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Abstract. In this paper we study the possibility to use the Sobol’ and
Halton quasi-random number sequences (QRNs) in solving the Barker-
Ferry (B-F) equation which accounts for the quantum character of the
electron-phonon interaction in semiconductors. The quasi-Monte Carlo
(QMC) solutions obtained by QRNs are compared with the Monte Carlo
(MC) solutions in case when the scalable parallel random number gener-
ator (SPRNG) library is used for producing the pseudo-random number
sequences (PRNs).
In order to solve the B-F equation by a MC method, a transition density
with a new sampling approach is suggested in the Markov chain.

1 Introduction

The B-F equation [1] describes a femtosecond relaxation process of optically
excited electrons which interact with phonons in an one-band semiconductor
[2]. We consider an one time-dimension integral form of this quantum kinetic
equation [3]:

f(k, t) =
∫ t

0

dt′′
∫

d3k′{K(k′,k, t − t′′)f(k′, t′′) (1)

− K(k,k′, t − t′′)f(k, t′′)} + φ(k),

with a kernel
K(k′,k, t − t′′) = e2ωq

2π2�

∣∣ 1
ε ∞ − 1

ε s

∣∣ 1
(k′−k)2 × (2)

×
{

(nq + 1)Γk′,k

Ω2
k′,k + Γ 2

k′,k
[1 + G(k′,k, t, t′′)] +

nqΓk,k′

Ω2
k,k′ + Γ 2

k,k′
[1 + G(k,k′, t, t′′)]

}
,
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G(k′,k, t, t′′)=
(

Ωk′,k

Γk′,k
sin(Ωk′,k(t − t′′))−cos(Ωk′,k(t − t′′))

)
exp(−Γk′,k(t− t′′)),

where
k and t are the momentum and the evolution time, respectively;
f(k, t) is the distribution function;
φ(k) is the initial electron distribution function;
nq = 1/(exp(�ωq/KT )− 1) is the Bose function, where K is the Boltzmann

constant and T is the temperature of the crystal, corresponds to an equilibrium
distributed phonon bath;

Γk′,k = Γk′ + Γk is related to the finite carrier lifetime for the scattering
process:

Γk =
∫

d3k′ e
2ωq

4π

∣∣∣∣1ε ∞
− 1

ε s

∣∣∣∣∑
±

1
(k′ − k)2

δ(ε(k′)−ε(k)±�ωq)
(

nq +
1
2
± 1

2

)
;

ε∞ and εs are the optical and static dielectric constants;
Ωk′,k = (ε(k′)−ε(k)−�ωq)/�, where ωq is the phonon frequency, �ωq is the

phonon energy which generally depends on q = k′ −k, and ε(k) = (�2k2)/(2m)
is the electron energy.

Note the kernel (2) can be decomposed into a time-independent part and a
part which depends explicitly on the time. Consider the problem for evaluating
the following functional

Jg(f) ≡ (g, f) =
∫ T

0

∫
G

g(k, t)f(k, t)d3kdt,

by a MC method. Here we specify that the wave vector k belongs to a finite
domain G which is sphere with radius Q and t ∈ (0, T ). The case, when g(k, t) =
δ(k− k0)δ(t− t0), is of special interest, because we are interested in calculating
the value of f at a fixed point (k0, t0). Now Eq.(1) can be written in the following
form:

f(k, t) =
∫ t

0

dt′′
∫

G

d3k′{K1(k,k′, t, t′′)f(k′, t′′) (3)

+ K2(k,k′, t, t′′)f(k, t′′)} + φ(k),

where K1(k,k′, t, t′′) = K(k′,k, t − t′′) and K2(k,k′, t, t′′) = −K(k,k′, t − t′′).
We note that the Neumann series of the integral equation (3) converges [3] and
the solution can be evaluated by a MC estimator.

2 Monte Carlo and Quasi-Monte Carlo Algorithms

The biased MC estimator for the solution of Eq.(3) at the fixed point (k0, t0)
using backward time evolution of the numerical trajectories [4] has the following
form:

ξn[k0, t0] = φ(k0) +
n∑

j=1

Wα
j φα(kj), (4)
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where

φ(kα
j ) =

{
φ(kj), if α = 1
φ(kj−1), if α = 2,

Wα
j = Wα

j−1

Kα(kj−1,kj , tj−1, tj)
pαp(kj−1,kj , tj−1, tj)

, Wα
0 = 1, α = 1, 2, j = 1, . . . , n .

