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Abstract

In many large-scale problems, one is interested to obtain directly an approximate value of a functional of the
solution. Here, we consider a special class of grid-free Monte Carlo algorithms for direct computing of linear
functionals of the solution of an elliptic boundary-value problem. Such kind of problems appear in environmental
sciences, computational physics and financial mathematics. To create the algorithms, we use the Green’s function
analysis and define the conditions under which the integral transformation kernel of the integral representation for
the boundary-value problem under consideration is non-negative. This analysis is done for a possible set of densities,
and it is used to generate three different grid-free Monte Carlo algorithms based on different choices of the density
of the radius of the balls used in Monte Carlo simulation. Only one of the generated algorithms was known before.
We shall call it Sipin’s algorithm. It was proposed and studied by Sipin. The aim of this work is to study the two
new algorithms proposed here and based on two other (than in Sipin’s algorithm) possible choices of the densities.
The algorithms are described and analyzed. The performed numerical tests show that the efficiency of one of the
new algorithms, which is based on a constant density is higher than the efficiency of Sipin’s algorithm.
© 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, new Monte Carlo algorithms for computing functionals of solutions of elliptic boundary-
value problems are proposed and studied. There are many large-scale problems in computational physics,
biology and environmental sciences, where it is important to be able to compute functionals of the solution
without computing the solution itself. It is that because some important parameters which can be measured
in physics, and some effects on the live matter are in fact functionals. For instance, the damage effect of
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danger pollution is measured by:∫
Ω

f(x)u(x)dx,

wherex ≡ (x1, . . . , xd) ∈ Ω ⊂ Rd , u(x) is the concentration of the pollutant andf(x) is given sensitivity
function. Another example could be given from the statistical physics, where parameters characterized a
multi-particle system like the mean-velocityVm and the energyE are defined by:

Vm =
∫
Ω

f(x)v(x)dx,

E =
∫
Ω

f(x)v2(x)dx,

wheref(x)(x ∈ Ω ⊂ Rd) is the distribution function.
The algorithms proposed in this paper can be efficiently implemented in calculating functionals of the

solution. Consider the functionalJ(u):

J(u) ≡ (g, u) =
∫
Ω

g(x)u(x)dx, (1)

whereΩ ⊂ R3 andx = (x1, x2, x3) ∈ Ω is a point in the Euclidean spaceR3. The functionsu(x) andg(x)
belong to the Banach spaceX and to the adjoint spaceX∗, respectively, andu(x) is the unique solution
of the following Fredholm integral equation in an operator form:

u = K(u) + f. (2)

The algorithms under consideration use a local integral representation of the solution by Green’s
function. The Monte Carlo approach with the use of Green’s function is well known (see[8]). The basic
problem is the estimation of the computational complexity and the construction of Monte Carlo algorithms
with lower computational cost.

We also consider problems, in which a linear functional of the solution is searched for and a rough
solution is acceptable. For practical computations, it means that the relative error is about 5–10%. For
example, such kind of problems are the pollution problems in environmental sciences. It is known that
the most efficient computational method for direct computing of functionals is the Monte Carlo method
(see[2,6]).

This paper deals with an analysis of the choice of the density functionp(r) in Lévy’s functionLp(y, x).
We use the Green’s function analysis to create the algorithms and define the conditions under which the
integral transformation kernel of the integral representation for the considered boundary-value problem
is non-negative. This analysis is done for a possible set of densities. The result is used to generate
different grid-free Monte Carlo algorithms based on different choices of the density of the radius of
the balls used in Monte Carlo simulation. Only one of the generated algorithms was known before.
We call it Sipin’s algorithms. It was proposed by Sipin and studied in[9]. Since in the Monte Carlo
simulation a selection technique is used, it is important to obtain an estimation for the efficiency of the
algorithm.

The selection algorithm in general case works as follows. Let us assume that we have to calculate a
random variableξ with density functionf1(x)/F1 and an easily computed functionf2(x) exists, with
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0 ≤ f1(x) ≤ f2(x) for all x ∈ Ω. Here,

F1 =
∫
Ω

f1(x)dx and F2 =
∫
Ω

f2(x)dx.

