
Parallel resolvent Monte Carlo algorithms for

linear algebra problems

I. Dimov a,1, V. Alexandrov b and A. Karaivanova a,1

aCLPP, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 25 A, 1113
Sofia, Bulgaria

bDepartment of Computer Science, University of Liverpool, Liverpool, UK

Abstract

In this paper we consider Monte Carlo (MC) algorithms based on the use of the
resolvent matrix for solving linear algebraic problems. Estimates for the speedup
and efficiency of the algorithms are presented. Some numerical examples performed
on cluster of workstations using MPI are given.

1 Introduction

The goals of this work are:

• to develop a common Monte Carlo (MC) numerical approach based on the
use of resolvent matrices for solving linear algebra problems;

• to show that the proposed resolvent approach improves the convergence of
the algorithms;

• to realize parallel versions of resolvent MC algorithms using MPI and to
present numerical results showing that they have the same nice parallel
properties as the simple iterative MC.

We consider MC numerical algorithms and their parallel realization for the
following algebraic problems:

1 Partially supported by the Ministry of Science and Education of Bulgaria under
grant I-811/1998.
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(a) Evaluating the inner product

J(u) = (h, u) =
n∑

i=1

hiui (1)

for the solution u ∈ IRn×1 of the linear algebraic system Au = b, where
A = {aij}n

i,j=1 ∈ IRn×n is a given sparse matrix; b = (b1, . . . , bn)t ∈ IRn×1

and h = (h1, . . . , hn)t ∈ IRn×1 are given vectors.
(b) Finding one or more eigenvalues λ such that:

Ax = λx, (2)

where A = {aij}n
i,j=1 ∈ IRn×n is a given sparse matrix. This is a special case

of (2) where the right-hand-side vector is a (real or complex) scalar multiple
of the unknown vector x.

In case (a) once we can establish that a unique solution to the given system
of equations exists, we choose a non-singular matrix M ∈ IRn×n such that
MA = I − L, where I ∈ Rn×n is the identity matrix and Mb = f , f ∈ IRn×1.
Then

u = Lu + f (3)

and we can consider the iteration process

uk = L(uk−1) + f, k = 1, 2, . . . (4)

Under the usual conditions:

(i)





1. The matrices M and L are both non-singular;

2. |λ(L)| < 1 for all eigenvalues λ(L) of L,

the iteration (4) converges to the solution with the rate: ‖ uk − u ‖ ≤
‖ L ‖k‖ u0 − u) ‖.

There are many classical numerical methods for solving the linear systems of
equations of the general form AX = B, where the (n × n) matrix A and the
(n × m) matrix B are known, while the (n × m) matrix X is the unknown
quantity to be determined. The direct methods, such as Gaussian elimination,
and LU and Cholesky decomposition techniques, take time

TDIRECT = O(n3) + O(n2m);
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while the iterative methods, such as the Jacobi, Gauss- Seidel, and various
relaxation techniques, take time

TITER = O(n2ml),

if there are l iterations. Even if l and m are relatively small, this becomes too
laborious if n is large.

For the same problem Monte Carlo sequential techniques ([Ha92]) take time

TMC(n, c, m, l, N) = O((n + cm)lN),

if there are, on average, N samples, involving random walks of average length
l, to determine the mc components in a subset of c rows of X. The last result
is obtained for dense matrices and does not take into account the sparsity of
the matrix.

In case (b) we suppose A is diagonalizable, X−1AX = diag(λ1, . . . , λn), where
X = (x1, . . . , xn), and |λ1| > |λ2| ≥ . . . ≥ |λn−1| > |λn|. The well known power
method ([GV83]) gives an estimate for the dominant eigenvalue λ1, which is
called the Raleigh quotient:

λmax =
xT

k xk+1

xT
k xk

,

where xk+1 = Axk. For the case we want to compute the smallest eigenvalue,
the power method is altered in the following way: the iteration xnew = Axold

is replaced by xnew = Bxold, where A and B have the same eigenvectors,
but different eigenvalues. Letting σ denote a scalar, there are three common
choices for B: B = A− σI which is called the shifted power method, B = A−1

which is called the inverse power method, and B = (A − σI)−1 which is
called the inverse shifted power method. When implementing the inverse power
method, the inverse power iteration xnew = A−1xold is expressed in the form
Axnew = xold. Replacing A by its LU factorization yields

(LU)xnew = xold. (5)

In each iteration of the inverse power method, the new x is obtained from
the old x by forward and back solving the factored system (5). In a similar
manner, the inverse shifted power iteration xnew = (A−σI)−1xold is expressed
in the form (A− σI)xnew = xold. If the shifted matrix A− σI is LU factored,
then the inverse shifted power iteration assures the form (5).
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2 Background - the Monte Carlo method for linear algebra prob-
lems

The basic idea of Monte Carlo methods consists in the following: for the prob-
lem under consideration a random process is built with the property that
the random variables created give the approximate solution of the problem.
Generally speaking, the random process is not unique.

