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Abstract. In this work a grid free Monte Carlo algorithm for solving
elliptic boundary value problems is investigated. The proposed Monte
Carlo approach leads to a random process called a ball process.
In order to generate random variables with the desired distribution, re-
jection techniques on two levels are used.
Varied numerical tests on a Sun Ultra Enterprise 4000 with 14 Ultra-
SPARC processors were performed. The code which implemented the
new algorithm was written in JAVA.
The numerical results show that the derived theoretical estimates can be
used to predict the behavior of a wide class of elliptic boundary value
problems.

1 Introduction

Consider the following three-dimensional elliptic boundary value problem:

Mu = −φ(x), x ∈ Ω, Ω ⊂ IR3 and u = ψ(x), x ∈ ∂Ω, (1)

where the differential operator M is equal to

M =
3∑

i=1

(
∂2

∂x2
i

+ bi(x)
∂

∂xi

)
+ c(x).

We assume that the regularity conditions for the closed domain Ω and the given
functions b(x), c(x) ≤ 0, φ(x) and ψ(x) are satisfied. These conditions guar-
antee the existence and uniqueness of the solution u(x) in C2(Ω) ∩ C(Ω) of
problem (1), (see [1,5]), as well as the possibility of its local integral representa-
tion (when divb(x) =

∑3
i=1

∂bi(x)
∂x2

i

= 0) by making use of the Green’s function
approach for standard domains lying inside the domain Ω (for example - a ball
or an ellipsoid).
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Denote by B(x) the ball: B(x) = BR(x) = {y : r =| y− x |≤ R(x)}, where
R(x) is the radius of the ball. Levy’s function for the problem (1) is

Lp(y, x) = µp(R)
∫ R

r

(1/r − 1/ρ)p(ρ)dρ, r ≤ R, (2)

where the following notations are used: p(ρ) is a density function;

r =| x− y |=
(

3∑
i=1

(xi − yi)2
)1/2

, µp(R) = [4πqp(R)]
−1 , qp(R) =

∫ R

0

p(ρ)dρ.

It is readily seen that Levy’s function Lp(y, x), and the parameters qp(R) and
µp(R) depend on the choice of the density function p(ρ). In fact, the Eq.(2)
defines a family of functions.

For the Levy’s function the following representation holds (see [4]):

u(x) =
∫

B(x)

(
u(y)M∗

yLp(y, x) + Lp(y, x)φ(y)
)
dy (3)

+
∫

∂B(x)

3∑
i=1

ni

[(
Lp(y, x)∂u(y)

∂yi
− u(y)∂Lp(y, x)

∂yi

)
− bi(y)u(y)Lp(y, x)

]
dyS ,

where n ≡ (n1, n2, n3) is the exterior normal to the boundary ∂B(x) and

M∗ =
3∑

i=1

(
∂2

∂x2
i

− bi(x)
∂

∂xi

)
+ c(x).

is the adjoint operator to M .
It is proved (see [3]) that the conditionsM∗

yLp(y, x) ≥ 0 (for any y ∈ B(x) )
and Lp(y, x) = ∂Lp(y, x)/∂yi = 0, i = 1, 2, 3 (for any y ∈ ∂B(x) ) are satisfied
for p(r) = e−kr, where

k ≥ b∗ +Rc∗, b∗ = max
x∈Ω

| b(x) |, c∗ = max
x∈Ω

| c(x) |

and R is the radius of the maximal ball B(x) ⊂ Ω.
This statement shows that it is possible to construct the Levy’s function

choosing the density p(ρ) such that kernelM∗
yLp(y, x) is non-negative in B(x)

and such that Lp(y, x) and its derivatives vanish on ∂B(x).
It follows that the representation (3) can be written in the form:

u(x) =
∫

B(x)

M∗
yLp(y, x)u(y)dy +

∫
B(x)

Lp(y, x)φ(y)dy, (4)

where

M∗
yLp(y, x) = µp(R)

p(r)
r2

− µp(R)c(y)
∫ R

r

p(ρ)
ρ

dρ

+
µp(R)
r2

[
c(y)r +

3∑
i=1

bi(y)
yi − xi

r

] ∫ R

r

p(ρ)dρ.

The representation of u(x) in (4) is the basis for the proposed Monte Carlo
method. Using it, a biased estimator for the solution can be obtained.
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2 Monte Carlo Method

The Monte Carlo procedure for solving Eq.(4) can be defined as a ”ball process”
or ”walk on small spheres”. Consider a transition density function

p(x, y) ≥ 0 and
∫

B(x)

p(x, y)dy = 1. (5)

and define a Markov chain ξ0, ξ1, . . . , such that every point ξj , j = 1, 2, . . . , is
chosen in the maximal ball B(ξj−1) lying in Ω in accordance with the density (5).