Let ξ be a random variable with density functionf2(x)/F2, andγ be an uniformly distributed random
variable in the interval [0,1]. It has been shown[8] that if:

γf2(ξ) ≤ f1(ξ), (3)

thenξ is the needed random variable with density functionf1(x)/F1. This algorithm allows us to use the
functionf2(x) instead of the original functionf1(x). However, some variables will be rejected, namely
when condition(3) will not be fulfilled.

We use the following definition for theefficiency.

Definition 1.1. The efficiency of the selection algorithm is defined as the ratio:

E = F1

F2
.

In 1984, Sipin proved that the efficiency of the selection grid-free Monte Carlo algorithm is greater
than 1/2[9]. An improved result for the efficiency of the Sipin’s algorithm was obtained by Dimov in
1988[3]:

E = 1 + α

2 + α
,

for some explicit constantα.
The last result was improved again by Dimov and Gurov in 1998[4]:

E = 1 + α

2 + α − ε
R

,

for someε
R
, with 0 < ε

R
< 1.

It seems that this improvement is exact, i.e. it could not be improved again (but the last statement is
still not proved). In all these works[3,4,9], the density function is fixed—p(r) = e−kr. Here, we should
answer the question if a different function to be taken, how this affects the algorithm efficiency.

The aim of this work is to study the two new algorithms proposed here and based on two other (than
in Sipin’s algorithm) possible choices of the densities. The algorithms are described and analyzed.

The performed numerical tests show that the efficiency of one of the new algorithms which is based
on a constant density is higher than the efficiency of Sipin’s algorithm.

The paper is organized as follows. InSection 2, we describe the formulation of the problem and give the
conditions for existing an unique solutionu(x) ∈ C2(Ω)∩C(Ω̄). In Section 3, the set of possible densities
providing the conditions, under which the integral transformation kernel is non-negative is defined. Two
important cases are considered: a case of a constant density and a case of an exponential density. We find
a set of parameters of the problem for which both constant and exponential densities can be applied. In
Section 4, we describe and analyze the algorithms generated by the chosen densities. Numerical tests are
presented inSection 5. The results of the numerical simulation illustrate the efficiency of the proposed
algorithms. InSection 6, we give some concluding remarks.
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2. Formulation of the problem

Let X = L1(Ω). Then,X∗ = L∞(Ω) ([8], p. 148). Consider the case whenK is an ordinary linear
integral transform:

K(u)(x) =
∫
Ω

k(x, y)u(y)dy.

In this case,(2) obtains the form:

u(x) =
∫
Ω

k(x, y)u(y)dy + f(x).

The corresponding Neumann series converges when the condition:

‖K(u)‖L(L1) = sup
y∈Ω

∫
Ω

|k(x, y)| dx ≤ q < 1,

holds.
We have to calculate the functionalJ(u), whereu(x) is the solution of the following boundary-value

problem:

M(u)(x) = −Φ(x), x ∈ Ω, Ω ⊂ R3, (4)

u(x) = ψ(x), x ∈ ∂Ω, (5)

where the operatorM is defined by:

M =
3∑

i=1

(
∂2

∂x2
i

+ bi(x)
∂

∂xi

)
+ c(x).

Here follows the definition for the classA(k,λ) of domainsΩ.

Definition 2.1. The domainΩ belongs to the classA(k,λ) if for any pointx ∈ ∂Ω the boundary∂Ω can
be represented as a functionz3 = σ(z1, z2) in the neighborhood ofx with ∂kσ ∈ C(0,λ)(Ω), i.e.

|∂kσ(y) − ∂kσ(y′)| ≤ Q|y − y′|λ,
where the vectorsy ≡ (z1, z2) andy′ ≡ (z′

1, z
′
2) are two-dimensional vectors,Q is a constant, and

λ ∈ (0,1].

