image
window situated in the projection plane of the camera is divided into matrix
of rectangular elements and corresponds to the pixel matrix of the image to be
generated. In order to generate an image, we have to calculate the radiance LP

propagated in the scene and projected on each pixel area P in the image pixel
matrix. This radiance value is radiated through the pixel area P into the eye
view point xeye. The radiance LP is mean value integral:

LP =
1

|P |
∫

P

L(xeye, xp)dxp (1)

where L(xeye, xp) is the radiance incoming from the nearest scene point x ∈ S
seen from the eye view point xeye through the pixel position xp into direction of
the eye view point xeye.

2.2 Rendering Equation by Cook-Torrance BRDF

The light propagation in a scene is described by rendering equation [5], which
is a second kind Fredholm integral equation. According to Keller indications in
[6], the radiance L, leaving from a point x ∈ S on the surface of the scene in
direction ω ∈ Ωx, where Ωx is the hemisphere in point x, is the sum of the self
radiating light source radiance Le and all reflected radiance:

L(x, ω) = Le(x, ω) +
∫

Ωx

L(h(x, ω′),−ω′)fr(−ω′, x, ω) cos θ′dω′, (2)

or in an operator form L = Le + IKL. Here y = h(x, ω′) ∈ S is the first point
that is hit when shooting a ray from x into direction ω′ and determines the
objects visibility in the scene (see Fig. 1). The radiance Le has non-zero value if
the considered point x is a point from solid light source. Therefore, the reflected
radiance in direction ω is an integral of the radiance incoming from all points,
which can be seen through the hemisphere Ωx in point x attenuated by the
surface BRDF fr(−ω′, x, ω) and the projection cos θ′, which puts the surface
S ×Ω → IR+ perpendicular to the ray (x, ω′). The angle θ′ is the angle between
surface normal in x and the direction ω′. The transport operator is physically
correct when ‖IK ‖ < 1, because a real scene always reflects less light than it
receives from the light sources due to light absorption of the objects. The law
for energy conservation holds, i.e.: α(x, ω) =

∫
Ωx

fr(−ω′, x, ω) cos θ′dω′ < 1.
That means the incoming photon is reflected with a probability less than 1,
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Fig. 1. The geometry for the rendering equation

because the selected energy is less than the total incoming energy. Another
important property of the BDRF is the Helmholtz principle: the value of the
BRDF will not change if the incident and reflected directions are interchanged,
fr(−ω′, x, ω) = fr(−ω, x, ω′). In the terms of the Cook-Torrance illumination
model [2], the BRDF is sum of diffuse fr,d and specular fr,s components:

fr(−ω′, x, ω) = fr,d(x) + fr,s(−ω′, x, ω) =
1
π

(
F (λ, θ′ = 0) + F (λ,θ′)D(θh)G

cos θ cos θ′

)
,

where the angle θ is the angle between surface normal in x and the direction ω.
The microfacets distribution function is denoted by D(θh) and G(θh, β, θ, θ′) is
geometrical attenuation factor. Fresnel function F (λ, θ′) depends on the wave-
length λ, incident angle θ′ of the light in point x, index of refraction, and absorp-
tion coefficient of surface material (see [13]). The diffuse part fr,d(x) of BRDF
is the fraction of reflected radiance, independently of incoming and outgoing di-
rections, and may be calculated from the Fresnel equations at angle of incident
light θ′ = 0, or fr,d(x) = F (λ,θ′=0)

π . Both values of the microfacets distribution
function D(θh) and the geometrical attenuation factor G(θh, β, θ, θ′) are positive
and can not exceed a maximum value of 1 (see [1]) in any real scene situation.
Therefore, the specular part fr,s(−ω′, x, ω) of BRDF reaches the maximum value
when the Fresnel spectral term has absolute maximum for some light wavelength.

2.3 Analysis of the Neumann Series

Consider the first-order stationary linear iterative process for Eq. (2).

