
A New Quasi-Monte Carlo Algorithm

for Numerical Integration of Smooth Functions

Emanouil I. Atanassov, Ivan T. Dimov, and Mariya K. Durchova

Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences
Acad. G. Bontchev, Bl. 25A, 1113 Sofia, Bulgaria

emanouil@parallel.bas.bg, ivdimov@bas.bg, mabs@parallel.bas.bg

Abstract. Bachvalov proved that the optimal order of convergence of a
Monte Carlo method for numerical integration of functions with bounded

kth order derivatives is O
(
N− k

s
− 1

2

)
, where s is the dimension. We con-

struct a new Monte Carlo algorithm with such rate of convergence, which
adapts to the variations of the sub-integral function and gains substan-
tially in accuracy, when a low-discrepancy sequence is used instead of
pseudo-random numbers.
Theoretical estimates of the worst-case error of the method are obtained.
Experimental results, showing the excellent parallelization properties of
the algorithm and its applicability to problems of moderately high di-
mension, are also presented.

1 Introduction

The paper proposes new quasi-Monte Carlo algorithm for integrating smooth
functions. We consider integration over the unit cube E

s = [0, 1)s. The class of
functions under consideration is the following:

Definition 1. For given integers s and k, s ≥ 1 and k ≥ 0 the class W k (M,Es)
consists of all real functions defined in E

s, such that all the derivatives

∂rf

∂xi11 . . . ∂xiss

exist for all i1 + · · ·+ is = r ≤ k and there absolute values are bounded by M .

The results of Bachvalov [2, 3] establish lower bounds on the integration er-
ror of both deterministic and stochastic or Monte Carlo methods. Various Monte
Carlo methods for approximate integration of such functions with the optimal
order of convergence O

(
N− 1

2−
k
s

)
are known (see, e.g. [1, 5, 10, 20]). In this pa-

per we investigate from theoretical and practical view point a quasi-Monte Carlo
algorithm, based loosely on the same ideas. The idea of quasi-Monte Carlo algo-
rithms is to replace the pseudo-random numbers, used in Monte Carlo, with a
deterministic sequence of points, uniformly distributed in some high-dimensional
unit cube E

s. The quality of distribution of these sequences is measured through

I. Lirkov et al. (Eds.): LSSC 2003, LNCS 2907, pp. 128–135, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A New Quasi-Monte Carlo Algorithm 129

their discrepancy. Infinite sequences with order of the discrepancy O
(

logsN
N

)
,

which is believed to be the optimal, are called low-discrepancy sequences. Note
that in Monte Carlo methods one can frequently obtain a statistical error esti-
mate along with the result, which is necessary in many areas. In quasi-Monte
Carlo methods a similar error estimate of statistical nature can be obtained using
the so-called scrambling of sequences, which is a way of adding some randomness
to otherwise entirely deterministic sequences. The most popular quasi-Monte
Carlo integration method is based on the simple formula:

∫

E
s

f (x) dx ≈ 1
N

N∑
j=1

f(xj),

where σ = {xj}∞j=1 is a uniformly distributed sequence. For a good introduction
in the theory of uniform distribution modulo 1 see, e.g., the books [9] and [7].
More complex methods are developed and tested by many authors (see, e.g., [18,
16]). A method, based on scrambled nets, can be seen in [12]. In quasi-Monte
Carlo methods it is important to achieve low constructive dimensionality (for a
definition, see [17], p. 255). Since the first few coordinates of a low-discrepancy
sequence are better distributed, various ways to adjust the integration procedure
to the properties of the integrand are proposed (see, e.g., the Brownian bridge
construction in [4]).

The performance of the quasi-Monte Carlo method depends on the quality
of the distribution of the underlying low-discrepancy sequence. Various families
of such sequences are known, and we tested some of the most popular ones in
our algorithm. The algorithm is described in Sec. 2. Numerical results, showing
the applicability of the method and its excellent parallelization properties, are
given in Sec. 3.