The definition of the classC(0,λ)(Ω) can be found in[12]. If in the closed domain̄Ω ∈ A(1,λ) the
coefficients of the operatorM satisfy the conditions:bi (i = 1,2,3), c ∈ C(0,λ)(Ω̄), c ≤ 0 andΦ ∈
C(0,λ)(Ω) ∩ C(Ω̄), ψ ∈ C(∂Ω), the problem(4) and (5)has an unique solutionu(x) ∈ C2(Ω) ∩ C(Ω̄).
The conditions for uniqueness of the solution can be found in[1,11].

The first step in studying the Monte Carlo approach is obtaining an integral representation of the
solution in the form:

u(x) =
∫
B(x)

k(x, y)u(y)dy + f(x).
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From an algorithmic point of view, the domainB(x) must be chosen in such a way that the coordinates
of the boundary pointsy ∈ ∂B(x) could be easily calculated. So we denote byB(x) the ball:

B(x) = BR(x) = {y : r = |x − y| ≤ R(x)},

whereR(x) is the radius of the ball.
We seek a representation of the integral kernelk(x, y), using Lévy’s function and the adjoint operator

M∗ for the initial differential operatorM.
Here follows a short definition for the Lévy’s function[12].

Definition 2.2. Let,

H(x, y) = 1

4π|x − y| .

Every functionL(x, y) continuous in variablesx andy, for x andy in Ω, andx �= y, together with its
first and second derivatives with respect to thexi is called a Lévy’s function if it satisfies bounds of the
following type for someλ > 0 andr = |x − y|:

L − H = O(rλ−1),
∂[L − H ]

∂xi
= O(rλ−2),

∂2[L − H ]

∂xi∂xj
= O(rλ−3),

such bounds holding uniformly in every bounded domain inΩ.

The explicit form of the Lévy’s function for the problem(4) and (5)can be found in[12]:

Lp(y, x) = µp(R)

∫ R

r

(
1

r
− 1

ρ

)
p(ρ)dρ, r ≤ R, (6)

where the following notation is used:p(r) is a density function:

µp(R) = [4πqp(R)]
−1, qp(R) =

∫ R

0
p(ρ)dρ.

It is known[4] that if the vector-functionb(x) satisfies the conditionsbj(x) ∈ C(Ω) (j = 1,2,3), and
div b(x) = 0, then the adjoint operatorM∗, applied on functionsv(x) ∈ C2(Ω), such that:

∂v(x)

∂xi
= v(x) = 0, for anyx ∈ ∂Ω, i = 1,2,3,

has the following form:

M∗ =
3∑

i=1

(
∂2

∂x2
i

− bi(x)
∂

∂xi

)
+ c(x).
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According the results of Miranda[12], when the Lévy’s function is used, the following integral repre-
sentation for the solutionu(x) of the boundary-value problem is true:

u(x) =
∫
T(x)

(u(y)M∗
yLp(y, x) + Lp(y, x)Φ(y))dy

+
∫
∂T(x)

3∑
i=1

ni

[(
Lp(y, x)∂u(y)

∂yi
− u(y)∂Lp(y, x)

∂yi

)
− bi(y)u(y)Lp(y, x)

]
dy, (7)

wheren = (n1, n2, n3) is the exterior normal to the boundary∂T(x).
Formula(7) holds for any domainT(x) ∈ A(1,λ) and therefore it is remaining true for every ballB(x),

lying inside the domainΩ.
It is shown that it is possible to construct the functionLp(y, x) in such a way thatM∗

yLp(y, x) is
non-negative inB(x), and such thatLp(y, x) and its derivatives vanish on∂B(x).

Finally, the integral representation of the solution has the following form:

u(x) =
∫
B(x)

M∗
yLp(y, x)u(y)dy +

∫
B(x)

Lp(y, x)Φ(y)dy, (8)

where

M∗
yLp(y, x) = µp(R)

p(r)

r2
− µp(R)c(y)

∫ R

r

p(ρ)

ρ
dρ

+µp(R)

r2

[
c(y)r +

3∑
i=1

bi(y)
yi − xi

r

] ∫ R

r

p(ρ)dρ.

