
Parallel Hybrid Monte Carlo Algorithms for
Matrix Computations

V. Alexandrov1, E. Atanassov2, I. Dimov2, S.Branford1,
A. Thandavan1 and C. Weihrauch1

1Department of Computer Science, University of Reading
2IPP, Bulgarian Academy of Sciences

Abstract

In this paper we consider hybrid (fast stochastic approximation
and deterministic refinement) algorithms for Matrix Inversion (MI)
and Solving Systems of Linear Equations (SLAE). Monte Carlo meth-
ods are used for the stochastic approximation, since it is known that
they are very efficient in finding a quick rough approximation of the
element or a row of the inverse matrix or finding a component of the
solution vector. We show how the stochastic approximation of the
MI can be combined with a deterministic refinement procedure to ob-
tain MI with the required precision and further solve the SLAE using
MI. We employ a splitting A = D − C of a given non-singular ma-
trix A, where D is a diagonal dominant matrix and matrix C is a
diagonal matrix. In our algorithm for solving SLAE and MI different
choices of D can be considered in order to control the norm of matrix
T = D−1C, of the resulting SLAE and to minimize the number of the
Markov Chains required to reach given precision. Further we run the
algorithms on a mini-Grid and investigate their efficiency depending
on the granularity. Corresponding experimental results are presented.

Keywords: Monte Carlo Method, Markov Chain, Matrix Inversion, So-
lution of System of Linear Equations, Grid Computing

1

1 Introduction

The problem of inverting a real n × n matrix (MI) and solving system of
linear algebraic equations (SLAE) is of an unquestionable importance in
many scientific and engineering applications: e.g. communication, stochastic
modelling, and many physical problems involving partial differential equa-
tions. For example, the direct parallel methods of solution for systems with
dense matrices require O(n3/p) steps when the usual elimination schemes
(e.g. non-pivoting Gaussian elimination, Gauss-Jordan methods) are em-
ployed [4]. Consequently the computation time for very large problems or
real time problems can be prohibitive and prevents the use of many estab-
lished algorithms.

It is known that Monte Carlo methods give statistical estimation of the
components of the inverse matrix or elements of the solution vector by per-
forming random sampling of a certain random variable, whose mathematical
expectation is the desired solution. We concentrate on Monte Carlo methods
for MI and solving SLAEs, since, firstly, only O(NL) steps are required to
find an element of the inverse matrix where N is the number of chains and
T is an estimate of the chain length in the stochastic process, which are in-
dependent of matrix size n and secondly, the process for stochastic methods
is inherently parallel.

Several authors have proposed different coarse grained Monte Carlo par-
allel algorithms for MI and SLAE [7, 8, 9, 10, 11]. In this paper, we in-
vestigate how Monte Carlo can be used for diagonally dominant and some
general matrices via a general splitting and how efficient mixed (stochas-
tic/deterministic) parallel algorithms can be derived for obtaining an ac-
curate inversion of a given non-singular matrix A. We employ either uni-
form Monte Carlo (UM) or almost optimal Monte Carlo (MAO) methods
[7, 8, 9, 10, 11]. The relevant experiments with dense and sparse matrices
are carried out.

Note that the algorithms are built under the requirement ‖T‖ < 1. There-
fore to develop efficient methods we need to be able to solve problems with
matrix norms greater than one. Thus we developed a spectrum of algorithms
for MI and solving SLAEs ranging from special cases to the general case.
Parallel MC methods for SLAEs based on Monte Carlo Jacobi iteration have
been presented by Dimov [11]. Parallel Monte Carlo methods using minimum
Makrov Chains and minimum communications are presented in [5, 1]. Most
of the above approaches are based on the idea of balancing the stochastic and

2

systematic errors [11]. In this paper we go a step further and have designed
hybrid algorithms for MI and solving SLAEs by combining two ideas: iter-
ative Monte Carlo methods based on the Jacobi iteration and deterministic
procedures for improving the accuracy of the MI or the solution vector of
SLAEs.