Li = IKLi−1 + Le, i = 1, 2, . . . , (3)

where i is the number of the iterations. In fact (3) defines a Neumann series

Li = Le + IKLe + . . . + IKi−1Le + IKiL0, i > 0 ,

where IKi means the i-th iteration of the integral operator. If IK is a contraction,
then limi→∞IKiL0 = 0. Thus L∗ =

∑∞
i=0 IKiLe. If i = k and L0 = 0, one can

get the value of the truncation error, namely, Lk − L∗ =
∑∞

i=k IKiLe.
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It is clear that every iterative algorithm uses a finite number of iterations k.
In the presented MC approach below, we evaluate the iterations Li, 1 ≤ i ≤ k
with an additional statistical error. In practice the truncation parameter k is
not a priori given. To define it let us denote ‖IK ‖IL1

= maxx,ω |α(x, ω)| = q < 1
and ‖Le‖IL1

= Le
∗. Further, in order to estimate the error we have

‖Lk − L∗‖IL1
≤ Le

∗q
k 1
1 − q

Finally, to obtain a desired truncation error ε we have to select kε = min{k ≥
c1| ln ε| + c2}, where c1 = 1/| ln(q)| and c2 = | ln((1 − q)/(Le

∗))|/| ln(q)|. In other
cases the iteration parameter is obtained from the following condition: the dif-
ference between the stochastic approximation of two successive approximations
has to be smaller than the given sufficiently small parameter ε.

3 A Monte Carlo Approach

Consider the problem for evaluating the following functional:

Jg(L) = (g, L) =
∫

S

∫

Ωx

g(x, ω)L(x, ω)dxdω. (4)

The radiance L(., .) : S × Ω → IR+ and the arbitrary function g(., .) : S × Ω →
IR+ belong to the spaces IL1 and IL∞, respectively. The case when g(x, ω) =
χP (x)

|P | δ(ω) is of special interest, because we are interested in computing the mean
value of the radiance LP over pixel area (1). Here χP (x) = 1 when x ∈ P , and
χP (x) = 0, otherwise. δ(ω) is the Dirac delta-function. Since the Neumann series
of the integral equation (2) converges, the functional (4) can be evaluated by a
MC method. Let us introduce the following notation: ω′

0 = ωp, x0 = xp, x1 =
h(x0,−ω′

0), x2 = h(x1,−ω′
1), x3 = h(x2,−ω′

2) = h(h(x1,−ω′
1),−ω′

2), . . . , and
define the kernels: K(xj , ω

′
j) = fr(ω′

j , xj , ω
′
j−1) cos θ′

j , j = 1, 2, . . . , kε. Consider
a terminated Markov chain (x0,−ω′

0) → . . . → (xj ,−ω′
j) → . . . → (xkε

,−ω′
kε

),
such that (xj ,−ω′

j) ∈ S × Ωx, j = 1, 2, . . . , kε (see Fig. 2). The initial point

Fig. 2. One simulation of the terminated Markov chain
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(x0,−ω′
0) is chosen with an initial density p0(x, ω′). The other points are sampled

using an arbitrary transition density function p(x, ω′) which is tolerant (see
definition in [10]) to the kernel in equation (2). The biased MC estimator for
evaluating the functional (4) has the following form:

ξkε
[g] =

g(x0, ω
′
0)

p0(x0, ω′
0)

kε∑

j=1

WjL
e(xj , ω

′
j), j = 1, . . . , kε , (5)

where the weights are defined as follows

W0 = 1, Wj = Wj−1
K(xj , ω

′
j)

p(xj , ω′
j)

, j = 1, . . . , kε.

Theorem 1. The expected value of the estimator (5) is equal to the functional
(4) in case when we replace the radiance L with its iterative solution Lkε

, i.e.

E(ξkε [g]) = Jg(Lkε).

Proof. Taking into account the definition for an expected value of a random
variable and the Neumann series of the Eq.(3), we obtain:

E(ξkε [g]) = E

⎛

⎝ g(x0, ω
′
0)

p0(x0, ω′
0)

kε∑

j=1

WjL
e(xj , ω

′
j)

⎞

⎠ =

=
kε∑

j=1

E

(
g(x0, ω

′
0)

p0(x0, ω′
0)

WjL
e(xj , ω

′
j)
)

=
kε∑

j=1

(g, IKjLe) = (g, Lkε) = Jg(Lkε).

This completes the proof.

It is clear that when kε → ∞ (this is the case of a infinite Markov chain) the
MC estimator (5) evaluates the functional (4).

Using N independent samples of the estimator (5) we can compute the mean
value:

ξkε
[g] =

1
N

N∑

i=1

(ξkε [g])i
Prob−→ Jg(Lkε) ≈ Jg(L), (6)

where Prob−→ means stochastic convergence as N → ∞; Lkε is the iterative solution
obtained by the Neumann series of Eq.(2).