For solving our problem, we use a Monte Carlo procedure that is called “Walk on the Balls” (WOB).
To ensure the convergence of the process, we introduce theε-strip of the boundary. This process is similar
to the well-known spherical process[7,10,13,14].

The process starts at pointξ0 = x ∈ Ω, which is chosen correspondingly with some initial density
functionπ(x). In the particular case, whenπ(x) = δ(x−x0) the Markov’s chain starts at the pointx0 ∈ Ω.
The next random point is determined with transition density functionp(x, y), which is proportional to
the kernel of the integralequation (2)inside maximal ballB(x) ⊂ Ω̄. This process terminates when the
point falls into theε-strip of the boundary.

In spherical coordinates,p(x, y) is equal to:p(r,w) = p(r)p̄r(w). We aim at analyzing the opportunities
for a choice of density functionp(r). Our goal is to consider such density functions, in which the choice
of bigger radii of the next ball in the Markov chain is more likely. One may expect that in this case the
length of the chains will be shorter and the process more effective.

3. Green’s function analysis

Here, we introduce the following notations:

b∗ = sup
x∈Ω

|b(x)|, c∗ = sup
x∈Ω

|c(x)|, b(x) = (b1(x), b2(x), b3(x)),

and denote byR the radius of the maximal ball lying insidēΩ.
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In [5] was proved that the conditions:

M∗
yLp(y, x) ≥ 0, for anyy ∈ B(x), (9)

and

Lp(y, x) = ∂Lp(y, x)

∂yi
= 0, for anyy ∈ ∂B(x), i = 1,2,3, (10)

are satisfied for:

p(r) = e−kr, (11)

where

k ≥ b∗ + Rc∗.

The density function defined in(11) corresponds to the Sipin’s algorithm. Our aim is to consider the
opportunities and the conditions for a different choice of the density functionp(r).

The following problem can be formulated: find the class of possible densities for which the integral
transformation kernelM∗

yLp(y, x) is non-negative and the conditions(10)are satisfied.
The condition:

Lp(y, x) = 0, for anyy ∈ ∂B(x),

is obvious and follows directly from(6). Since,

∂Lp(y, x)

∂yi
= ∂Lp

∂r

∂r

∂yi
= xi − yi

r3
µp

∫ R

r

p(ρ)dρ,

we obtain:

∂Lp(y, x)

∂yi
= 0, for anyy ∈ ∂B(x).

We shall prove the following theorem.

Theorem 3.1. If the density function p(r) satisfies the inequality:

p(r) ≥
(
b∗ + R

4
c∗

) ∫ R

r

p(ρ)dρ, (12)

then the integral transformation kernel M∗
yLp(y, x) is non-negative for any y ∈ B(x).

Proof. M∗
yLp(y, x) can be written as follows[4]:

M∗
yLp(y, x) = µp(R)

r2
Γp(y, x),

where

Γp(y, x) = p(r) + c(y)r

(∫ R

r

p(ρ)dρ −
∫ R

r

rp(ρ)

ρ
dρ

)
+

3∑
i=1

bi(y)
yi − xi

r

∫ R

r

p(ρ)dρ.
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Sinceρ ≥ r ≥ 0, it follows that 1− r/ρ ≥ 0, and therefore,∫ R

r

p(ρ)dρ −
∫ R

r

rp(ρ)

ρ
dρ ≥ 0. (13)

For anyy:

0 ≥ c(y) ≥ −c∗. (14)

As |x − y| = r, we obtain that:

3∑
i=1

bi(y)
yi − xi

r
≥ −b∗. (15)

Taking in account(13)–(15), we obtain:

Γp(y, x) ≥ p(r) − c∗r
(∫ R

r

p(ρ)dρ −
∫ R

r

rp(ρ)

ρ
dρ

)
− b∗

∫ R

r

p(ρ)dρ. (16)

Since 0≤ r ≤ ρ ≤ R, it follows:

1 − r

ρ
≤ 1 − r

R
,

and therefore,

−r

(∫ R

r

p(ρ)dρ −
∫ R

r

rp(ρ)

ρ
dρ

)
≥ −r

(
1 − r

R

) ∫ R

r

p(ρ)dρ. (17)

For 0≤ r ≤ R, one has:

r
(
1 − r

R

)
≤ R

4
.

