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Abstract. In this paper we consider the following mathematical model:
an elliptic boundary value problem, where the partial differential equa-
tion contains advection, diffusion, and deposition parts. A Monte Carlo
(MC) method to solve this equation uses a local integral representa-
tion by the Green’s function and a random process called “Walks on
Balls”(WOB). A new class of grid free MC algorithms for solving the
above elliptic boundary value problem is suggested and studied. We
prove that the integral transformation kernel can be taken as a tran-
sition density function in the Markov chain in the case when the deposi-
tion part is equal to zero. An acceptance-rejection (AR) and an inverse-
transformation methods are used to sample the next point in the Markov
chain. An estimate for the efficiency of the AR method is obtained.

1 Formulation of the Problem

Consider the functional

J(u) ≡ (g, u) =
∫

Ω

g(x)u(x)dx, (1)

where Ω ⊂ R3 and x = (x1, x2, x3) ∈ Ω is a point in the Euclidean space R3.
The functions u(x) and g(x) belong to the Banach space X and to the adjoint
space X∗, respectively, and u(x) is a unique solution of the following Fredholm
integral equation:

u(x) =
∫

Ω

k(x, y)u(y)dy + f(x). (2)

The main task is to calculate the functional (1), where u(x) is the solution of
the following boundary value problem:

Mu = −Φ(x), x ∈ Ω, Ω ⊂ R3, (3)
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u = ψ(x), x ∈ ∂Ω, (4)

where the operator M is defined by: M =
3∑

i=1

(
∂2

∂x2
i

+ bi(x) ∂
∂xi

)
+ c(x).

As shown in [1,7], if the coefficients of the operator M satisfy the conditions:
bi(x), c(x) ∈ C(0,λ)(Ω), c(x) ≤ 0, Φ ∈ C(0,λ)(Ω)

⋂
C(Ω) and ψ ∈ C(∂Ω) in the

closed domain Ω ∈ A(1,λ), then the problem (3) - (4) has an unique solution
u(x) ∈ C2(Ω)

⋂
C
(
Ω
)
. A definition for the class A(k,λ) can be found in [6].

We denote by B(x) the maximal ball inside the domain Ω with radius R(x)
and center in the point x, i.e.:

B(x) = BR(x) = {y : r = |y − x| ≤ R(x)} . (5)

Levy’s function for the problem (3)-(4) [8] is:

Lp(y, x) = µp(R)

R∫
r

(
1
r
− 1
ρ

)
p(ρ)dρ, r ≤ R, (6)

where p(r) is a density function and the following notation is used:

r = |x−y| =

(
3∑

i=1

(xi − yi)2
)1/2

, µp(R) = (4πqp(R))−1, qp(R) =

R∫

0

p(ρ)dρ.

The components of the vector-function b(x) are assumed to satisfy the con-
ditions: bi(x) ∈ C(1)(Ω), i = 1, 2, 3 and divb(x) = 0. Then a local integral
representation of the solution by the use of the Green’s function approach ex-
ists for standard domains, lying inside Ω. In addition, taking in account that
∂Lp(y,x)

∂yi
= µp(R)xi−yi

r3

R∫
r

p(ρ)dρ, one can see that the Levy’s function satisfies

the conditions:
∂Lp(y, x)

∂yi
= Lp(y, x) = 0 for any y ∈ ∂Ω. (7)

Finally, the solution of the problem (3)-(4) can be written in the following inte-
gral form [4,8]:

u(x) =
∫

B(x)

M∗
yLp(y, x)u(y)dy +

∫

B(x)

Lp(y, x)Φ(y)dy, (8)

where M∗ =
3∑

i=1

(
∂2

∂x2
i
− bi(x) ∂

∂xi

)
+ c(x) is the adjoint operator to M and

M∗
yLp(y, x) = µp(R)

p(r)
r2

− µp(R)c(y)

R∫
r

p(ρ)
ρ
dρ

+
µp(R)
r2

[
c(y)r +

3∑
i=1

bi(y)
yi − xi

r

] R∫

r

p(ρ)dρ. (9)
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The MC method, that solves our problem uses the local integral representa-
tion (8) and a WOB random process.