Let J be any functional that we estimate by Monte Carlo method; θN be the
estimator, where N is the number of trials. The probable error for the usual
Monte Carlo method [So73] is defined as parameter rN for which Pr{|J−θN | ≥
rN} = 1/2 = Pr{|J − θN | ≤ rN}. If the standard deviation is bounded, i.e.
D(θN) < ∞, the normal convergence in the central limit theorem holds, so we
have rN ≈ 0.6745D(θN)N−1/2.

Consider a matrix A = {aij}n
i,j=1, A ∈ IRn×n, and vectors f = (f1, . . . , fn)t ∈

Rn×1 and h = (h1, . . . , hn)t ∈ IRn×1. The algebraic transformation Af ∈
IRn×1 is called simple iteration and plays a fundamental role in iterative MC
algorithms.

Consider the Markov chain k0 → k1 → . . . → ki, where kj = 1, 2, . . . , n for
j = 1, . . . , i are natural numbers. The rules for constructing the chain are:

Pr(k0 = α) = pk0 =
|hα|∑n

α=1 |hα| ,

P r(kj = β|kj−1 = α) = pkj−1kj
=

|aαβ|∑n
β=1 |aαβ| , α = 1, . . . , n.

Such a choice of the initial density vector and the transition density matrix
leads to almost optimal Monte Carlo algorithms for matrix computations.

Now define the random variables Wj using the following recursion formula:

W0 =
hk0

pk0

, Wj = Wj−1

akj−1kj

pkj−1kj

, j = 1, . . . , i. (6)

It is shown [So73], that under the conditions for convergence (i), the following
equalities are fulfilled:

E{Wifki
} = (h,Aif), i = 1, 2, . . . ;

E{
∞∑

i=0

Wifki
} = (h, u), E{ ∑

i|ki=r′
Wi} = crr′ ,
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where (i|ki = r′) means a summation only for weights Wi for which ki = r′

and C = {crr′}n
r,r′=1is the inverse of A;

E{Wifki
}

E{Wi−1fki−1
} ≈ λ1(A), for sufficiently large ”i”.

Instead of simple iterations Af ∈ IRn×1 we consider resolvent iterations Rqf ∈
IRn×1, where the so-called resolvent matrix Rq(A, q) depends on the matrix
A and some parameter q. The parameter q will be used to accelerate the
convergence of the MC iterations.

There is no universal strategy to define such a resolvent matrix Rq(A, q) in
order to accelerate the convergence of all possible linear algebra MC algo-
rithms. In order to do it in an efficient way we need some information about
the spectrum of the matrix A (in some cases the needed information is known
as a priori information, or can be easily obtained). It is important to note
that the resolvent matrix Rq as well as Rm

q (m is any natural number) can be
presented as infinite series

Rq =
∞∑

i=1

ciA
i, Rm

q =
∞∑

i=1

kiA
i. (7)

The existence of such representations allows to apply efficient MC algorithms
since the MC technique has a high efficiency when linear functionals of the
powers of the matrices are considered. In fact, when we apply the resolvent
MC algorithms we truncate the sequences (7) after η terms, so that we iterate
with some approximation of Rq and Rm

q . Practically, the resolvent MC algo-
rithms look similar to the simple MC algorithm. The only difference is that
in the resolvent algorithms we use coefficients ci and ki obtained in represen-
tations (7). Every algorithm based on the use of the resolvent matrix we call
resolvent MC (RMC) algorithm. In this work we continue the analysis of RMC
algorithms started in [DK96] and develop a common MC numerical approach
for solving linear algebra problems based on the use of resolvent matrices.

3 Resolvent Monte Carlo algorithms for SLAE

In this section we consider Monte Carlo algorithms for solving linear systems of
equations and matrix inversion in the case when the corresponding Neumann
series does not converge, or converges slowly.