Generally, the ”walk on small spheres” process can be written as following
(see [8]):

ξj = ξj−1 +wjαR(ξj−1), j = 1, 2, . . . , α ∈ (0, 1],

where wj are independent unit isotropic vectors in IR3. In particular, when α = 1
the process is called ”walk on spheres” (see [6,8]).

To ensure the convergence of the process under consideration we introduce
the ε-strip of the boundary, i.e.

∂Ωε = {y ∈ Ω : ∃x ∈ ∂Ω for which | y − x |≤ ε}.
Thus the Markov chain terminates when it reaches ∂Ωε and the final point is
ξlε ∈ ∂Ωε.

Consider the biased estimate Θlε for the solution of Eq.(4) at the point ξ0
(see [2]):

Θlε(ξ0) =
lε−1∑
j=0

Wj

∫
B(ξj)

Lp(y, ξj)φ(y)dy +Wlεψ(ξlε), (6)

where
W0 = 1, Wj =Wj−1

M∗
yLp(ξj , ξj−1)
p(ξj−1, ξj)

, j = 1, 2, . . . , lε.

If the first derivatives of the solution are bounded in Ω then the following in-
equality holds (see [6]):

|EΘlε(ξ0)− u(ξ0)|2 ≤ c1ε
2 . (7)

Using N independent samples we construct a random estimate of the form

Θlε(ξ0) =
1
N

N∑
i=0

Θ
(i)
lε
(ξ0) ≈ u(ξ0).

The root mean square deviation is defined by the relation

E(Θlε(ξ0)− u(ξ0))2 = V ar(Θlε (ξ0)) + (u(ξ0)− EΘlε(ξ0))
2.

Hence

E(Θlε(ξ0)−u(ξ0))2 =
V ar(Θlε (ξ0))

N
+(u(ξ0)−EΘlε(ξ0))

2 ≤ d0

N
+c1ε2 = µ2, (8)

where µ is the desired error, d0 is upper boundary of the variance and c1 is the
constant from Eq. (7).
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3 A Grid Free Monte Carlo Algorithm

Using spherical coordinates [2] we can express the kernel k(x, y) = M∗
yLp(y, x)

as follows:

k(r,w) =
p(r) sin θ
qp(R)4π

×

×
[
1 +

∑3
i=1 bi(x+ rw)wi + c(x+ rw)r

p(r)

∫ R

r

p(ρ)dρ− c(x+ rw)r2

p(r)

∫ R

r

p(ρ)
ρ
dρ

]
.

Here w≡ (w1, w2, w3) is an unit isotropic vector in IR3, where w1 = sin θ cosϕ,
w2 = sin θ sinϕ and w3 = cos θ (θ ∈ [0, π) and ϕ ∈ [0, 2π)).

Let us consider the following two non-negative functions

p0(r,w) =
p(r) sin θ
qp(R)4π

[
1 +

∑3
i=1 bi(x+ rw)wi

p(r)

]∫ R

r

p(ρ)dρ,

when c(x+ rw) ≡ 0 and p(r,w) = k(r,w), when c(x+ rw) ≤ 0.
The following inequalities hold:

p(r,w) ≤ p0(r,w) ≤ p(r) sin θ
qp(R)4π

[
1 +

b∗

p(r)

∫ R

r

p(ρ)dρ

]
. (9)

We note that function p0(r,w) satisfies the condition (5) ( see [2]).
Denote by p(r,w) the following function:

p(r,w) =
p(r,w)
V

, where
∫ π

0

∫ 2π

0

∫ R

0

p(r,w)drdθϕ = V < 1. (10)

Introduce the functions:

p(w/r) = 1+

∑3

i=1
bi(x + rw)wi + c(x + rw)r

p(r)

∫ R

r

p(ρ)dρ− c(x + rw)r2

p(r)

∫ R

r

p(ρ)

ρ
dρ;

p0(w/r) = 1 +

∑3

i=1
bi(x + rw)wi

p(r)

∫ R

r

p(ρ)dρ.

Using inequalities (9) we obtain:

p(w/r) ≤ p0(w/r) ≤ 1 +
b∗

p(r)

∫ R

r

p(ρ)dρ. (11)

Now we can describe the grid free algorithm for simulating the Markov chain
with transition density function (10). The Markov chain is started at the fixed
point ξ0. The inequalities in (11) are used to sample the next point ξ1 by applying
a two level acceptance-rejection sampling (ARS) rule.

The ARS rule or the Neumann rule can be used if another density func-
tion v2(x) exists such that c2v2(x) is everywhere a maximum of the density
function v1(x), that is, c2v2(x) ≥ v1(x) for all values x (see for details [2]). The
efficiency of this rule depends upon c2v2(x) and how closely it envelopes v1(x).
A two level ARS rule is preferable when v1(x) is a complex function. In this
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case a second majorant function must be found which envelopes very closely our
density function.