The generic Monte Carlo ideas are presented in Section 2, the main al-
gorithms are described in Section 3 and the parallel approach and some
numerical experiments are presented in Section 4 and 5 respectively.

2 Monte Carlo and Matrix Computation

Assume that the system of linear algebraic equations (SLAE) is presented in
the form:

Ax = b (1)

where A is a real square n×n matrix, x = (x1, x2, ..., xn)t is a 1×n solution
vector and b = (b1, b2, ..., bn)t.

Assume the general case ‖A‖ > 1. We consider the splitting A = D−C,
where off-diagonal elements of D are the same as those of A, and the diagonal
elements of D are defined as dii = aii + γi||A||, choosing in most cases γi >
1, i = 1, 2, ..., n. We further consider D = B − B1 where B is the diagonal
matrix of D, e.g. bii = diii = 1, 2, ..., n. As shown in [1] we could transform
the system (1) to

x = Tx + f, (2)

where T = D−1C and f = D−1b. The multipliers γi are chosen so that, if
it is possible, they reduce the norm of T to be less than 1 and reduce the
number of Markov chains required to reach a given precision. We consider two
possibilities, first, finding the solution of x = Tx+f using Monte Carlo (MC)
method if ‖T‖ < 1 or finding D−1 using MC and after that finding A−1. Then,
if required, obtaining the solution vector is found by x = A−1b. Following
the Monte Carlo method described in [7, 11] we define a Markov chain and

weights W0 = 1,Wj = Wj−1
Tsj−1sj

psj−1sj−1
for j = 1, 2, · · · , n. Consider now the

random variable θ[g] =
gs0

ps0

∑∞
i=1 Wifsi

. We use the following notation for

3

the partial sum:

θi[g] =
gs0

ps0

i∑
j=0

Wjfsj
. (3)

Under condition ‖T‖ < 1, the corresponding Neumann series converges for
any given f , and Eθi[g] tends to (g, x) as i → ∞ . Thus, θi[g] can be con-
sidered as an estimate of (g, x) for i sufficiently large. To find an arbitrary
component of the solution, for example, the r th component of x, we should
choose, g = e(r) = (0, ..., 1︸ ︷︷ ︸

r

, 0, ..., 0) such that

e(r)α = δrα =

{
1 if r = α
0 otherwise

(4)

It follows that (g, x) =
∑n

α=1 e(r)αxα = xr.
The corresponding Monte Carlo method is given by:

xr = Θ̂ =
1

N

N∑
s=1

θi[e(r)]s,

where N is the number of chains and θi[e(r)]s is the approximate value of xr

in the s th chain. It means that using Monte Carlo method, we can estimate
only one, few or all elements of the solution vector. We consider Monte Carlo
with uniform transition probability (UM) pαβ = 1

n
and Almost optimal Monte

Carlo method (MAO) with pαβ =
|Tαβ |Pn

β=1 |Tαβ | , where α, β = 1, 2, . . . , n. Monte

Carlo MI is obtained in a similar way [3].
To find the inverse A−1 = C = {crr′}n

r,r′=1 of some matrix A, we must first
compute the elements of matrix M = I − A, where I is the identity matrix.
Clearly, the inverse matrix is given by C =

∑∞
i=0 M i, which converges if

‖M‖ < 1 .
To estimate the element crr′ of the inverse matrix C, we let the vector f

be the following unit vector fr′ = e(r′).
We then can use the following Monte Carlo method for calculating ele-

ments of the inverse matrix C:

crr′ ≈ 1

N

N∑
s=1

 ∑

(j|sj=r′)

Wj

 , (5)

4

where (j|sj = r′) means that only

Wj =
Mrs1Ms1s2 . . . Msj−1sj

prs1ps1s2 . . . psj−1pj

(6)

for which sj = r′ are included in the sum (5).
Since Wj is included only into the corresponding sum for r′ = 1, 2, . . . , n,

then the same set of N chains can be used to compute a single row of the
inverse matrix, which is one of the inherent properties of MC making them
suitable for parallelization.