To analyze the convergence of MC algorithms let us rewrite the equation (3)
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in the following form:

u− qLu = f, (8)

where L = {lij}n
i,j=1 ∈ IRn×n, f = {fi}n

i=1 ∈ IRn×n and q is some parameter.
Define the resolvent matrix Rq by the equation I + qRλ = (I − qL)−1, where
I is the identity matrix. Let λ1, λ2, . . . be the eigenvalues of the equation (8),
where it is supposed that |λ1| ≥ |λ2| ≥ . . .. Monte Carlo algorithms are based
on the representation u = (I − qL)−1f = f + qRqf , where

Rq = L + qL2 + . . . , (9)

The systematic error of (9) when η terms are used is

rs = O[(|q|/|λ1|)η+1ηρ−1], (10)

where ρ is the multiplicity of the roots of λ1.

¿From (10) is follows that when q is approximately equal to λ1 the sequence (9)
and the corresponding Monte Carlo algorithm converges slowly. When q ≥ λ1

the algorithm does not converge.

Obviously, the representation (9) can be used for q : |q| < |λ1| to achieve
convergence.

Using the resolvent approach we can show how to accelerate the convergence
of the MC algorithm. Suppose the series (9) converges slowly or does not
converge. We apply a mapping of the spectral parameter q in (8). Consider the
problem of constructing the solution of (8) for q ∈ Ω and q 6= λk, k = 1, 2, . . .,
where the domain Ω is a domain lying inside the definition domain of the Rqf ,
such that all eigenvalues are outside of the domain Ω. In the neighborhood
of the point q = 0 (q = 0 ∈ Ω) the resolvent can be expressed by the series
Rqf =

∑∞
k=0 ckq

k, where ck = Lk+1f is obtained using the simple iterations.

Consider the variable α in the unit circle on the complex plane ∆(|α| < 1).
The function q = ψ(α) = a1α + a2α

2 + . . ., maps the domain ∆ into Ω. Now
it is possible to use the following resolvent

Rψ(α)f =
∞∑

k=0

bkα
k , (11)

where bj =
∑j

k=1 d
(j)
k ck and d

(j)
k = 1

j!

[
∂j

∂αj [ψ(α)]k
]
α=0

.

6



It is clear, that the domain Ω can be chosen so that it will be possible to map
the value q = q∗ into point α = α∗ = ψ−1(q∗) for which the sequence (11)
converges; hence the solution of the functional equation (8) can be presented
in the form u = f + q∗Rψ(α∗)f , where the corresponding sequence for Rψ(α)f
converges absolutely and uniformly in the domain ∆.

To apply this approach one needs some information about the spectrum of
the matrix. Let us assume, for example, that all eigenvalues λk are real and
λk ∈ (−∞,−a], where a > 0 . (The case λk ∈ (−a, a) is easy to handle - we
use MC method with iteration matrix 1/aL.) Consider a mapping for the case
of interest (q = q∗ = 1):

λ = ψ(α) =
4aα

(1− α)2
. (12)

The sequence Rψ(α)f for the mapping (12) converges absolutely and uniformly
[KA77]. In Monte Carlo calculations we truncate the sequence in (11) after η
terms

Rq∗f ≈
η∑

k=1

bkα
k
k =

η∑

k=1

αk
∗

k∑

i=1

d
(k)
i ci =

η∑

k=1

g
(η)
k ck,

where

g
(η)
k =

η∑

j=k

d
(j)
k αj

∗. (13)

The coefficients d
(j)
k = (4a)kC2k−1

k+j−1 and g
(η)
k can be calculated in advance. In

order to calculate the iterations ck = Lk+1f a Monte Carlo algorithm has to
be used.

Now consider the problem of evaluating the inner product (1) J(u) = (h, u) =∑n
α=1 hαuα of a given vector h with the vector solution of the system (2).

Define the random variable θ∗η[h]

θ∗η[h] =
hk0

p0

η∑

ν=0

g(η)
ν Wνfkν , (14)

where W0 = 1, g
(η)
0 = 1 and Wν = Wν−1

lkν−1,kν

pkν−1,kν
, ν = 1, 2, . . . , (k0, k1, k2, . . . is

a Markov chain with initial density function pk0 and transition density function

pkν−1,kν ) and coefficients g
(η)
j are defined by (13) for j ≥ 1. Then

E

{
lim
η→∞

hk0

p0

η∑

ν=0

g(η)
ν Wνfkν

}
= (h, u)

7



and the corresponding Monte Carlo algorithm is given by

ur ≈ 1

N

N∑

j=1

θ∗η[h]j,

where N is the number of chains and θ∗η[h]j is the j-th value of θ∗η[h] defined
by (14).

