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Abstract. Monte Carlo Method (MCM) is the only viable method for
many high-dimensional problems since its convergence is independent of
the dimension. In this paper we develop an adaptive Monte Carlo method
based on the ideas and results of the importance separation, a method
that combines the idea of separation of the domain into uniformly small
subdomains with the Kahn approach of importance sampling. We an-
alyze the error and compare the results with crude Monte Carlo and
importance sampling which is the most widely used variance reduction
Monte Carlo method. We also propose efficient parallelizations of the
importance separation method and the studied adaptive Monte Carlo
method. Numerical tests implemented on PowerPC cluster using MPI
are provided.

1 Introduction

Multidimensional numerical quadratures are of great importance in many practi-
cal areas, ranging from atomic physics to finance. The crude Monte Carlo method
has rate of convergence O(N−1/2) which is independent of the dimension of the
integral, and that is why Monte Carlo integration is the only practical method
for many high-dimensional problems. Much of the efforts to improve Monte Carlo
are in construction of variance reduction methods which speed up the computa-
tion.

Importance sampling is probably the most widely used Monte Carlo variance
reduction method, [5]. One use of importance sampling is to emphasize rare but
important events, i.e., small regions of space in which the integrand is large. One
of the difficulties in this method is that sampling from the importance density
is required, but this can be performed using acceptance-rejection.

It is also known that importance sampling can greatly increase the variance
in some cases, [11]. In Hesterberg (1995, [8]) a method of defensive importance
sampling is presented; when combined with suitable control variates, defensive
importance sampling produces a variance that is never worse than the crude
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Monte Carlo variance, providing some insurance against the worst effects of im-
portance sampling. Defensive importance sampling can however be much worse
than the original importance sampling.

Owen and Zhow (1999) recommend an importance sampling from a mixture
of m sampling densities with m control variates, one for each mixture component.
In [11] it is shown that this method is never much worse than pure importance
sampling from any single component of the mixture.

Another method, multiple importance sampling, similar to defensive impor-
tance sampling, is presented in Veach&Guibas (1995, [13]) and Veach (1997,
[14]). It is standard practice to weight observations in inverse proportion to
their sampling probability. Multiple importance sampling can break that rule,
and do so in a way that still results in an unbiased estimate of the integral. The
idea is that in some parts of the sample space, the integrand may be roughly
proportional to one of sampling densities while other densities are appropriate
to other parts of the space. The goal is to place greater weight on those locally
most appropriate densities.

In [9,10] a method called importance separation that combines ideas from
importance sampling and stratification is presented and studied. This method
has the best possible rate of convergence for certain class of functions but its
disadvantage is the increased computational complexity.

Another group of algorithms, widely used for numerical calculation of mul-
tidimensional integrals, are the adaptive algorithms. Most of the adaptive algo-
rithms use a sequence of increasingly finer subdivisions of the original region,
chosen to concentrate integrand evaluations on subregions with difficulties. Two
main types of subdivision strategies are in common use: local and global sub-
division. The main disadvantage of local subdivision strategy is that it needs
a local absolute accuracy requirement which will be met after the achievement
of the global accuracy requirement. The main advantage of the local subdivi-
sion strategy is that it allows a very simple subregion management (there is no
need to store inactive subregions). Globally adaptive algorithms usually require
more working storage than locally adaptive routines, and accessing the region
collection is slower. These algorithms try to minimize the global error as fast
as possible, independent of the specified accuracy requirement. For example, see
[2], where an improved adaptive algorithm for the approximate calculation of
multiple integrals is presented - this algorithm is similar to a globally adaptive
algorithm for single integrands first described by van Dooren and de Ridder [6].
The modifications are imposed by that the new algorithm applies to a vector of
integrands.