3 The Hybrid MC Algorithm

The basic idea is to use MC to find the approximate inverse of matrix D,
refine the inverse (filter) and find A−1. In general, we follow the approach
described in [7, 11] We can then find the solution vector through A−1. Ac-
cording to the general definition of a regular splitting [2], if A, M and N are
three given matrices satisfying A = M − N , then the pair of matrices M ,
N are called regular splitting of A, if M is nonsingular and M−1 and N are
non-negative.

Therefore, let A be a nonsingular diagonal dominant matrix. If we find
a regular splitting of A such that A = D−C, the SLAE x(k+1) = Tx(k) + f ,
where T = D−1C, and f = D−1b converges to the unique solution x∗ if and
only if ‖T‖ < 1 [2].

The efficiency of inverting diagonally dominant matrices is an important
part of the process enabling MC to be applied to diagonally dominant and
some general matrices. Consider now the algorithm which can be used for
the inversion of a general non-singular matrix A. Note that in some cases to
obtain a very accurate inversion of matrix D some filter procedures can be
applied.

Algorithm1: Finding A−1.

1. Initial data: Input matrix A, parameters γ and ε.

2. Preprocessing:

2.1 Split A = D − (D −A), where D is a diagonally dominant matrix.

2.2 Set D = B −B1 where B is a diagonal matrix bii = dii i = 1, 2, ..., n.

2.3 Compute the matrix T = B−1B1.

5

2.4 Compute ||T ||, the Number of Markov Chains N = (0.6745
ε . 1

(1−||T ||)
2.

3. For i=1 to n;

3.1 For j=1 to j=N;

Markov Chain Monte Carlo Computation:
3.1.1 Set tk = 0(stopping rule), W0 = 1, SUM [i] = 0 and Point = i.

3.1.2 Generate an uniformly distributed random number nextpoint.
3.1.3 If T [point][netxpoint]! = 0.

LOOP
3.1.3.1 Compute Wj = Wj−1

T [point][netxpoint]
P [point][netxpoint] .

3.1.3.2 Set Point = nextpoint and SUM [i] = SUM [i] + Wj .
3.1.3.3 If |Wj | < γ, tk = tk + 1
3.1.3.4 If tk ≥ n, end LOOP.

3.1.4 End If
3.1.5 Else go to step 3.1.2.

3.2 End of loop j.

3.3 Compute the average of results.

4. End of loop i.

5. Obtain The matrix V = (I − T)−1.

6. Therefore D−1 = V B−1.

7. Compute the MC inversion D−1 = B(I − T)−1.

8. Set D0 = D−1 (approximate inversion) and R0 = I −DD0.

9. use filter procedure Ri = I −DDi, Di = Di−1(I + Ri−1), i = 1, 2, ..., m, where
m ≤ k.

10. Consider the accurate inversion of D by step 9 given by D0 = Dk.

11. Compute S = D − A where S can be any matrix with all non-zero elements in
diagonal and all of its off-diagonal elements are zero.

12. Main function for obtaining the inversion of A based on D−1 step 9:

12.1 Compute the matrices Si, i = 1, 2, ..., k, where each Si has just one element
of matrix S.

12.2 Set A0 = D0 and Ak = A + S

12.3 Apply A−1
k = A−1

k+1 +
A−1

k+1Si+1A−1
k+1

1−trace(A−1
k+1Si+1)

, i = k − 1, k − 2, ..., 1, 0.

13. Printthe inversion of matrix A.

14. End of algorithm.

6

4 Parallel Implementation

We have implemented the algorithm proposed on a cluster of PCs and an
IBM SP3 machine under MPI. We have applied master/slave approach and
we have run also on a miniGrid incorporating both the cluster and the SP3
machine.