2 Description of the Algorithm

Since we are going to describe our algorithm using the term pseudo-inverse
matrix , we provide the following

Definition 2. (see e.g. [11], p. 257) Let A be an m × n real matrix with rank
r. Suppose that UTAV = Σ is the SVD of A. Then the pseudo inverse matrix
of A is defined as A+ = V Σ + UT , where

Σ+ = diag

(
1
σ1

. . . ,
1
σr
, 0, . . . , 0

)
∈ Rn×m

is referred to as the pseudo inverse of A. If rank(A) = n, then A+ =
(ATA)−1AT .

Definition 3. Let t be an integer, t ≥ 1, and let a1, . . . , at be fixed points in E
s.

Let f ∈W k(M,Es) for some M . The s-tuples (i1, . . . , is) with i1+· · ·+is = r < k

130 Emanouil I. Atanassov, Ivan T. Dimov, and Mariya K. Durchova

can be ordered lexicographically and there are exactly
(
s+k−1
k−1

)
of them. Consider

the matrix B with t rows and
(
s+k−1
k−1

)
columns, such that the n−th column of B

corresponds to the n−th tuple (i1, . . . , is) and contains all the products

bj (i1, . . . , is) =
(
a
(1)
j

)i1
. . .

(
a
(s)
j

)is
, for j = 1, . . . , t.

Suppose that t ≥
(
s+k−1
k−1

)
and that B has rank

(
s+k−1
k−1

)
. Let the matrix C be the

pseudo-inverse of B. C has
(
s+k−1
k−1

)
rows and t columns. Now the interpolation

polynomial L (f, x) is defined by

L (f, x) =
t∑

j=1

f(aj)
∑

(i1,...,is),i1+···+is<k
cj (i1, . . . , is)xi11 . . . xiss

Observe that if the points a1, . . . , as are in general position, the matrix B has
rank

(
s+k−1
k−1

)
. Since in our definition B has always full rank, the pseudo-inverse

C is equal to (B(BTB)−1)T . The reason for using formulae with t >
(
s+k−1
k−1

)
for

numerical integration is that the coefficients of the matrix C are much smaller in
this case. Of all the matrices satisfying BAB = B the pseudo-inverse is chosen
because its Frobenius norm ‖ . ‖F is the smallest.

Now let us fix some integers k and s, greater than 1 and consider functions
f ∈W k (M,Es) defined over the unit cube E

s. We also fix the number t and the
points {a1, . . . , at} ⊂ E

s, such that an interpolation formula L(f)(x) = L(f, x)
as described in Definition 3 is defined. Observe that by integrating over E

s we
get a quadrature formula

∫

E
s

f (x) dx ≈
t∑

j=1

rjf(aj),

where

rj =
∑

(i1,...,is),i1+···+is<k

cj (i1, . . . , is)
(i1 + 1) . . . (is + 1)

.

Definition 4. Consider a rectangular area K ⊂ E
s and an interpolation for-

mula L : f → L(f) as in definition 3. Let T be a linear transformation such that
T (K) = E

s. For a given function f : K → R consider the function g : E
s → R

such that g(y) = f(Tx). The interpolation formula LK : f → LK(f) is defined
by LK(f, x) = L(g, Tx).

Now we define a Monte Carlo integration formula, which we are going to
investigate in the sequel.

Definition 5. Let N ≥ 1 be an integer. Consider a representation of the unit
cube E

s as a union of N rectangles K1, . . . ,KN .

A New Quasi-Monte Carlo Algorithm 131

For the rectangle Ki =
s∏
j=1

[bj , cj) we consider the simplest linear transfor-

mation T such that T (Ki) = E
s:

xj →
x− bj
cj − bj

.