Algorithm 3.1

1. Compute the radius R(ξ0) of the maximal ball lying inside Ω and having
center ξ0.
2. Generate a random value r of the random variable τ with the density

p(r)
qp(R)

=
ke−kr

1− e−kR
. (12)

3. Calculate the function

h(r) = 1 +
b∗

p(r)

∫ R

r

p(ρ)dρ = 1 +
b∗

k
(1− e−k(R−r)).

4. Generate the independent random values w of a unit isotropic vector in IR3.
5. Generate the independent random value γ of an uniformly distributed ran-
dom variable in the interval [0, 1].
6. Go to the step 8 if the inequality holds: γh(r) ≤ p0(w/r)}.
7. Go to the step 4 otherwise.
8. Generate the independent random value γ of a uniformly distributed ran-
dom variable in the interval [0, 1].
9. Go to the step 11 if the inequality holds: γp0(w/r) ≤ p(w/r).
10. Go to the step 4 otherwise.
11. Compute the random point ξ1, with a density p(w/r) using the following
formula: ξ1 = ξ0 + rw.
The value r =| ξ1 − ξ0 | is the radius of the sphere lying inside Ω and having
center at ξ.
12. Repeate Algorithm 3.1 for new point ξ1 if ξ1∈∂Ωε.
13. Stop Algorithm 3.1 if ξ1 ∈ ∂Ωε.

The random variable Θlε(ξ0) is calculated using formula (6).
The computational cost of the algorithm under consideration is measured by

quantity

S = N t0Elε ,

where N is the number of the trajectories performed; Elε is the average number
of balls on a single trajectory; t0 is the time of modeling a point into the maximal
ball lying inside Ω and of computing the weight W which corresponds to this
point.

We note that for a wide class of boundaries Ω, (see [8,6]), the following
estimate has been obtained on the basis of the restoration theory, Elε = c2| ln ε|.
If the radius r = r0 is fixed and r0/R = α ∈ (0, 1] then the following estimate
holds (see [8]):

Elε =
4R2| ln ε|

r20
+O(r40),



364 T. Gurov et al.

where R is the radius of the maximal ball lying inside Ω.
It is clear that the algorithmic efficiency of the Algorithm 3.1 depends on

the position of the points in the Markov chain. They must be located ”not far
from the boundary of the ball”. Thus, the location of every point depends on
the random variable τ with a density Eq.(12).

The following assertion holds (see [2]):

Lemma 1. Let α0 ∈ (0, 0.5). Then Eτ ∈ (α0R, 0.5R), if and only if the ra-
dius R of the maximal ball and the parameters b∗ and c∗ satisfy the inequality

R(b∗ +Rc∗) ≤ β0, (13)

where β0 is the solution of the equation g1(z) = 1
z + 1

1−ez = α0.

Therefore, after substitution r0 = α0R, where α0 is the parameter from
Lemma 1, the average number of balls get

Elε � 4
α2

0

| ln ε| . (14)

In order to obtain the error of order µ , (see Eq. (8)), the optimal order of the
quantities N and ε must be

N = O(µ−2), ε = O(µ), S � 4t0
α2

0

| lnµ|
µ2

.

Note that this estimate of computational cost is optimal as to the order of
magnitude of µ only. It does not take into account the values of the constants
in (8).

In order to minimize the computational cost we should solve the conditional
minimum problem (see [6]):

S = N t0Elε → min
N,ε

,
d0

N
+ c1ε2 = µ2 or S =

d0 t0
µ2 − c1ε2

Elε → min
ε
, c1ε

2 ≤ µ2.

Having solved this problem we obtain the optimal values of the quanti-
ties N , S and ε:

N∗ =
d0

2c1ε2∗| ln ε∗|
, S∗ � 2d0

c1α2
0

t0
ε2∗
,

where ε∗ is a solution of the equation

c1ε
2 + 2c1ε2| ln ε| = µ2 . (15)

It is not difficult to estimate the variance V ar(Θlε (ξ0)) when the function φ(x) =
0. In this case we have Θlε(ξ0) =Wlεψ(ξlε). Thus

V ar(Θlε (ξ0)) ≤ E(Θ2
lε(ξ0)) =

=
∫

B(ξ0)

. . .

∫
B(ξlε )

(M∗
yLp(ξ1, ξ0))2

p(ξ0, ξ1)
. . .

(M∗
yLp(ξlε , ξlε−1))2

p(ξlε−1, ξlε)
ψ(ξlε)

2dξlε . . . dξ0.
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Denote by

V = max
x∈Ω

∫
B(x)

M∗
yLp(y, x)dy and ψ2

∗ = max
x∈Ω

∫
B(x)

|ψ(y)|2dy

Now we obtain V ar(Θlε(ξ0)) ≤ V 2lεψ2
∗ ≤ ψ2

∗.

