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Abstract. We study a parallel Monte Carlo (MC) method for inves-
tigation of a quantum kinetic equation which accounts for the action
of the electric field during the process of electron-phonon interaction.
Optimization of the presented parallel algorithm is done using variance
reduction techniques and parallel random sequences from the Scalable
Parallel Random Number Generator (SPRNG) library. The developed
code written in C is parallelized with MPI and OpenMP codes.
Numerical results for the parallel efficiency of the algorithm are obtained.
The dependence of the electron energy distribution on applied electric
field is investigated for long evolution times. The distribution function is
computed for GaAs material parameters.

1 Introduction

The development and application of the MC methods for quantum transport
in semiconductors and semiconductor devices has been initiated during the last
decade [1, 2]. The stochastic approach relies on the numerical MC theory as
applied to the integral form of the generalized electron-phonon Wigner equation.
An equation for reduced electron-phonon Wigner function which accounts for
electron-phonon interaction has been recently derived [3].

For a bulk semiconductor with an applied electric field the equation resem-
bles the Levinson equation [4], or equivalently the Barker-Ferry (B-F) equation
[5] with infinite electron lifetime. A crude MC method has been proposed to
find quantum solutions up to 200 femtoseconds (fs) evolution times of the B-F
equation at zero temperature [6]. It is proved [7] that stochastic error has order
O(exp(ct)/N

1
2 ), where t is the evolution time, N is the number of samples of

the MC estimator, and c is a constant depending on the kernel of the quantum
kinetic equation. This estimate shows that when t is fixed and N →∞ the error
decreases, but for N fixed and t large the factor for the error looks ominous.
Therefore, the problem of estimating the electron energy distribution function
for long evolution times with small stochastic error requires combining both MC
variance reduction techniques and distributed or parallel computations.
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In this paper a parallel MC method for solving the B-F equation is studied.
The transition density function for the Markov chain is chosen to be propor-
tional to the contribution from the kernels. The integral parts of the kernels
are estimated using MC integration. An importance sampling technique is in-
troduced to reduce the variance in the MC quadrature. A new rule for sampling
the transition density function of the Markov chain is used to construct the MC
estimator. In this way, we avoid the acceptance-rejection techniques used [6].
The parallelisation of the MC algorithm is done using MPI and OpenMP codes.
All these improvements in the MC approach lead to a decrease of the compu-
tational complexity of the algorithm and allow to estimate the electron energy
distribution function for long evolution times.

2 The Quantum Kinetic Equation

The quantum kinetic equation accounting for the electron-phonon interaction in
presence of applied electric field can be written in the following integral form [6]:

f(k, t) = φ(k) +
∫ t

0

dt′′
∫
G

dk′K(k,k′)× (1)
{∫ t

t′′
dt′S1(k,k′,F, t′, t′′)f(k′, t′′) +

∫ t

t′′
dt′S2(k,k′,F, t′, t′′)f(k, t′′)

}
,

where the kernel is separated in two terms:

K(k,k′) =
2V

2π3�2
|g(q)|2, and (2)

S1(k,k′,F, t′, t′′) = −S2(k′,k,F, t′, t′′) = exp(−Γ (t′ − t′′))× (3)[
(nq + 1) cos

(
ε(k) − ε(k′) + �ωq

�
(t′ − t′′)− �

2m
(k′ − k) · F(t′2 − t′′2)

)

+ nq cos
(
ε(k) − ε(k′)− �ωq

�
(t′ − t′′)− �

2m
(k′ − k) · F(t′2 − t′′2)

)]
.

Here, k and t are the momentum and the evolution time, respectively. f(k, t)
is the distribution function. φ(k) is the initial electron distribution function.
F = eE/�, where E is the applied electric field. nq = 1/(exp(�ωq/KT ) − 1) is
the Bose function, where K is the Boltzmann constant and T is the temperature
of the crystal, corresponds to an equilibrium distributed phonon bath. �ωq is the
phonon energy which generally depends on q = k′ − k, and ε(k) = (�2k2)/2m
is the electron energy. A Fröhlich coupling is considered

g(q) = −i
[
2πe2�ωq

V

(
1
ε∞
− 1
ε s

)
1

(q)2

] 1
2

,

where (ε∞) and (εs) are the optical and static dielectric constants. The damp-
ing factor Γ is considered independent of the electron states k and k′. This is
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reasonable since Γ weakly depends on k and k′ for states in the energy region
above the phonon threshold, where the majority of the electrons reside due to
the action of the electric field.