By T−1 the points {a1, . . . , at} are transformed into points
{
a
(i)
1 , . . . , a

(i)
t

}
⊂

Ki. Let m be a given integer, m ≥ 2, and let ξ(1), . . . , ξ(N) be N independent
random variables, uniformly distributed in the respective rectangles K1, . . . ,KN .
For every Ki we use m samples ξ(i)1 . . . ξ

(i)
m of ξ(i) and define the Monte Carlo

estimate of
∫
Ki

f (x) dx to be

vol (Ki)


 t∑
j=1

rjf(a(i)
j) +

1
m

m∑
j=1

f
(
ξ
(i)
j

)
− LK

(
f, ξ

(i)
j

) .

The Monte Carlo estimate for the integral
∫
E

s

f (x) dx is obtained by summing

all the estimates for the integrals
∫
Ki

f (x) dx.

Such integration formulae were considered in [1], but only when t has the small-
est possible value

(
s+k−1
k−1

)
. This additional degree of freedom results in faster

convergence of the resulting formulae.

3 Numerical Results

In this section we present numerical results that are obtained for calculating the
value of the integral

Ik =
∫

E
s

Fk(x)dx, k = 1, . . . , 7.

The functions, that are considered here, are with different peculiarities. Often
they are used for benchmarking of Monte Carlo and quasi-Monte Carlo algo-
rithms. They are given as follows:

F1 =
s∏
i=1

(
x3
i +

3
4

)
,

F2 =
s∑
i=1

i∏
j=1

(−1)jxj ,

F3 = exp(−x2) cos(|x|),

132 Emanouil I. Atanassov, Ivan T. Dimov, and Mariya K. Durchova

F4 = exp(−x2)
√

(1 + x2),

F5 = cos

(
2πu1 +

s∑
i=1

aixi

)
,

F6 =

(
1 +

s∑
i=1

aixi

)−(s+1)

,

F7 = exp

(
−

s∑
i=1

a2
i (xi − ui)2

)
.

The first function F1 has been used in [8] and [14] as a test in a context of
rating point sets for quasi-Monte Carlo and Monte Carlo integration. The last
three functions are a part of the test functions package proposed by Genz or in
[13, 15, 19]. The parameters u1, ui, ai are divided into unaffective and affective
parameters. The vector a of affective parameters is scaled so that it satisfies the
requirement

‖a‖1 = 110s−
3
2 ,

‖a‖1 = 600s−2,

‖a‖1 = 100s−1

for the functions F5, F6, F7 respectively, that depends only on the space dimen-
sionality.

In Table 1 we present numerical results from the approximate integration
of the integral I1 using the Monte Carlo and quasi-Monte Carlo version of the
algorithm. The algorithms where tested for dimension 4, 5, 6, and 9. We did not
compare our algorithm with crude Monte Carlo as in [6], because of its much
slower convergence. From this table we made the conclusion, that the quasi-
Monte Carlo variant of the algorithm shows approximately the same accuracy
as the Monte Carlo algorithm, i.e., O(N− 1

2−
k
s), for smooth functions.

Table 1. Results for I1, with dimension s, number of steps N and number of points
per cube 40.

N r s = 4 s = 5 s = 6 s = 9

MC S. MC S. MC S. MC S.

3 4 2.69E-5 1.52E-5 2.65E-5 1.71E-5 2.43E-5 2.53E-5 1.34E-5 9.46E-6

6 4.59E-7 2.61E-7 1.05E-6 7.07E-7 2.62E-7 2.31E-7 1.57E-6 4.83E-7

4 4 5.59E-6 2.84E-6 2.68E-7 2.78E-6 2.33E-6 2.65E-6 1.36E-6 1.74E-6

6 7.06E-8 3.07E-8 4.99E-8 7.15E-8 5.84E-8 4.11E-8 - -

5 4 1.43E-6 1.15E-6 7.51E-7 5.41E-7 5.15E-7 5.67E-7 - -

6 5.30E-9 3.57E-9 1.47E-8 1.08E-8 8.19E-9 8.39E-9 - -

A New Quasi-Monte Carlo Algorithm 133

Table 2. Numerical results for I2, I3, I4 with dimension s = 5.