Finally, using the obtained extremum and the inequalities(16)and(17)we can write:

Γp(y, x) ≥ p(r) − c∗R
4

∫ R

r

p(ρ)dρ − b∗
∫ R

r

p(ρ)dρ = p(r) −
(
b∗ + c∗R

4

) ∫ R

r

p(ρ)dρ.

Hence the result. �

The inequality(12) defines a class of possible densitiesp(r), which can be used in a Monte Carlo
simulation. We shall consider two possible densities:p(r) = p = const for a given set of parameters of
the problem (this case is described inSection 3.1) andp(r) = emr,m > 0 (described inSection 3.2).

3.1. Case A: a constant density

In this subsection, we describe the conditions which have to be fulfilled in order to use a constant
densityp(r) = p = const.
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For this choice of the functionp(r) is true that:

p(r) −
(
b∗ + R

4
c∗

) ∫ R

r

p(ρ)dρ ≥ p

[
1 −

(
b∗ + R

4
c∗

)
R

]
.

Consequently, if(b∗ + (R/4)c∗)R ≤ 1, thenM∗
yLp(y, x) ≥ 0.

Lemma 3.1. If the parameters of the problem satisfy the inequality:

1 ≥ (b∗ + 1
4Rc∗)R,

and the density function p(r) is chosen to be:

p(r) = p = const,

then the condition (9) is true.

Remark. If the radius of the maximal ball, lying inside the domainΩ satisfies the inequality:

R ≤ 2

c∗ (
√
b∗2 + c∗ − b∗),

then the condition(9) is true.

3.2. Case B: an exponential density

While in Section 3.1, the radiusr is uniformly distributed in [0, R], here, since the functionp(r) =
emr,m > 0 is strictly increasing, the choice of bigger radii will be more probable.

Let us introduce a parameterk, defined by the expression:

k = b∗ + 1
4Rc∗,

and consider the density functionp(r) = ekr.
From the inequality(12)one can obtain that:

k(R − r) ≤ ln 2.

Consequently if the conditionkR ≤ ln 2 is fulfilled, then the inequality(12) is true for anyr.

Lemma 3.2. If the parameters of the problem satisfy the inequality:

kR ≤ ln 2,

and the density function p(r) is chosen to be:

p(r) = ekr, k = b∗ + 1
4Rc∗,

then the condition (9) is fulfilled.
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4. Monte Carlo algorithms

Consider the problem of evaluating the functional:

J(u) ≡ (g, u) =
∫
Ω

g(x)u(x)dx,

whereu(x) is the solution of the integralequation (8).
The Monte Carlo algorithm for solving this problem can be defined as a ‘ball process’. To ensure the

convergence of the process, we introduce theε-strip of the boundary, i.e.

∂Ωε = {x ∈ Ω : B(x) = Bε(x)},
where

Bε(x) = {y ∈ Ω : |x − y| ≤ ε}.
The random variable, whose mathematical expectation coincides withJ(u) is:

Θ[g] = g(ξ0)

π(ξ0)

∞∑
j=0

Qjf(ξi),

where

Q0 = 1, Qj = Qj−1
k(ξj−1, ξj)

p(ξj−1, ξj)
, j = 1,2,3, . . . ,

andξ0, ξ1, . . . is a Markov chain inΩ with initial density functionπ(x) and transition densitiesp(x, y),
which are tolerant tog(x) andk(x, y), respectively[2,8,15]. We use the following definition of thetolerant
density function.

Definition 4.1. It is said that the densityp(x) is tolerant to the functionf(x) if p(x) > 0 in all points
x ∈ Ω, with f(x) �= 0.

In [4] was proved that the integral transformation kernel in local integral representation can be used as
a transition density function in the Markov process.