The probabilities pα, (α = 1, 2) are chosen to be proportional to the absolute
value of the kernels. Every point (kj , tj) ∈ G × (0, tj−1) in the Markov chain
(k0, t0) → . . . → (kj , tj) → . . . → (kn, tn), j = 1, 2, . . . , n is sampled using
a transition density function p(k,k′, t, t′′) which is tolerant1 to both kernels in
Eq.(3). The Markov chain terminates in time tn < ε1, where ε1 is a fixed small
positive number called a truncation parameter.

Here we suggest the following transition density function: p(k,k′, t, t′′) =
p(k′/k)p(t, t′′), where p(t, t′′) = 1/t. In spherical coordinates (r′, θ′, ϕ′) with
a center k, the function p(k′/k) is chosen by the following way: p(k′/k) =
(4π)−1(r′)−2l(w)−1, where w = (k′ − k)/r′, r′ = |k′ − k| and l(w) is distance
in the direction of the unit vector w from k to the boundary of the domain G.
This function satisfies the condition for a transition density. Indeed,

∫
G

p(k′/k)d3k′ =
∮

(4π)−1dw
∫ l(w)

0

r′2−2l(w)−1dr′ = 1.

Using the spherical symmetry of the task we suppose that k = (0, 0, k). Thus k′

can be found by the following steps:

1. Sample a random unit vector w = (sin θ′, 0, cos θ′) in the plane ϕ′ = 0 as
µ = cos θ′ = 2β1 − 1 and β1 is an uniformly distributed number in (0, 1);

2. Calculate l(w) = −µk + (Q2 − k2(1 − µ2))
1
2 , where Q is the radius of G;

3. Sample r′ = l(w)β2, where β2 is an uniformly distributed number in (0, 1);
4. Calculate k′ = k + r′w and k′ = (r′2 + k2 + 2kr′µ)

1
2 .

To complete one transition (k, t) → (k′, t′′) in the Markov chain we take again
an uniformly distributed number β ∈ (0, 1). The new time t′′ ∈ (0, t) is defined
by the equality t′′ = tβ.

The solution of Eq.(3) at the fixed point (k0, t0) is evaluated by N indepen-
dent samples of the estimator (4), i.e.

1
N

N∑
i=1

(ξn[k0, t0])i
P−→ Jδ(fn) ≈ Jδ(f),

where P−→ means stochastic convergence as N → ∞; fn is the iterative solution
obtained by the Neumann series of Eq.(3), and n is the number of iterations.

To solve the above problem we consider two cases for producing uniformly
distributed numbers.
1 r(x) is tolerant of g(x) if r(x) > 0 when g(x) �= 0 and r(x) ≥ 0 when g(x) = 0.



Monte Carlo and Quasi-Monte Carlo Algorithms 111

Case 1. We use PRNs obtained by the SPRNG library [5,6]. In this case
the algorithm is called the MC-SPRNG algorithm. The well known “law of
three sigmas” gives the rate of convergence [7] that depends on the variance,
V ar(ξn[k0, t0]), and on N ,i.e.

P

(∣∣∣∣∣ 1
N

N∑
i=1

(ξn[k0, t0])i − Jδ(fn)

∣∣∣∣∣ < 3
V ar(ξn[k0, t0])1/2

N1/2

)
≈ 0.997 .

Thus, as N increases, the statistical error decreases as O(N−1/2).
Case 2. The uniformly distributed numbers that are necessary in the cal-

culation of every transition in the Markov chain are obtained from the Sobol’
and Halton QRNs [8,9]. In this case, we obtain two QMC algorithms called the
QMC-S algorithm and the QMC-H algorithm, respectively.