Thus in this case, the optimal values of the quantities N , S get:

N∗ =
ψ2
∗

2c1ε2∗| ln ε∗|
, S∗ � 2ψ2

∗
c1α2

0

t0
ε2∗
,

where the constant c1 depends on the condition the first derivatives of the solu-
tion shall be bounded in Ω and α0 depends on Eq.( 13).

4 Numerical Result

As an example the following boundary value problem was solved in the cube
Ω = [0, 1]3:

3∑
i=1

(
∂2u

∂x2
i

+ bi(x)
∂u

∂xi

)
+ c(x)u = 0,

u(x1, x2, x3) = ea1(x1+x2+x3) , (x1, x2, x3) ∈ ∂Ωε.

In our tests b1(x) = a2x1(x2−x3), b2(x) = a2x2(x3−x1), b3(x) = a2x3(x1−x2),
and c(x) = −3a2

1, where a1 and a2 are parameters.
We note that the condition divb(x) = 0 is satisfied.
The code which implemented the algorithm under consideration was written

in JAVA. The multiplicative linear-congruential generator, which was used to
obtain a sequence of random numbers distributed uniformly between 0 and 1, is
xn = 75xn−1mod(231 − 1). It was highly recommended by Park and Miller [7]
and they called it the ”minimal standard”.
Numerical tests on a Sun Ultra Enterprise 4000 with 14 UltraSPARC processors
were performed for different values of the parameters a1 and a2 (see Tables 1,2).
The solution was estimated at the point with coordinates x = (0.5, 0.5, 0.5).
In the tables, u(x) is the exact solution, ulε(x) is the estimate of the solution,
µε is the estimate of the corresponding mean square error, σ2 is the estimate
V ar(Θlε(x)). The results presented in Table 1 are in good agreement with theo-
retical one (see Eq’s. 14,15). Moreover, the results presented in Table 2 show how
important it is to have a good balancing between the stochastic and systematic
error. When N∗ = 50533, the time of estimating solution is: t1 = 51m14.50s and
when N = 106 the time is: t2 = 19h17m44.25s. Thus, the computational effort
in the first case is about twenty times better than second one, while Monte Carlo
solutions are approximately equal. On the other hand the numerical tests show
that the variance does not depend on the vector-function b(x).
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Table 1. u(x) = 1.4549915 , a1 = 0.25, c∗ = 0.1875, Rmax = 0.5

ε∗ = 0.01, N∗ = 3032 ε∗ = 0.001, N∗ = 202130

b∗ = a2

√
3 ulε (x) µε σ2 Elε ulε (x) µε σ2 Elε

8
√
3 1.465218 ± 0.029 0.0437 63.73 1.456395 ± 0.0035 0.04455 95.75

4
√
3 1.460257 ± 0.029 0.0427 43.62 1.456704 ± 0.0035 0.04448 74.92

2
√
3 1.465602 ± 0.029 0.0434 38.85 1.457545 ± 0.0035 0.04466 69.46√
3 1.456592 ± 0.029 0.0423 36.96 1.456211 ± 0.0035 0.04462 67.95√

3/4 1.461289 ± 0.029 0.0432 36.46 1.456149 ± 0.0035 0.04455 67.32√
3/16 1.456079 ± 0.029 0.0428 36.72 1.455545 ± 0.0035 0.04450 67.12

Table 2. u(x) = 2.117 , a1 = 0.5, c∗ = 0.75, Rmax = 0.5

ε∗ = 0.001, N∗ = 50533 ε = 0.001, N = 1000000

b∗ = a2

√
3 ulε (x) µε σ2 Elε ulε (x) µε σ2 Elε

8
√
3 2.12829 ± 0.015 0.374 97.41 2.12749 ± 0.015 0.3770 97.00

4
√
3 2.13151 ± 0.015 0.3782 75.93 2.12972 ± 0.015 0.3787 75.68

2
√
3 2.12878 ± 0.015 0.3775 70.17 2.12832 ± 0.015 0.3790 70.05√
3 2.12898 ± 0.015 0.3781 68.39 2.12547 ± 0.015 0.3774 67.95√
3/4 2.12227 ± 0.015 0.3771 67.71 2.12125 ± 0.015 0.3760 67.63√
3/16 2.12020 ± 0.015 0.3753 67.61 2.11869 ± 0.015 0.3750 67.53

5 Conclusion

In this work it is shown that a grid free Monte Carlo algorithm under considera-
tion can be successfully applied for solving elliptic boundary value problems. An
estimate for minimization of computational cost is obtained. The balancing of
errors (both systematic and stochastic) either reduces the computational com-
plexity when the desired error is fixed or increases the accuracy of the solution
when the desired computational complexity is fixed.

The studied algorithm is easily programmable and parallelizable and can be
efficiently implemented on MIMD-machines.
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