In our case:

p(x, y) = k(x, y) =
{
M∗

yLp(y, x), when x ∈ Ω\∂Ω,

0, when x ∈ ∂Ω,

and

f(x) =
{ ∫

B(x)
Lp(y, x)Φ(y)dy, when x ∈ Ω\∂Ω,

ψ(y), when x ∈ ∂Ω,

The functionp(x, y) can be expressed in spherical coordinates as[4]:

p(r,w) = sinθ

4π

p(r)

qp(R)
p̄r(w),
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where

p̄r(w) = 1 +
[ |b(x + rw)|cos(b,w) + c(x + rw)r

p(r)

] ∫ R

r

p(ρ)dρ − c(x + rw)r2

p(r)

∫ R

r

p(ρ)

ρ
dρ.

For simulating random variable with density functionp̄r(w) we use the selection algorithm[4]. Since,

p̄r(w) ≤ 1 + b∗

p(r)

∫ R

r

p(ρ)dρ = h(r),

the functionh(r) can be used as a majorant.
Here follows the algorithm for one random walk[4]:

1. Calculate the radiusR(x) of the maximal ball of centerx lying insideΩ̄.
2. Compute a realizationr of the random variableτ with the density:

p(r)

qp(R)
.

3. Calculate the function:

h(r) = 1 + b∗

p(r)

∫ R

r

p(ρ)dρ.

4. Compute independent realizationswj of an unit isotropic vector inR3.
5. Construct independent realizationsγj of an uniformly distributed random variable in the interval [0,1].
6. Repeat steps 4 and 5 until find the parameterj0 given by:

j0 = min{j : h(r)γj ≤ p̄r(wj)}.
The random vectorwj0 has the densitȳpr(w).

7. Calculate the random pointy, using the following formula:

y = x + rwj0.

The valuer = |y − x| is the radius of the ball lying insideΩ and having a center atx.
8. Stop the algorithm when the random process reaches theε-strip—∂Ωε, i.e.y ∈ ∂Ωε. If y /∈ ∂Ωε then

the algorithm has to be repeated forx = y.

4.1. Case A: p(r) = p = const

Here,

p(r)

qp(R)
= 1

R
,

and consequently for sampling the jumpr in WOB process one can use the formula:

r = Rγ,

whereγ is an uniformly distributed random variable in the interval [0,1].
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For majorant functionh(r), we have:

h(r) = 1 + b∗(R − r),

and forp̄r(w) we obtain:

p̄r(w) = 1 +
[

3∑
i=1

bi(x + rw)wi + c(x + rw)r

]
(R − r) − c(x + rw)r2 ln

(
R

r

)
.

4.2. Case B: p(r) = ekr, k = b∗ + (R/4)c∗

In this case:

p(r)

qp(R)
= kekr

ekR − 1
,

and consequently,

r = 1

k
ln(1 + (ekR − 1)γ),

whereγ is an uniformly distributed random variable in the interval [0,1].
For majorant functionh(r), we have:

h(r) = 1 + b∗

k
(ek(R−r) − 1)

and forp̄r(w) we obtain:

p̄r(w) = 1 +
[

3∑
i=1

bi(x + rw)wi + c(x + rw)r

]
1

k
(ek(R−r) − 1) − c(x + rw)r2

ekr

∫ R

r

ekρ

ρ
dρ.

5. Numerical tests

Numerical tests are performed in order to compare the proposed algorithms on a problem, which is
similar to some real-life problems. The examples we consider here deal with the following boundary-value
problem:

3∑
i=1

(
∂2u(x)

∂x2
i

+ bi(x)
∂u(x)

∂xi

)
+ c(x)u(x) = 0 in Ω = [0,1]3,

u(x1, x2, x3) = ea1x1+a2x2+a3x3, (x1, x2, x3) ∈ ∂Ω.