2 Monte Carlo Algorithms

The Monte Carlo estimator with mathematical expectation equal to J(u) is

Θ[g] =
g(ξ0)
π(ξ0)

∞∑
j=0

Qjf(ξi), (10)

where Q0 = 1, Qj = Qj−1
k(ξj−1 ,ξj)
p(ξj−1,ξj)

, j = 1, 2, 3, ..., and ξ0, ξ1, ... is a Markov chain
in Ω with initial density function π(x) and transition densities p(x, y), which
are tolerant to g(x) and k(x, y), respectively (see [2,5,9]).

To ensure the convergence of the process, we introduce an ε - strip of the
boundary. The process starts at point ξ0 = x ∈ Ω, which is chosen correspond-
ingly with the initial density function π(x). The next random point is determined
by a transition density function p(x, y). This process terminates when the point
falls into the ε - strip of the boundary.

The kernel, k(x, y) = M∗
yLp(y, x), of the integral equation (8) can be used as

a transition density in the Markov chain when it is non-negative. This condition
is satisfied in the case when the density function p(r) = e−kr and k = b∗ +Rc∗,
where b∗ = max

x∈Ω
| b(x) |, c∗ = max

x∈Ω
| c(x) |, and R is the radius of the maximal

ball lying inside Ω [3,4].
Here we propose and study new MC algorithms, where the density function

p(r) depends only on the advection part b(x) of the elliptic equation.
The following assertion holds:

Theorem 1. If for the function p(r) ≥ 0 the inequality

p(r) ≥ b∗
R∫

r

p(ρ)dρ (11)

is true, then the function

p(x, y) =
µp(R)
r2


p(r) +

3∑
i=1

bi(y)
yi − xi

r

R∫
r

p(ρ)dρ


 (12)

can be used as a transition density for Markov process.

Proof. The function (12) is obtained from the kernel k(x, y) when c(y) ≡ 0. It is
already proved in [4] that

∫
B(x)

p(x, y)dy = 1. The remaining task is to find out

when p(x, y) ≥ 0.



A New Class of Grid-Free Monte Carlo Algorithms 135

By using spherical coordinates:

y1 − x1 = r sin θ sinϕ, y2 − x2 = r sin θ cosϕ, y3 − x3 = r cos θ,

and replacing ωi = (yi − xi) /r, the following equations hold:

3∑
i=1

bi(y)
yi − xi

r
=

3∑
i=1

bi(x+ rw)ωi = (b,w). (13)

From the inequalities |(b,w)| ≤ |b||w| = |b| ≤ b∗ we obtain the estimate∑3
i=1 bi(y)(yi − xi)/r ≥ −b∗, and finally:

p(x, y) ≥ µp(R)
r2


p(r) − b∗

R∫
r

p(ρ)dρ


 . (14)

The proof is completed as (14) leads to (11). �
This theorem gives us the base for new class MC algorithms, where the choice

of p(r) depends only on b∗ and does not depend on c∗ and R.
The function p(x, y) can be written in spherical coordinates as:

p(r,w) =
sin θ
4π

p(r)
qp(R)

p̃(w|r), p̃(w|r) = 1 +
|b(x + rw)| cos(b,w)

p(r)

R∫

r

p(ρ)dρ.

Now, the next random point y in the Markov chain depends on the direction
w and on the jump r that is made to an internal point into the maximal ball.
First we sample the random jump r with density function p(r)/qp(r) using an
inverse-transformation method. To obtain the random direction w with density
function p(w|r) = sin θ

4π p̃(w|r) an acceptance-rejection (AR) method is used.