3 Monte Carlo Approach

Consider the problem for evaluating the following functional

Jh(f) ≡ (h, f) =
∫ T

0

∫
G

h(k, t)f(k, t)d3kdt

by a MC method. Suppose the distribution function f(k, t) and the arbitrary
function h(k, t) belong to any Banach space X and the adjoint space X∗, re-
spectively. The wave vector k belongs to a finite domain G ∈ R3 and t ∈ (0, T ).
The value of f at a fixed point (k0, t0) is provided by the special case h(k, t) =
δ(k−k0)δ(t−t0). Since the Neumann series of the integral equation (3) converges
[7] the solution f(k0, t0) can be evaluated by a MC method.

Define a terminated Markov chain (k0, t0) → . . . → (kj , tj) → . . . →
(kmε1

, tmε1
), such that (kj , tj) ∈ G×(0, T ) as tj ∈ (0, tj−1), j = 1, 2, . . . ,mε1 (ε1

is the truncation parameter). All points are sampled using an arbitrary transi-
tion density function p(k,k′, t, t′′) which is tolerant1 of both kernels in equation
(1). The biased backward MC estimator for the solution of (1) at the fixed point
(k0, t0) has the following form:

ξmε1
[k0, t0] = φ(k0) +

mε1∑
j=1

Wα
j φ(kαj ), (4)

where

φ(kαj ) =
{
φ(kj), if α = 1
φ(kj−1), if α = 2,

Wα
j = Wα

j−1

K(kj−1,kj)να(kj−1,kj , tj−1, tj)
pαp(kj−1,kj , tj−1, tj)

, j = 1, . . . ,mε1 , Wα
0 = 1.

Here να(kj−1,kj , tj−1, tj) is a MC estimator for
∫ tj
tj−1

dt′Sα(kj−1,kj ,F, t′, tj−1)
in the j-th transition at the Markov chain. The probabilities pα, (α = 1, 2) are
chosen to be proportional to the absolute values of the kernels.

Now we can define a Monte Carlo method

1
N

N∑
i=1

(ξmε1
[k0, t0])i

P−→ Jδ(fmε1
) ≈ f(k0, t0), (5)

where P−→means stochastic convergence asN →∞; fmε1
is the iterative solution

obtained by the Neumann series of (1). The relation (5) still does not determine

1 p(x) is tolerant of g(x) if p(x) > 0 when g(x) �= 0 and p(x) ≥ 0 when g(x) = 0.
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the computational algorithm. The sampling rule, which compute the next point
at the Markov chain, has to be specified by using random number generators.

In order to avoid the singularity in (2) the following transition density func-
tion is suggested: p(k,k′, t, t′′) = p(k′/k)p(t, t′′), where p(t, t′′) = 1/t. In spher-
ical coordinates (ρ, θ, ϕ), the function p(k′/k) is chosen in the following way:
p(k′/k) = (4π)−1(ρ)−2l(ω)−1, where ω = (k′ − k)/ρ, ρ = |k′ − k| and l(ω)
is distance in the direction of the unit vector ω from k to the boundary of the
domain G. If G is a sphere with radius Q, the function p(k′/k) satisfies the
condition for a transition density. Indeed,

∫
G

p(k′/k)d3k′ =
∮

(4π)−1dω

∫ l(ω)

0

(r′)2−2l(ω)−1dr′ = 1.

Suppose the direction of the field E parallel to the kz-axis. Then the unit vector
ω can be sampled in the xz-plane (or sinϕ = 0) because of the symmetry of the
task around the direction of the field.

Thus, if we know the wave vector k the next state k′ can be computed by
the following sample rule:

Algorithm 1:

1. Sample a random unit vector ω = (sin θ, 0, cos θ) as sin θ = sin 2πβ1 and
cos θ = cos 2πβ1, where β1 is an uniformly distributed number in (0, 1);

2. Calculate l(ω) = −ω ·k+ (Q2 + (ω ·k)2 −k2)
1
2 , where ω ·k means a scalar

product between two vectors;
3. Sample ρ = l(ω)β2, where β2 is an uniformly distributed number in (0, 1);
4. Calculate k′ = k + ρω.