In our tests:

b1(x) = a2a3(x2 − x3), b2(x) = a3a1(x3 − x1), b3(x) = a1a2(x1 − x2), (18)
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Table 1
CPU time in seconds for the case whenε = 0.1 andai = 0.25(i = 1,2,3) for different values of the numbers of the Markov
chainsN

N 2 × 103 5 × 103 104 5 × 104 105 2 × 105 5 × 105

p(r) = const 0.05 0.12 0.26 1.28 2.55 5.11 12.76
p(r) = ekr 0.11 0.28 0.56 2.77 5.53 11.07 27.63
p(r) = e−kr 0.12 0.29 0.58 2.88 5.76 11.51 28.68

and

c(x) = −(a2
1 + a2

2 + a2
3),

wherea1, a2, a3 are parameters of the problem.
We consider three cases for the coefficients:

• the first case, whenai = 0.25(i = 1,2,3);
• the second case, whenai = 0.5(i = 1,2,3);
• the third case, whenai = −1(i = 1,2,3).

Such kind of problems appear in environmental mathematics and describe the pollution transport due
to advection and diffusion and take into account the deposition of pollution in areas free of emission
sources (for more details, see[16]).

We also use different values to define theε-strips:

• ε = 0.01;
• ε = 0.05;
• ε = 0.1.

The numerical experiments estimate the solution at the point:

x0 = (0.5,0.5,0.5), i.e. g(x) = δ(x − x0).

Some numerical results are presented inTable 1. We compare the computational time in cases when
p(r) = const (algorithm A),p(r) = ekr (algorithm B) andp(r) = e−kr. The last case is used as a basic
algorithm. One can see, that the algorithm A is much faster than the basic algorithm. It can be also seen,
that the algorithm B is even a little bit faster than the basic one. The reason for such a result could be that the
number of operations of the proposed algorithms is less, or the average length of the Markov chains is less.

Table 2shows the average length of the Markov chain for all three algorithms. One can see, that the
length of the Markov chains is practically the same (for the both of proposed algorithms the length of the
Markov chains is a little bit less). It means that the reason for decreasing the computational time for the

Table 2
Average lengths of the Markov chains in case whenε = 0.1 andai = 0.25(i = 1,2,3) for different values ofN

N 2 × 103 5 × 103 104 5 × 104 105 2 × 105 5 × 105

p(r) = const 9.42 9.34 9.34 9.33 9.30 9.31 9.29
p(r) = ekr 9.18 9.15 9.17 9.16 9.15 9.15 9.14
p(r) = e−kr 9.60 9.57 9.51 9.50 9.49 9.48 9.45
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Table 3
Average lengths of the Markov chains in case whenN = 200,000

ε ai (i = 1,2,3) p(r) = const p(r) = ekr p(r) = e−kr

0.1 0.25 9.304724 9.147489 9.462249
0.01 0.25 36.163536 35.889938 36.423023
0.1 0.5 9.302123 8.701044 9.963235

Table 4
Maximal lengths of the Markov chains in case whenN = 200,000

ε ai (i = 1,2,3) p(r) = const p(r) = ekr p(r) = e−kr

0.1 0.25 95 92 93
0.01 0.25 294 291 301

algorithm A is mostly the fact that this algorithm is less time consuming. Our numerical tests show that
the length of the Markov chains (the number of Monte Carlo iterations) does not depend on the number
N of the Markov chains. Such a result can be expected, because the number of the Monte Carlo iterations
depends on the radius of convergence of the iterative operator and the value of theε-strip. As smaller is
the radius of convergence of the iterative operator, smaller is the number of iterations (that is the length of
the Markov chain for the algorithms under consideration). As smaller is theε-strip of the domain, larger
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Fig. 1. Dependence of the CPU time from the number of random trajectories in case whenε = 0.1, a = 0.25.
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is the number of iteration (the average length of the Markov chain). Some of our numerical tests presented
in Table 3illustrate these statements. The first line presents the results of the average length of the Markov
chain (which corresponds to the average number of the Monte Carlo iterations) in the case whenε = 0.1
andai = 0.25(i = 1,2,3). The length of the chain is averaged on a large number of Markov chains (N =
200,000). Tests are performed for different initial value of the pseudo-random number generator. The
average length of the Markov chains practically does not depend on the initial value of the pseudo-random
number generator.Table 3contains the same parameter obtained for the smallerε-strip (ε = 0.01). In
this case, one can observe a significant increasing of the average number of Monte Carlo iterations.