Since p̃(w|r) ≤
[
1 + b∗

p(r)

R∫
r

p(ρ)dρ

]
= h(r), the function h(r) can be accepted

as a majorant for the AR method.
Here, the algorithm for one random walk is described:
1. Calculate the radius R(x).
2. Sample the jump r with density p(r)

qp(R) .
3. Calculate the function h(r).
4. Compute the independent realizations wj of a unit isotropic vector in

R3.
5. Compute the independent realizations γj of a uniformly distributed ran-

dom variable in the interval [0, 1].
6. Repeat the steps 4 and 5 until define the parameter j0 from the condition:

j0 = min{j : h(r)γj ≤ p̃(wj|r)}. The random vector wj0 has the density p(w|r).
7. Calculate the next random point y by formula y = x+ rwj0 .
8. Stop the algorithm when the random process reaches the ε -strip of the

boundary. If y /∈ ∂Ωε then the algorithm has to be repeated for x = y.
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We consider and analyze three possible alternatives for the density function
p(r):

•p(r) = e−b∗r •p(r) = const. •p(r) = eb∗r

In the first case, when p(r) = e−b∗r we have:

b∗
R∫

r

p(ρ)dρ = e−b∗r − e−b∗R ≤ e−b∗r.

Therefore the inequality (11) is always true. The following assertion holds:

Lemma 1. If p(r) = e−b∗r then the function p(x, y) can be used as a transition
density.

The advantage of such kind of choice is that it does not depend on any additional
requirements to the parameters of the problem.

In the second case, when p(r) = const., the inequality (11) is equivalent to:
b∗(R − r) ≤ 1. From 0 ≤ r ≤ R follows: b∗(R − r) ≤ b∗R ≤ b∗R. Thus we can
formulate the conclusion:

Lemma 2. If the parameters of the problem satisfy the inequality

b∗R ≤ 1 (15)

and the density function p(r) is chosen to be p(r) = const., then the function
p(x, y) can be used as a transition density.

Because of the computational simplicity, one can expect that the use of a con-
stant density leads to decreasing of the computational cost of the algorithm in
comparison with the algorithms, using exponential densities.

In the third case, when p(r) = eb∗r, the inequality (11) is true when: b∗(R−
r) ≤ ln 2. Finally, we reached to the assertion:

Lemma 3. If the parameters of the problem satisfy the inequality

b∗R ≤ ln 2 (16)

and the density function p(r) is chosen to be p(r) = eb∗r, then the function
p(x, y) can be used as a transition density function in Markov process.

Since the function eb∗r is strictly increasing, the choice of a bigger jump r in
the ball in the Markov chain is more probable. One can expect that the average
moves (Elε) in the WOB are less and the process is more efficient.

3 Estimates for the Efficiency of the AR Method

Let us estimate the efficiency of the AR method for sampling the vector w with
density p(w|r).
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In the case when p(r) = e−b∗r we can bound the function h(r) more precisely:

h(r) = 2 − eb∗r

eb∗R
≤ 2 − 1

eb∗R
= H.

Now we can use the constant H as a majorant function for the AR algorithm.
The following formula gives us the efficiency of the AR method:

EffT =

2π∫

0

π∫

0

p(w|r)dθdϕ
/ 2π∫

0

π∫

0

sin(θ)
4π

Hdθdϕ

The majorant functions (H) and the theoretical estimates (EffT ) for the AR
efficiency in the all cases for p(r) are given in Table 1. Taking in account that

Table 1. The majorant functions and the estimates for the AR efficiency.

p(r) H EffT

e−b∗r 2 − 1/eb∗R (2 − 1/eb∗R)−1

const 1 + b∗R (1 + b∗R)−1

eb∗r eb∗R (eb∗R)−1

0 < 1
eb∗R < 1 and inequalities (15) and (16), for all three choices for the p(r),

the following estimate for the efficiency of the AR method is obtained:

EffT ≥ 1/2.