In order to evaluate f(k, t) in the fixed point (k0, t0)), N random walks of the
MC estimator can be computed by the following algorithm:

Algorithm 2:

1. Choose a positive small number ε1 and set initial values k := k0, t := t0,
ξ := φ(k),W := 1;

2. Sample a value t′′ with a density function p(t, t′′) = 1/t;
3. Sample the next state k′ using Algorithm 1;
4. Sample N1 independent random values of t′ with a density function

q1(t′, t′′) =
Γexp(−Γ (t′ − t′′))

1− exp(−Γ (t− t′′))
;

5. Calculate

να =
1
N1

N1∑
i=1

Sα(k,k′, t′i, t
′′)

q1(t′i, t′′)
and pα =

|να|
|ν1|+ |ν2|

, α = 1, 2;
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6. Choose a value β, uniformly distributed random variable in (0, 1);
If (β ≤ p1) then

W := W
K(k,k′) t ν1

p1 p(k′/k)
, ξ := ξ +Wφ(k′), k := k′;

else

W := W
K(k,k′) t ν2

p2 p(k′/k)
, ξ := ξ +Wφ(k);

7. Set t := t′′ and repeat from step 2 until t ≤ ε1;
8. Repeat N times steps 1− 7 and estimate the electron energy distribution

function by Eq.(5).

4 Parallel Implementation and Numerical Results

The computational complexity of the obtained Algorithm 2 can be measured by
the quantity F = N×τ×E(mε1). The number of the random walks, N , and the
average number of transitions in the Markov chain, E(mε1), are connected with
stochastic and systematic errors [7]. The mean time for modeling one transition,
τ , depends on the complexity of the transition density functions and on the
sampling rule, as well as on the choice of the random number generator (rng).

It is well known that the MC algorithms are very convenient for parallel
implementations on parallel computer systems [8], because every realization of
the MC estimator can be done independently and simultaneously. Although
MC algorithms are well suited to parallel computation, there are a number of
potential problems. The available computers can run at different speeds; they
can have different user loads on them; one or more of them can be down; the
rng’s that they use can run at different speeds; ets. On the other hand, these
rng’s must produce independent and non-overlapping random sequences. Thus,
the parallel realization of the MC algorithms is not a trivial process on different
parallel computer systems.

In our research, the Algorithm 2 has been implemented in C and has been
parallelized using an MPI code. The numerical tests have been performed on
Sunfire 6800 SMP system with twenty-four 750 MHz UltraSPARC-III proces-
sors located at the Edinburgh Parallel Computer Centre (EPCC). The SPRNG
library has been used to produce independent and non-overlapping random se-
quences [9]. Our aim is to estimate the electron energy distribution function for
evolution times greater than 200 fs. That is way, our parallel implementation
with n processors includes the following strategy. A master-slave model is used
where the master processor delegates work (N/n random walks) to the other
processors. The slave processors complete the required work and obtain “local”
MC estimates. After that they return the results back to the master processor
which produces the “global” MC estimate. Such a parallel strategy is expected
to give linear speed-up and high parallel efficiency. The results in Table 1 con-
firm this assumption in general. In addition, an MPI/OpenMP mixed code has
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been developed for parallel implementation of the Algorithm 2. Such mixed
mode code has been proposed in [10] as a more efficient parallelisation strat-
egy to perform diffusion Monte Carlo calculations for an SMP (Share Memory
Programming) cluster.

Table 1. The CPU time (seconds) for all 96 points, the speed-up, and the parallel
efficiency for various combination of OpenMP threads and MPI processes. The number
of random walks is N = 9600. The electric field is 0 kV/cm and the evolution time is
100 fs.