The adaptive algorithms proved to be very efficient but they do not have the
inherent parallel properties of crude Monte Carlo. In recent years, two approaches
to parallel adaptive integration have emerged, for comparison see Bull&Freeman
(1998, [4]). One is based on adapting the ideas of sequential globally adaptive
algorithms to the parallel context by selecting a number of subdomains of the
integration domain according to the associated error estimate, see, for exam-
ple, Bull&Freeman (1994, [3]). The other approach proceeds by imposing an
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initial static partitioning of the domain and treats the resulting problems as in-
dependent. This approach needs a mechanism for detecting load imbalance and
for redistributing work to other processors, see, for example, [7]. Let us mention
that a central feature of the parallel adaptive algorithms is the list containing the
subintervals and corresponding error estimates. Fundamentally different parallel
algorithms result depending on whether the list is maintained as a single shared
data structure accessible to all processors, or else as the union of nonoverlapping
sublists, each private to a processor.

In this paper, we use the ideas of importance separation to create an adaptive
algorithm for integration. We describe parallelization of these algorithms, study
their parallel properties and compare them with importance sampling.

2 Importance Separation and Adaptive Monte Carlo
Method

Consider the problem of approximate calculation of the multiple integral

I =
∫

G

f(x)p(x) dx, G ≡ [0; 1]d (1)

where f(x) is an integrable function for any x ∈ G ⊂ Rd and p(x) ≥ 0 is a
probability density function, such that

∫
G p(x) dx = 1.

The Monte Carlo quadrature formula is based on the probabilistic interpre-
tation of an integral. If {xn} is a sequence in G sampled with density p(x), then
the Monte Carlo approximation to the integral is, [12],

I ≈ IN =
1
N

N∑
n=1

f(xn)

with the integration error εN = |I − IN | ≈
√

V ar(f)
N .

2.1 Importance Separation

Here we briefly present a Monte Carlo method called importance separation first
described and studied in [9,10]. This method combines the ideas of stratification
and importance sampling and has the best rate of convergence (see [1]) for the
class of functions with bounded derivatives.

The method of importance separation uses a special partion of the domain
and computes the given integral as a sum of the integrals on the subdomains.
First, let us describe the method in the one-dimensional case - when the domain
is an interval, say [0, 1] and f(x) ∈ C[0,1]. Partition [0,1] into M subintervals in
the following way: x0 = 0; xM = 1; Gi ≡ [xi−1, xi];

xi =
Ci

f(xi−1)(M − i + 1)
, i = 1, ..., M − 1 (2)
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where
Ci = 1/2[f(xi−1) + f(1)](1 − xi−1), i = 1, . . . , M − 1.

Obviously, I =
∫ 1

0
f(x)p(x) dx =

∑M
i=1

∫ xi

xi−1
f(x)p(x)dx. If f(x) ∈ H(1, L)[0,1],

there exist constants Li

(
L ≥ max

i
Li

)
, such that

Li ≥
∣∣∣∣∂f

∂x

∣∣∣∣ for any x ∈ Gi. (3)

Moreover, for the above scheme there exist constants c1i and c2i such that

pi =
∫

Gi

p(x) dx ≤ c1i/M, i = 1, . . . , M (4)

sup
x1i

,x2i
∈Gi

|x1i − x2i | ≤ c2i/M, i = 1, . . . , M. (5)

The following theorem, proved in [9], gives the rate of convergence:
Theorem Let f(x) ∈ H(1, L)[0,1] and M = N . Then using the importance
separation (3)-(5) of G we have the following Monte Carlo integration error:

εN ≈
√

2[1/N

N∑
j=1

(Ljc1j c2j )
2]1/2N−3/2.

Now consider the multidimensional case. For an importance separation with
analogous properties (for each coordinate we apply the already described one-
dimensional scheme (2) in the same manner), we have the following integration
error (M = N):

εN ≈ √
2d

[
1
N

N∑
i=1

(Lic1ic2i)
2

]1/2

N−1/2−1/d.

The disadvantage of the above described methods is the increased computational
complexity. The accuracy is improved (in fact, importance separation gives the
theoretically optimal accuracy, [10]) but the price is increased number of addi-
tional computations which makes these methods impractical for large d.

2.2 Adaptive Monte Carlo Method

Based on advantages and disadvantages of importance separation we develop an
adaptive approach for calculation of the desired scalar variable I. Our adaptive
method does not use any a priori information about the smoothness of the in-
tegrand, but it uses a posteriori information for the variance. The idea of the
method consists in the following: the domain of integration G is separated into
subdomains with identical volume. The interval [0;1] on every dimension coor-
dinate is partitioned into M subintervals, i.e.