Inherently, Monte Carlo methods for solving SLAE allow us to have min-
imal communication, i.e. to partition the matrix A, pass the non-zero ele-
ments of the dense (sparse) matrix to every processor, to run the algorithm
in parallel on each processor computing dn/pe rows (components) of MI or
the solution vector and to collect the results from slaves at the end without
any communication between sending non-zero elements of A and receiving
partitions of A−1 or x. The splitting procedure and refinement are also par-
allelised and integrated in the parallel implementation. Even in the case,
when we compute only k components (1 ≤ k ≤ n) of the MI (solution vec-
tor) we can divide evenly the number of chains among the processors, e.g.
distributing dkN/pe chains on each processor. The only communication is at
the beginning and at the end of the algorithm execution which allows us to
obtain very high efficiency of parallel implementation.

In addition an iterative filter process is used to improve the accuracy of
the Markov Chain Monte Carlo calculated inverse. The iterative filter process
is initialised by setting D0 = D−1 (where D−1 is the inverse from the Monte
Carlo calculations). Then iteratively Ri = I −DDi and Di+1 = Di(I + Ri).
These iterations continue (i = 1, 2, . . .) until ‖Ri‖ < γ.

The data dependency graph for the iterative filter (Figure 1) directs us to
the method for parallelising the iterative filter. Each iteration is calculated
separately, with a master process coordinating the calculations slaves and
deciding on whether further iterations are required.

The master starts an iteration by sending Di to each of the slaves. Each
of the slaves calculates: n/p columns of Ri; the partial row sums of Ri

(required for calculating ‖Ri‖); and n/p columns of Di+1. The slaves then
send the columns of Di+1 and the partial row sums of Ri to the master, which
calculates ‖Ri‖ and so decides if the inverse, Di+1 is of the required accuracy.

In this way we can obtain for the parallel time complexity of the MC pro-
cedure of the algorithm O(nNL/p) where N denotes the number of Markov
Chains. According to central limit theorem for the given error ε we have N ≥(

0.6745
ε×(1−‖T‖)

)2

, L denotes the length of the Markov chains and L≤
(

log(γ)
log‖T‖

)
,

7

D0

?

@
@@R

‖R0‖ R0 D1

?

@
@@R

¾ -

‖R1‖ R1 D2

?

@
@@R

¾ -

‖R2‖ R2 D3

?

@
@@R

¾ -

Figure 1: Data Dependency Graph

where ε, γ show the accuracy of Monte Carlo approximation [3]. Parameters
ε, γ are used for the stochastic and systematic error. Note that if rough
approximations of the MI or solution of the SLAE is required we need to run
only the Monte Carlo component of the algorithm. If a higher precision is
required we need to also run the filter procedures, which will add complexity
of O(n3/p) in case of sparce matrices for example. The absolute error of the

solution for matrix inversion is
∥∥∥I − Â−1A

∥∥∥ , where A is the matrix whose in-

version has to be found, and Â−1 is the approximate MI. The computational
time is shown in seconds.

5 Experimental Results

The algorithms run on partition of a 32 processor IBM SP3 machine and a
workstation cluster with a 100 Mbps Ethernet network. Each workstation
had an Intel Pentium III processor with 256 MB RAM and a 30 GB harddisk.
Each workstation was running SUSE Linux 8.1. The MPI environment used
was LAM MPI 7.0.

We have carried test with low precision 10−1− 10−2 and higher precision
10−5 − 10−6 in order to investigate the balance between stochastic and de-

8

Matrix Size Time (Dense Case) in seconds
4 proc. 8 proc. 12 proc. 16 proc.