We note QRNs are constructed to minimize a measure of their deviation from
uniformity of a sequence of real numbers. This measure is called discrepancy. In
particular, the discrepancy of s points x1, . . . , xs ∈ [0, 1]d, d ≥ 1, is defined by

D(d)
s = sup

E

∣∣∣∣A(E; s)
s

− λ(E)
∣∣∣∣ ,

where the supremum is taken over all the subsets of [0, 1]d of the form E =
[0, u1) × . . . × [0, ud), 0 ≤ uj ≤ 1, 1 ≤ j ≤ d, λ denotes the Lebesgue measure,
and A(E; s) denotes the number of the xj that are contained in E [10].

A sequence x1, x2, . . . of points in [0, 1]d is a low discrepancy sequence iff

D(d)
s ≤ c(d)

(log s)d

s
, ∀s > 1,

where the constant c(d) depends only on the dimension d [10]. The Sobol’ and
Halton sequences are low discrepancy sequences [7,11].

Suppose that number of the transitions, n, in the Markov chain is fixed.
To model every transition we need three numbers in [0, 1]. Therefore, using
(3n)-dimensional Sobol’ or Halton sequences and applying the Koksma-Hlawka
inequality [12], we have the following error bound:∣∣∣∣∣Jδ(fn) − 1

N

N∑
i=1

(ξn[k0, t0])i

∣∣∣∣∣ ≤ C1(Kα(k,k′, t, t′′), φ(k))D(3n)
N , (5)

where the constant C1(., .) depends on the kernels of Eq.(3) and on the initial
condition, and D

(3n)
N has order O((log3n N)/N). For n fixed and N large, the

error (log3n N)/N is better than the MC error N−1/2. But for N fixed and n
large, the (log3n N)/N factor looks ominous. Therefore, it can supposed that
QMC algorithms should not be used for high-dimensional problems.

We mention that in the iterative MC algorithms (as the MC-SPRNG al-
gorithm), N is connected with the stochastic error while the parameter n is
connected with the systematic error [4]. Thus, we can say the dimension of
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QRNs is connected with the systematic error when they are used for estimating
of iterative solutions.

The computational complexity of the MC-SPRNG algorithm can be mea-
sured by the quantity Fmc = Nntmc. Here n is the average number of transitions
in the Markov chain and tmc is the mean time for modeling one transition when
the SPRNG library is used. When we use the QMC-S and QMC-H algorithms
the computational complexity is measured by the quantities FS = NntS and
FH = NntH , respectively. Here tS (tH) is the mean time for modeling one tran-
sition in the Markov chain in case of the Sobol’ (Halton) 3n-dimensional points
used, and n is fixed.

Results for the computational cost of the above algorithms and the accuracy
of the MC and QMC solutions are compared with the best MC algorithm called
OTDIMC algorithm that is suggested in [4].

3 Numerical Results

The results discussed in the following have been obtained for finite temperature.
Material parameters for GaAs have been used: the electron effective mass is
0.063, the optimal phonon energy is 36meV , the static and optical dielectric
constants are εs = 10.92 and ε∞ = 12.9. The initial condition at t = 0 is given
by a function which is Gaussian in energy, (φ(k) = exp(−(b1k

2 − b2)2) b1 = 96
and b2 = 24), scaled in a way to ensure, that the peak value is equal to unity. The
solution f(k, t) is estimated in 65 points of the simulation domain G between
0 and Q = 66 × 107/m. The quantity presented on the y-axes in all figures is
|k| ∗ f(k, t), i.e. it is proportional to the distribution function multiplied by the
density of states. It is given in arbitrary units. The quantity k2, given on the
x-axes in units of 1014/m2, is proportional to the electron energy.

All the algorithms were implemented in C and compiled with the “cc” com-
piler. The numerical tests were performed on a PowerPC (G4 w/AltiVec) 450
MHz, running YDL 2.0, using the PRNs and QRNs under consideration.