G =
∑

j

Gj , j = 1, Md.
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Denote by pj and IGj the following expressions:

pj =
∫

Gj

p(x) dx and IGj =
∫

Gj

f(x)p(x) dx.

Consider now a random point ξ(j) ∈ Gj with a density function p(x)/pj and in
this case

IGj = E

[
pj

N

N∑
i=1

f(ξ(j)
i )

]
= EθN .

The algorithm starts with a relatively small number M which is given as input
data. For every subdomain the integral IGj and the variance are evaluated.
Then the variance is compared with a preliminary given value. The obtained
information is used for the next refinement of the domain and for increasing the
density of the random points. In order to choose the first and the next dimension
coordinate on which an additive division is made, we use random numbers.
To avoid the irregular separation on different coordinates a given coordinate
recurs only even all other coordinates have been already chosen. In the end
an approximation for the integral I =

∑
j IGj is obtained. The algorithm is

described below.

Algorithm

1. Input data: number of points N , number of subintervals M on every dimen-
sion coordinate, constant ε (estimation for the variance), constant δ (stop
criterion; estimation for the length of subintervals on every coordinate).

2. For j = 1, Md

2.1 Calculate the approximation of IGj and the variance DGj in subdomain
Gj based on N independent realizations of random variable θN

2.2 If (DGj ≥ ε) then
2.2.1 Choose the axis direction on which the partition will perform
2.2.2 Divide the current domain into two (Gj1 , Gj2 ) along the chosen

direction
2.2.3 If the length of obtained subinterval is less than δ then go to step

2.2.1 else j = j1 (Gj1 is the current domain) and go to step 2.1
2.3 Elseif (DGj < ε), but an approximation of IGj2

has not been calculated
yet then j = j2 (Gj2 is the current domain along the corresponding
direction) and go to step 2.1

2.4 Elseif (DGj < ε), but there are subdomains along the other axis direc-
tions then go to step 2.3

2.5 Else Accumulation in the approximation IN of I

3 Parallel Implementation

In this section we present the parallel importance separation and parallel adap-
tive Monte Carlo algorithms for evaluation of multiple integrals. The crude
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Monte Carlo possesses inherent parallelism which is based on the possibility
to calculate simultaneously realizations of the random variable on different pro-
cessors. For our two algorithms (importance separation and simple adaptive)
we have additional work: partitioning of the domain and assigning the corre-
spondent portions of work to the available processors. This has to be done very
carefully in order to have good load balancing. We consider a multiprocessor
configuration with p nodes.

N uniformly distributed random points xi ∈ [0; 1]d, i = 1, . . . , N are used to
obtain an approximation with given accuracy of the integral (1). For generation
of d−dimensional random point we need d random numbers.To estimate the
performance of the parallel algorithms we use:

ETp(A) mathematical expectation of time, required for a set of p processing
elements to solve the problem using algorithm A

Sp(A) = ET1(A)
ETp(A) speed-up

Ep(A) = Sp(A)
p parallel efficiency.

In parallel version of the adaptive algorithm the processors are separated as
”master” and ”slaves”. The ”master” calculates the variance in every subdomain
Gj , analyzes it and sends information about the new partition — the limits of
new subdomains - to the ”slaves”.

4 Numerical Experiments

We now present the numerical results for the accuracy and the convergence
of crude, importance sampling, adaptive, importance separation MCM for nu-
merical integration. The numerical tests are implemented on a cluster of 4 two-
processor computers Power Macintosh using MPI. The results are presented as a
function of the sample size, N . For each case the error is computed with respect to
the exact solution. A lot of numerical tests were performed. Here we present the
results of evaluating the 5-dimensional integral over I5 = [0; 1]5 of the function

f(x) = exp
(∑5

i=1 aix
2
i

2+sin(
�5

j=1,j �=i xj)