4 Numerical Tests

As an example the following boundary value problem was solved using the MC
algorithms under consideration:

3∑
i=1

(
∂2u

∂x2
i

+ bi(x)
∂u

∂xi

)
+ c(x)u = 0 in Ω = [0, 1]3,

u(x1, x2, x3) = ea1x1+a2x2+a3x3 , x ∈ ∂Ωε.

In our tests, we have: b1(x) = a2a3(x2 − x3), b2(x) = a3a1(x3 − x1), b3(x) =
a1a2(x1 − x2), and c(x) = −(a2

1 + a2
2 + a2

3), where a1, a2, a3 are the parameters.
It is easy to see that divb(x) = 0. This condition guarantees the possibility

to use the local integral representation by Green’s function.
A large number of experiments are done that investigate the computational

cost of the presented MC algorithms and the efficiency of the AR method for
different values of the coefficients ai, i = 1, 2, 3. Some of them that estimate
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Table 2. u(x)=1.454991, a1=a2=a3=0.25, N=5000, b∗=0.108, R=0.5

p(r) EffT ε = 0.01 ε = 0.05

EffP err EffP err

e−b∗r 0.949949 0.987592 -0.003216 0.979795 -0.001380

const 0.948653 0.987223 0.001937 0.979358 0.000372

eb∗r 0.947312 0.987142 0.003435 0.979248 0.003498

the solution at a point with coordinates (0.5, 0.5, 0.5) for two ε-strips, ε =
0.01 and ε = 0.05, are presented in Table 2. Here, u(x) = 1.454991 is the
exact solution; err is the relative error; EffT is the value of the theoretical AR
efficiency and EffP is the AR efficiency from our experiments. We see that the
numerical tests for the AR efficiency confirm the theoretical results.
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CP
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N
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p(r)=eb*r
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Fig. 1. The CPU times for all algorithms when ε = 0.01, b∗ = 1.732051.

Figure 1 shows CPU times of the MC algorithms using the three different
density functions. In the case, when p(r) = const. the computational cost is less
than other two cases for p(r). When the function p(r) = eb∗r, the CPU time is
less than the case when p(r) = e−b∗r. This can be explained with results for the
average moves in the WOB that are presented in Table 3. Thus, the numerical
results show that it is better to use both constant density and exponential density
with positive degree if the parameters of the boundary value problem allow.

In conclusion a new class of grid-free MC algorithms have been studied for
solving the elliptic boundary value problem under consideration. The density
function p(ρ) which is used in the definition of the Levy’s function 6 have be
chosen to depend only on the advection. This choice allows the integral transfor-
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Table 3. The average number of moves in the WOB. u(x) = 1.454991, ε = 0.01

p(r) Elε

ai = 0.25, b∗ = 0.108 ai = 0.5, b∗ = 0.433 ai = −1, b∗ = 1.732

e−b∗r 36.319736 36.745987 38.757385

const 36.115093 36.178699 36.148346

eb∗r 35.952934 35.590324 33.949802

mation kernel be non-negative in the case when deposition is zero. Thus, it has
used as a transition density at the Markov chain. An estimate for the efficiency
of the applied AR method have been obtained. This estimate has the same rate
as the estimate of Ermakov, Nekrutkin and Sipin [6]. The difference is that their
estimate is obtained when p(ρ) is taken to be an exponential density with neg-
ative degree. Also, it depends on the advection, on the deposition, and on the
radius of the maximal ball lying inside the domain Ω. Therefore, we solve the
problem in more common case without some limitations as dependence on the
deposition and on the radius of the maximal ball.

References

1. Bitzadze, A.: Equations of the Mathematical Physics. Nauka, Moscow (1982)
2. Curtiss, J.: Monte Carlo methods for the iteration of the linear operators.

J. Math. Phys., Vol. 32, 4 (1954), 209–232.
3. Gurov, T., Withlock, P., Dimov, I.: A grid free Monte Carlo algorithm

for solving elliptic boundary value problems. In: L.Vulkov, Waśniewski, J.,
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