The results for the computational cost (CPU time for all 65 points) of the
MC and QMC algorithms are shown in Table 1. Here, N is the number of
random walks need to obtain approximately smooth solutions using the differ-
ent MC algorithms and σN is the average estimate of the standard deviation,
(V ar(ξlε [κ0, τ0]))1/2 for all 65 points. We see the MC-SPRNG, QMC-S, and
QMC-H algorithms are faster than the OTDIMC algorithm with 10%, 15%, and
30%, respectively. Therefore, the presented algorithms have lower computational
complexity. Comparison of the electron energy distribution, which is obtained
by all algorithms, is shown on Figures 1-3. The solution of Eq.(3) is estimated
at different evolution times as the data for N and t are taken from Table 1. Here
ε1 = 0.0001 for the MC-SPRNG and OTDIMC algorithms, and n = 16 for the
QMC-S and QMC-H algorithms. We see (on Figure 1) that the MC-SPRNG and
OTDIMC solutions approximately coincide and are smooth. Therefore, the use
of the MC-SPRNG algorithm is correct. The results on Figures 2 and 3 show
noise in the QMC solutions when the evolution time increases. This result can
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Table 1. Comparison of the computational complexity of the MC-SPRNG,
QMC-S, and QMC-H algorithms with OTDIMC algorithm. The lattice tem-
perature is −273.15◦C.

t N n CPU time σN

150fs 100 000 15.56 21m18.32s 0.99
OTDIMC 200fs 1 mln 15.95 217m12.02s 2.59
algorithm 250fs 3 mln 16.29 658m42.59s 6.75

300fs 15 mln 16.58 3380m29.85s 21.51

150fs 100 000 15.55 18m48.57s 0.97
MC-SPRNG 200fs 1 mln 15.99 195m53.01s 2.76
algorithm 250fs 3 mln 16.34 596m02.49s 7.75

300fs 15 mln 16.65 3016m14.57s 23.36

150fs 100 000 16 18m13.53s -
QMC-S 200fs 1 mln 16 187m29.23s -

algorithm 250fs 3 mln 16 574m35.40s -
300fs 15 mln 16 2911m58.48s -

150fs 100 000 16 15m57.20s -
QMC-H 200fs 1 mln 16 163m48.09s -

algorithm 250fs 3 mln 16 503m13.18s -
300fs 15 mln 16 2549m33.72s -
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Fig. 1. Comparison of the electron energy distribution k ∗ f(k, t) versus |k|2
obtained by MC-SPRNG and OTDIMC algorithms. ε1 = 0.0001.



114 T.V. Gurov, P.A. Whitlock, and I.T. Dimov

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000

S 
o 

l u
 t 

i o
 n

 - 
a.

u.
 

| k |2

QMC-S, 150fs
OTDIMC, 150fs

QMC-S, 200fs
OTDIMC, 200fs

QMC-S, 250fs
OTDIMC, 250fs

Fig. 2. Comparison of the electron energy distribution k ∗ f(k, t) versus |k|2
obtained by QMC-S and OTDIMC algorithms.
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Fig. 3. Comparison of the electron energy distribution k ∗ f(k, t) versus |k|2
obtained by QMC-H and OTDIMC algorithms.
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Fig. 4. The electron energy distribution k ∗ f(k, t) versus |k|2 obtained by MC-
SPRNG algorithms at different evolution times. The lattice temperature is T =
−273.15◦C on the left graphics and T = 18◦C on the right graphics.

be explained by either the discrepancy increases with increasing the evolution
time or there isn’t balance between the systematic error and the error from
Eq.(5). Therefore, the presented QMC algorithms for solving Eq.(3) are under
future investigation. We note that the standard deviation in the cases when MC
algorithms are used, increases with increasing the evolution time (see Table 1).
Figures 4 and 5 show the electron energy distribution at evolution times (up
300fs) and at different lattice temperatures. The relaxation leads to a time-
dependent broadening of the replicas. The solution in the classically forbidden
region, on the right of the initial condition, demonstrates enhancement of the
electron population with the growth of the lattice temperature (see Figure 5).

In this paper, we have presented MC and QMC algorithms using a new tran-
sition density in the Markov chain that solves the B-F equation. The algorithms
have lower complexity when compared with the fast algorithm from [4]. However,
noise appeared in the QMC solutions as the evolution time increased. Therefore,
an open problem is how to improve the accuracy of the QMC algorithms, QMC-
S and QMC-H, while keeping their low complexity. The new MC algorithm,
MC-SPRNG, was successfully used to solve the B-F equation at several different
evolution times and lattice temperatures.
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