The root mean square deviation is defined by the relation (see [11]):

E(ξkε [g] − Jg(L))2 = V ar(ξkε [g]) + (E(ξkε [g]) − Jg(L))2,

where V ar(ξkε [g]) is the variance of the MC estimator. Hence

E(ξkε
[g]−Jg(L))2 =

V ar(ξkε
[g])

N
+(Jg(L)−E(ξkε

[g]))2 ≤ d0

N
+ c3ε

2 = µ2, (7)
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where µ is the desired error; d0 is upper boundary of the variance; ε is a pri-
ori given small parameter, and c3 is the constant. Therefore, if the variance is
bounded, the optimal order of the quantities N and ε must be N = O(µ−2) and
ε = O(µ). In order to estimate the variance let us introduce notation:

θj =
g(x0, ω

′
0)

p0(x0, ω′
0)

WjL
e(xj , ω

′
j),

p(x0, ω
′
0, x1, ω

′
1, . . . , xj , ω

′
j) = p0(x0, ω

′
0)p(x1, ω

′
1) . . . p(xj , ω

′
j), j = 1, 2, . . . , .

Theorem 2. Let us choose the initial density and transition density in the fol-
lowing way:

p0(x0, ω
′
0) =

|g(x0, ω0)|∫
S

∫
Ωx0

g(x0, ω0)dx0dω0
, p(x, ω′) =

K(x, ω′)
∫

Ωx
K(x, ω′)dω′ . (8)

Then the variance of the MC estimator (5) is bounded.

Proof. It is enough to prove that E(ξ2
kε

[g]) is bounded. Taking into account the
following inequality (see [10])

⎛

⎝
∞∑

j=1

θj

⎞

⎠

2

≤
∞∑

j=1

t−j

1 − t
θ2

j , 0 < t < 1,

we have
V ar(ξkε [g]) ≤ E(ξ2

kε
[g]) = E

⎛

⎝
kε∑

j=1

θj

⎞

⎠

2

≤ E

⎛

⎝
∞∑

j=1

θj

⎞

⎠

2

≤

∞∑

j=1

t−j

1 − t
E(θ2

j ) =
∞∑

j=1

t−j

1 − t

∫

Sx0

∫

Ωx0

∫

Ωx1

. . .

∫

Ωxj

g2(x0, ω
′
0)

p2
0(x0, ω′

0)
×

W 2
j (Le)2(xj , ω

′
j)p(x0, ω

′
0, x1, ω

′
1, . . . , xj , ω

′
j)dx0dω0 . . . dωj .

Taking in acount the choice of the densities we obtain

V ar(ξkε
[g]) ≤

∞∑

j=1

t−j

1 − t

(∫

Sx0

∫

Ωx0

∫

Ωx1

. . .

∫

Ωxj

g(x0, ω
′
0)×

K(x0, ω
′
0) . . . K(xj , ω

′
j)L

e(xj , ω
′
j)dx0dω0 . . . dωj

)2 ≤
∞∑

j=1

t−j

1 − t
g2

∗(Le
∗)

2(q2)j ,

where g∗ = ‖g‖L∞ . If we choose, 1 > t > q, then we have

V ar(ξkε
[g]) ≤ g2

∗(Le
∗)

2 q2

(1 − t)(t − q2)
.

This completes the proof.
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The choice Eq.(8) of the initial and transition densities leads to a reduction of
the variance. We note that this choice is used in practice and it is very closely to
the importance sampling strategy for variance reduction. The density functions
(8) are called ”almost optimal” densities [12]. In other cases when is not possi-
ble the choice (8), but the densities are chosen to be proportional to the main
contribution from the kernel of the rendering equation.

When g(x, ω) = χP (x)
|P | δ(ω) the MC estimator (5) evaluates the mean value

of the radiance LP over pixel area (1). In this case, we can take ε = 1/(2.28)
because the primary colours in the RGB colour system are presented by 8-bit
numbers.

4 Summary and Issues for Future Work

The presented MC estimator evaluates the rendering equation derived from the
Cook-Torance illumination model. It is proved that the variance of this estima-
tor is bounded when we use almost optimal initial and transition densities. We
obtain condition for balancing of systematic and stochastic errors. The advan-
tages of the studied MC approach lie in the direct estimation of the functional
value in fixed phase space points. Also, this approach is easy for parallel re-
alizations over MIMD (multiple instruction - multiple data) architectures and
Grid’s. Finally, the future research of the MC approach under consideration for
Cook-Torance model could be developed in the following directions: 1. Devel-
opment of computational MC algorithms for creation of photorealistic images.
2. Investigation of the computational complexity of the algorithms for different
materials. 3. Creation of parallel MC algorithms for high performance and Grid
computing.
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