Processes CPU Speed-up Parallel Processes CPU Speed-up Parallel
×Threads Time Efficiency ×Threads Time Efficiency

1 × 1 567.177 1 × 1 567.177
1 × 2 565.955 1.00216 0.5011 2 × 1 287.505 1.97276 0.9864
1 × 4 524.357 1.08167 0.2704 4 × 1 144.540 3.92401 0.9810
1 × 6 460.623 1.23133 0.2052 6 × 1 96.321 5.88840 0.9814
1 × 8 426.134 1.33098 0.1664 8 × 1 74.465 7.61669 0.9521
2 × 2 310.443 1.82699 0.4567 2 × 2 310.443 1.82699 0.4567
2 × 3 292.286 1.94049 0.3234 3 × 2 211.674 2.67948 0.4466
2 × 4 274.871 2.06343 0.2579 4 × 2 160.933 3.54094 0.4426

The results in Table 1 demonstrate that this style of programming is not
always the most efficient mechanism on SMP systems and cannot be regarded
as the ideal programming model for all codes.

The numerical results discussed in Figures 1–4 are obtained for zero tem-
perature and GaAs material parameters: the electron effective mass is 0.063,
the optimal phonon energy is 36meV , the static and optical dielectric constants
are εs = 10.92 and ε∞ = 12.9. The initial condition at t = 0 is given by a
function which is Gaussian in energy, (φ(k) = exp(−(b1k2 − b2)2), b1 = 96 and
b2 = 24), scaled in a way to ensure, that the peak value is equal to unity. A
value Q = 66 × 107m−1 is chosen for a radius of integration domain G. The
solution f(0, 0, kz, t) is estimated in 2×96 points that are symmetrically located
on z-axes, the direction of applied field. The truncation parameter ε = 0.001.
The quantity presented on the y-axes in all figures is |k| ∗ f(0, 0, kz, t), i.e., it
is proportional to the distribution function multiplied by the density of states.
It is given in arbitrary units. The quantity k2, given on the x-axes in units of
1014/m2, is proportional to the electron energy.

The results for the computational cost of the Algorithm 2 are obtained and
are compared with the algorithm from [6]. To obtain a smooth solution in the
case when t = 200 fs, the Algorithm 2 needs approximately 9 minutes per
point on one processor while the algorithm presented in [6] needs approximately
30 minutes. These results and the parallelisation of the Algorithm 2 allow to
estimate the solution of (1) with high accuracy for 300 fs evolution time.

The results for the electron energy distribution are presented on Figures 1-4
for 200fs and 300fs evolution times. The relaxation leads to a time-dependent
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Fig. 1. Solutions |k|f(0, 0, kz, t) versus |k|21014m−2, at positive direction on the z-
axis, and t = 200 fs. The electric field is 0, 6 kV/cm, and 12 kV/cm and the number
of random walks per point is 1 million.
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Fig. 2. Solutions |k|f(0, 0, kz, t) versus |k|21014m−2, at positive direction on the z-
axis, and t = 300 fs. The electric field is 0, 6 kV/cm, and 12 kV/cm and the number
of random walks per point is 24 millions.
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Fig. 3. Solutions |k|f(0, 0, kz, t) versus |k|21014m−2, at negative direction on the z-
axis, and t = 200 fs. The electric field is 0, 6 kV/cm, and 12 kV/cm and the number
of random walks per point is 1 million.
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Fig. 4. Solutions |k|f(0, 0, kz, t) versus |k|21014m−2, at negative direction on the z-
axis, and t = 300 fs. The electric field is 0, 6 kV/cm, and 12 kV/cm and the number
of random walks per point is 24 millions.
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broadening of the replicas. The presented solutions on Figures 1 and 2 are along
the electric field and the replicas are shifted to the right by the increasing electric
field. Figures 3 and 4 show the solutions in direction opposite to the field and
the replicas are shifted to the left. Also, we see on Figures 2 and 4 that second
peak is appeared on the left of the initial condition and the replicas begin to
shift at the same way with the increase of the electric field. The solution in
the classically forbidden region (see Figures 3 and 4), on the right of the initial
condition, demonstrates enhancement of the electron population with the growth
of electric field. The numerical results show that the intra-collisional field effect
is well demonstrated for 300fs evolution time of the electron-phonon relaxation.

Conclusions. A parallel MC algorithm for solving the B-F equation in presence of
applied electric field is presented. A new transition density for the Markov chain
and an algorithm described the sample rule are suggested. The MC algorithm
has low complexity in comparison with the algorithm from [6]. MPI/OpenMP
mixed mode code is developed and is compared with pure MPI performance.
The numerical results show that the pure MPI performance is preferable for
large-scale MC simulations in order to investigate the quantum kinetic equation
under consideration.
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