250 59.269 24.795 16.750 14.179
500 329.072 177.016 146.795 122.622
1000 1840.751 989.423 724.819 623.087

Table 1: MC with filter procedures on the cluster

Matrix Size Time (MC, Dense Case) in seconds
16 proc. (4 SP and 12 cluster) 16 proc. (8 SP and 8 cluster)

250 729.208 333.418
500 4189.225 1945.454

Table 2: MC with filter procedures on the miniGrid

terministic components of the algorithms based on the principle of balancing
of errors (e.g. keeping the stochastic and systematic error of the same or-
der) [7]. We have also compared the efficiency of parallel Monte Carlo and
Quasi-Monte Carlo methods for solving SLAEs

Our results show that all the algorithms scale very well. The results show
that if we need to refine the results using filter procedure the proportion of

Matrix Size Time (Dense Case) in seconds
4 proc. 8 proc. 12 proc. 16 proc.

MC 48.819 20.909 13.339 9.691
QMC 0.744 0.372 0.248 0.186

Table 3: MC vs QMC without filtering on the cluster (matrix size 250 by
250)

9

the filter procedure time grows with the growth of the matrix size, so we
need to limit these procedures if possible. The last table shows that Quasi-
Monte Carlo is faster in finding rough approximation of the solution of SLAE.
The second table shows that is important to balance computations in a Grid
environment and communicate with larger chunks of data. For example in
this case this can lead to more than twice reducing the computational time
on the same number of processors.

6 Conclusion

In this paper we have introduced a hybrid Monte Carlo/deterministic al-
gorithms for Matrix Computation for any non-singular matrix. We have
compared the efficiency of the algorithm on a cluster of workstations and in
a Grid environment. The results show that the algorithms scale very well
in such setting, but a careful balance of computation should be maintained.
Further experiments are required to determine the optimal number of chains
required for Monte Carlo procedures and how best to tailor together Monte
Carlo and deterministic refinement procedures.

References

[1] B. Fathi, B.Liu and V. Alexandrov, Mixed Monte Carlo Parallel Algo-
rithms for Matrix Computation , Lecture Notes in Computer Science,
No 2330, Springer-Verlag, 2002, pp 609-618

[2] Ortega, J., Numerical Analysis, SIAM edition, USA, 1990.

[3] Alexandrov V.N., Efficient parallel Monte Carlo Methods for Matrix
Computation, Mathematics and computers in Simulation, Elsevier 47
pp. 113-122, Netherlands, (1998).

[4] Golub, G.H., Ch., F., Van Loan, Matrix Computations, The Johns Hop-
kins Univ. Press, Baltimore and London, (1996)

[5] Taft K. and Fathi Vajargah B., Monte Carlo Method for Solving Systems
of Linear Algebraic Equations with Minimum Markov Chains. Interna-
tional Conference PDPTA’2000 Las Vegas, (2000).

10

[6] Sobol I.M. Monte Carlo Numerical Methods. Moscow, Nauka, 1973 (in
Russian).

[7] Dimov I., Alexandrov V.N. and Karaivanova A., Resolvent Monte Carlo
Methods for Linear Algebra Problems, Mathematics and Computers in
Simulation, Vo155, pp. 25-36, 2001.

[8] Fathi Vajargah B. and Alexandrov V.N., Coarse Grained Parallel Monte
Carlo Algorithms for Solving Systems of Linear Equations with Mini-
mum Communication, in Proc. of PDPTA, June 2001, Las Vegas, 2001,
pp. 2240-2245.

[9] Alexandrov V.N. and Karaivanova A., Parallel Monte Carlo Algorithms
for Sparse SLAE using MPI, LNCS 1697, Springer 1999, pp. 283-290.

[10] Alexandrov V.N., Rau-Chaplin A., Dehne F. and Taft K., Efficient
Coarse Grain Monte Carlo Algorithms for matrix computation using
PVM, LNCS 1497, pp. 323-330, Springer, August 1998.

[11] Dimov I.T., Dimov T.T., et all, A new iterative Monte Carlo Approach
for Inverse Matrix Problem, J. of Computational and Applied Mathe-
matics 92 pp 15-35 (1998).

11