N r I2 I3 I4

MC S. MC S. MC S.

3 4 1.07E-6 1.86E-6 1.29E-6 2.50E-6 7.93E-7 1.74E-6

6 4.07E-16 8.15E-16 2.52E-8 3.37E-8 1.89E-8 2.45E-8

4 4 1.86E-7 3.05E-7 4.28E-7 1.86E-7 2.91E-7 1.19E-7

6 4.12E-16 4.28E-16 2.55E-9 3.52E-9 1.91E-9 2.51E-9

5 4 3.54E-8 5.70E-8 9.47E-8 6.62E-8 6.92E-8 4.85E-8

6 5.19E-16 5.19E-16 4.96E-10 7.74E-10 3.72E-10 5.75E-10

Table 3. Numerical results for I5, I6, I7 with dimension s = 5.

N r I5 I6 I7

MC S. MC S. MC S.

3 4 6.44E-3 5.89E-3 3.06E-8 4.61E-8 1.93E-5 4.37E-5

6 9.65E-3 8.12E-3 1.02E-7 3.56E-7 6.24E-5 7.02E-5

4 4 5.05E-3 5.45E-3 3.01E-8 3.05E-8 5.33E-6 8.57E-6

6 4.51E-3 2.74E-3 6.04E-8 1.01E-7 1.76E-5 1.41E-5

5 4 1.84E-3 3.89E-3 7.68E-9 1.09E-8 5.12E-6 4.25E-6

6 3.09E-3 2.06E-3 2.80E-8 1.51E-8 4.26E-6 3.96E-6

Table 4. CPU time and efficiency for F5, dimension s = 5, smoothness 4, number of
steps 20, number of points per cube 40.

NP 1 2 4 8 16 32

Method time Eff. Time Eff. Time Eff. Time Eff. Time Eff. Time Eff.

MC 336 1 169 0.99 83 1.01 43 0.98 24 0.88 14 0.75

Sobol 337 1 170 0.99 86 0.98 45 0.92 24 0.88 15 0.71

In Table 2 and 3 we show numerical results for the other integrals in 5 di-
mensions. We again observe roughly the same probable error of the Monte Carlo
and the quasi-Monte Carlo algorithm. All these results are obtained with the
parameter m (the number of quasi-random points in every small cube) equal to
40. In Table 4 we show the parallel efficiency of the algorithm. The computations
for every small cube can be done in parallel, and thus the algorithm possesses a
significant amount of natural parallelism. The results are achieved on a cluster
of Intel Xeon 2.2 processors, using MPI.

4 Conclusions

We have developed a quasi-Monte Carlo method, which achieves order of con-
vergence O

(
N− 1

2−
k
s

)
on smooth functions. The proposed quasi-Monte Carlo

134 Emanouil I. Atanassov, Ivan T. Dimov, and Mariya K. Durchova

method shows roughly the same accuracy as the Monte Carlo version, and also
exhibits good parallel efficiency. However, the statistical aposteriory error es-
timation, based on the use of scrambled low-discrepancy sequences, is slightly
more complicated and less reliable, than Monte Carlo methods. In our exper-
iments we obtained good results by using the Sobol sequences. Note that the
constructive dimensionality of the algorithm is relatively high - sm, and thus
the integration method can be used for assessing the quality of distribution of
other families of low-discrepancy sequences, i.e., for benchmarking purposes.

Acknowledgements

Supported by the project of European Commission - BIS 21 under contract
ICA1-CT-2000-70016 and by the Ministry of Education and Science of Bulgaria
under contract NSF I-1201/02 and NSF MM-902/99.

References

1. E. Atanassov, I. Dimov. A new optimal Monte Carlo method for calculating in-
tegrals of smooth functions. Monte Carlo Methods and Applications, 5 2 (1999),
149–167.