2

)
using the positive definite importance

function (density) h(x) = 1
η exp

(∑5
i=1 aix

2
i

)
where a = (1, 0.5, 0.2, 0.2, 0.2) and

η =
∫

I5 exp(
∑5

i=1 aix
2
i ) dx so that h is normalised. We denote by IN an estima-

tion of the integral using one sample of N random points.
We compare the results (accuracy and CPU time in seconds) for four meth-

ods: crude Monte Carlo, importance sampling, importance separation (IMS) and
the proposed adaptive Monte Carlo (AMC). The results shown in the Table 1 and
Figure 1 illustrate the superior behaviour of the considered in this paper meth-
ods - for twice more computational time (6 seconds), IMS gives approximately
10 times better accuracy than crude Monte Carlo and importance sampling.
Let us mention also that the results obtained with the adaptive method and
with importance separation are very similar when the sample size increases. A
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Table 1. Comparison between Crude MCM, Importance sampling, Importance
separation and Adaptive MCM. Input data: M = 6, ε = 0.6, δ = 0.1e − 06
(calculations are implemented on one processor).

N Crude MCM Imp. sampling Imp. separation Adaptive MCM
|I − IN | T1 |I − IN | T1 |I − IN | T1 |I − IN | T1

100 0.009532 0.001 0.081854 0.008 0.000316 6 0.001102 20

500 0.092960 0.004 0.007102 0.036 0.000003 31 0.000246 121

2500 0.009027 0.020 0.006381 0.175 0.000068 152 0.000131 587

10000 0.006611 0.076 0.004673 0.697 0.000061 610 0.000036 2390

50000 0.008443 0.386 0.003212 3.489 0.000021 3047 0.000009 12093
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Fig. 1. Comparison of the accuracy of Crude MCM, Importance sampling, Im-
portance separation and Adaptive MCM.

100 1000 10000 100000
Number of points

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
rr

or
 [%

]

Adaptive Monte Carlo method
Importance separation method

Fig. 2. Comparison of the accuracy of Importance separation and Adaptive
MCM.
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comparison of these two methods is given in Figure 2. It can be seen that im-
portance separation method needs less points than adaptive method to achieve
the desired accuracy. The reason for these results is the additional partitioning
of the domain for adaptive method using only a posteriori information about
the variance. The Table 2 presents the achieved efficiency of the parallel imple-

Table 2. Implementation of Adaptive MCM and Importance separation using
MPI (I = 2.923651).

Adaptive MCM Importance separation
N = 1000 N = 10000 N = 1000 N = 10000

p IN Ep p IN Ep p IN Ep p IN Ep

1 2.923476 1 1 2.923648 1 1 2.923604 1 1 2.923590 1

2 2.923631 0.970 2 2.923611 0.974 2 2.923603 0.979 2 2.923573 0.985

3 2.920495 0.722 3 2.923380 0.948 3 2.920636 0.967 3 2.923336 0.983

4 2.923608 0.610 4 2.923628 0.847 4 2.923804 0.941 4 2.923638 0.980

5 2.923557 0.523 5 2.923644 0.909 5 2.923463 0.934 5 2.923602 0.979

6 2.912064 0.204 6 2.922495 0.841 6 2.911825 0.925 6 2.922537 0.977

mentation (using MPI) for both methods, importance separation and adaptive
Monte Carlo. The speed-up of the same two methods with respect to the number
of processors is shown on Figure 3. The achieved speed-up is almost linear and
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Fig. 3. Speed-up with respect to the number of processors.

the efficiency grows with the increase number of points. When the number of
processors is large, but CPU time (even on one processor) is small, the efficiency
is not very good because most of CPU time is used for communications between
processors. An additional explanation of the efficiency of the adaptive method is
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that the ”master” carries out some preliminary calculations (computing of the
limits of two new subregions obtained after division).

5 Conclusion and Future Directions

In this paper we present and study the parallel properties of importance sepa-
ration and an adaptive Monte Carlo algorithms. We compare the results with
crude Monte Carlo and with importance sampling. Our algorithms show some
advantages.

While the results of applying our methods for approximate calculation of
integrals are very satisfying, we would like to extend these methods for solving
integral equations. We already started working on these algorithms.
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