Some numerical tests were performed in order to study how the average length of the Markov chain
depends of the parameters of the problem. In our tests we vary the value of the coefficientsai (i = 1,2,3).
It corresponds to variation of the advection part of the problem, because these coefficients define the
advection coefficientsbi (i = 1,2,3) (see(18)). The numerical results show that such kind of changes in
the operator (respectively, in the Monte Carlo iterative operator) does not change a lot the number of the
Monte Carlo iterations. From the results presented inTable 3, one can see that the average length of the
Markov chain does not change significantly when the values ofai are changed from 0.25 to 0.5.

For these algorithms it is also important to know the maximal length of the Markov chain.Table 4
presents the results of length of Markov chains with the maximum states, which corresponds to the
maximal number of Monte Carlo iterations. The Markov chain with the maximal length is chosen among
a large number of chains (N = 200,000). The results are obtained forε = 0.1 andai = 0.25(i = 1,2,3).
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Fig. 2. Convergence of the algorithms for “small” values ofN, ε = 0.1, a = 0.25,u(x0) = 1.454991.
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Similar results are obtained forε = 0.01. One can see, that there is significant dependence of the maximal
length of the Markov chain from the value of theε-strip of the domain.

The dependence of the CPU time from the number of random trajectories (number of the Markov
chains) is shown inFig. 1. One can see, that the dependence is linear. It is because the computational
work increases linearly with the increasing of the number of random trajectoriesN.

The difference between the exact and the approximate solutions is presented inFigs. 2 and 3as a
parameter, called “Error”. The convergence of all three algorithms is practically the same. One can
expect such a result, because the convergence depends on the radius of convergence of the iterative
operator of the Monte Carlo method, which is the same for all three algorithms.

Some results of the convergence of the algorithms under consideration are presented inFig. 3. One can
see, that for values ofN larger than 1000 all algorithms converge. The speed of convergence is practically
the same for all three algorithms. As the exact solutionu(x) is greater than 1 fromFigs. 2 and 3, one
can also see that the relative error is always less than 5%, which satisfies the requirements for the needed
accuracy of the algorithms for solving this kind of problems. Under relative error, we assume the ratio
among absolute error and the exact solution, i.e.

Error = |u(x0) − ũ(x0)|
u(x0)

,

whereũ(x0) is the approximate value of the solutionu(x) at the pointx0 ∈ Ω.
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Fig. 3. Variation of the error for “large” values ofN, ε = 0.1, a = 0.25,u(x0) = 1.454991.
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6. Concluding remarks

• We study two new grid-free Monte Carlo algorithms proposed in this work. The algorithms under
consideration are based on two different choices of the density of the radius of the balls used in Monte
Carlo simulations. The algorithms are described and analyzed.

• We obtain integral representations for constant and exponential densities and prove that the integral
transformation kernels of the corresponding representations can be used as density functions of the
grid-free Monte Carlo algorithms.

• The performed numerical tests show that:
◦ The number of the Monte Carlo iterations (the length of the Markov chain) depends mainly of the

value of theε-strip of the domain.
◦ The average length of the Markov chains practically does not depend of the number of chains. For

the both of proposed algorithms this variation is smaller than the variation for the Sipin’s algorithm
considered as a basic algorithm.

◦ The algorithms under consideration converge; the speed of convergence is practically the same as
the speed of convergence of the Sipin’s algorithm. One can also see, that the relative error is always
less than 5%, which satisfies the requirements for the needed accuracy of the algorithms for solving
this kind of problems.

◦ The efficiency of one of the new algorithms which is based on a constant density is higher than the
efficiency of Sipin’s algorithm. The main reason for this is the fact that the algorithm based on the
constant density has the lowest computational complexity.

One can conclude that algorithm A is preferable, because of its high algorithmic efficiency and the fact
that the speed of convergence of this algorithm is practically the same as the speed of convergence of
algorithm B or the Sipin’s algorithm.
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