2. N. S. Bachvalov. On the approximate computation of multiple integrals. Vestnik
Moscow State University, Ser. Mat., Mech., 4 (1959) 3–18.

3. N. S. Bachvalov. Average Estimation of the Remainder Term of Quadrature For-
mulas. USSR Comput. Math. and Math. Phys., 1 1 (1961) 64–77.

4. R. E Caflisch, W. Morokoff, A. B. Owen. Valuations of mortgage backed securities
using Brownian bridges to reduce effective dimension. Journal of Computational
Finance, 1 (1997) 27–46.

5. S. Capstick, B. D. Keister. Multi dimensional Quadrature Algorithms at Higher
Degree and/or Dimension, www.scri.fsu.edu/˜capstick/papers/quad.ps.

6. I. Dimov, A. Karaivanova, R. Georgieva, S. Ivanovska. Parallel Importance Sepa-
ration and Adaptive Monte Carlo Algorithms for Multiple Integrals, In: I. Dimov, I.
Lirkov, S. Margenov, Z. Zlatev Eds., Numerical Methods and Applications, Lecture
Notes in Computer Science, 2542, Springer Verlag (2003) 99–107.

7. M. Drmota, R. F. Tichy. Sequences, Discrepancies and Applications, Lecture
Notes on Mathematics, Springer, Berlin, 1997, N 1651.

8. K. Entacher, A. Uhl, S. Wegenkittl. Linear congruential generators for parallel
Monte Carlo: the leap-frog case, Monte Carlo Meth. Appl., 4 (1998) 1–16.

9. L. Kuipers, H. Niederreiter. Uniform distribution of sequences, John Wiley & sons,
New York, 1974.

10. N. Kjurkchiev, Bl. Sendov, A. Andreev. Numerical Solution of Polynomial Equa-
tions, P.G. Ciarlet and J. L. Lions (Eds.), Handbook of Numerical Analysis, Solu-
tion of Equations in Rn (Part 2), 3, North-Holland, Amsterdam, NY, 1994.

11. C. Van Loan, G. Golub. Matrix Computations, The John Hopkins University
Press, Baltimore and London, third edition, 1996.

12. A. B. Owen. Scrambled Net Variance for Integrals of Smooth Functions, Annals
of Statistics, 25 4 (1997) 1541–1562.

13. A. B. Owen. The dimension distribution and quadrature test functions, www-
stat.stanford.edu/˜owen/reports, November, 2001.

A New Quasi-Monte Carlo Algorithm 135

14. W. Ch. Schmid, A. Uhl. Techniques for parallel quasi-Monte Carlo integration
with digital sequences and associated problems, Math. and Comp. in Sim., 55
(2001) 249–257.

15. R. Schuerer. A comparison between (quasi-)Monte Carlo and cubature rule based
method for solving high-dimensional integration problems, Math. and Comp. in
Sim., 62 3–6 (2003) 509–517.

16. I. H. Sloan, H. Wozniakowski. When are quasi-Monte Carlo Algorithms efficient in
high-dimensional integration, Journal of Complexity, 14 (1998) 1–33.

17. I. M. Sobol
′
. Monte Carlo Methods, Nauka, Moscow, 1973.

18. I. M. Sobol
′
, D. I. Asotsky. One more experiment on estimating high-dimensional

integrals by quasi-Monte Carlo methods, Math. and Comp. in Sim., 62 3–6 (2003)
255–275.

19. http://www.math.wsu.edu/math/faculty/genz/homepage, Software/MULTST.
20. M. D. Takev. On Probable Error of the Monte Carlo Method for Numerical Inte-

gration, Mathematica Balkanica (New Series), 6 (1992) 231–235.

	1 Introduction
	2 Description of the Algorithm
	3 Numerical Results
	4 Conclusions
	References