The same approach is used to calculate the inverse matrix. To find the inverse
C = {crr′}n

r,r′=1 of some matrix A we must first compute the elements of the
matrix L = I − A, where I is the identity matrix. Clearly the inverse matrix
is given by C =

∑∞
i=0 Li, which converges if ‖L‖ < 1. If the last condition

is not fulfilled or if the corresponding Neumann series converges slowly we
can use the same technique for accelerating the convergence of the algorithm.
Estimate the element crr′ of the inverse matrix C Let the vector f given by
(8) be the following unit vector fr′ = e(r′) = (0, . . . , 0, 1, 0, . . . , 0)t (where one
is in the r′ position). Then

E

{
lim
η→∞

η∑

ν=0

g(η)
ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

fr′

}
= crr′ .

The last result permits the use of the following Monte Carlo algorithm for
calculating elements of the inverse matrix C:

crr′ ≈ 1

N

N∑

j=1




η∑

(ν|kν=r′)
g(η)

ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν




j

,

where (ν|kν = r′) means that only the variables W (η)
ν = g(η)

ν

lrk1
lk1k2

...lkν−1kν

prk1
pk1k2

...pkν−1pν

for which kν = r′ are included in the sum.

Observe that since W (η)
ν is only contained in the corresponding sum for r′ =

1, 2, . . . , n then the same set of N chains can be used to compute a single row
of the inverse matrix, an important saving in computation which we make use
of later.

4 Monte Carlo algorithms for computing eigenvalues based on re-
solvent matrix iterations

Here an algorithm for computing eigenvalues based on Monte Carlo iterations
of the matrix A resolvent operator Rq = [I − qA]−1 is presented (it is clear
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that the matrices A and Rq are linear operators). The following representation

Rm
q = [I − qA]−m =

∞∑

i=0

qiCi
m+i−1A

i, |q|λ < 1;

is valid because of the behaviors of binomial expansion and the spectral theory
of linear operators [KA77]. The eigenvalues of the matrices Rq and A are
connected with the equality µ = 1

(1−qλ)
, and the eigenfunctions coincide. The

following expression

µ(m) =
(Rm

q f, h)

(R
(m−1)
q f, h)

−→
m→∞µ =

1

1− qλ
, f ∈ IRn×1, h ∈ IRn×1.

is valid. For a negative value of q, the largest eigenvalue µmax = µ1 of Rq cor-
responds to the smallest eigenvalue λmin = λn of the matrix A. The following
statement is valid:

Let λ′max be the largest eigenvalue of the matrix A′ = {|aij|}n
i,j=1 If q is chosen

such that |λ′maxq| < 1, then

(Rm
q f, h) = E{

∞∑

i=0

qiCi
m+i−1Wih(xi)}. (15)

where W0 =
hk0

pk0
and Wi are defined by (6).

The above statement permits the formulation of the Resolvent MC (RMC)
algorithm for computing eigenvalues. After some calculations one can obtain

λ ≈ 1

q

(
1− 1

µ(m)

)
=

(ARm
q f, h)

(Rm
q f, h)

=
E{∑∞

i=1 qi−1Ci−1
i+m−2Wih(xi)}

E{∑∞
i=0 qiCi

i+m−1Wih(xi)} .

The coefficients Cn
n+m are calculated using the formula: Ci

i+m = C i
i+m−1 +

Ci−1
i+m−1. ¿From the representation µ(m) = 1

1−|q|λ(m) ≈ (h,Rm
q f)

(h,R
(m−1)
q f)

we obtain the

following RMC algorithm for evaluating the smallest eigenvalue:

λ ≈ 1

q

(
1− 1

µ(m)

)
≈ E{∑l

i=0 qiC i
i+m−1Wi+1h(xi)}

E{∑l
i=0 qiCi

i+m−1Wih(xi)}
,

where W0 =
hk0

pk0
and Wi are defined by (6).

Since the initial vector f can be any vector f ∈ IRn×1 (in particular, a unit
vector), the following formula for calculating λmin is used

λ ≈ E{W1 + qC1
mW2 + q2C2

m+1W3 + . . . + qlC l
l+m−1Wl+1}

E{1 + qC1
mW1 + q2C2

m+1W2 + . . . + qlC l
l+m−1Wl} ,
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that is

λ ≈
1
N

∑N
j=1{

∑l
i=0 qiCi

i+m−1Wi+1}j

1
N

∑N
j=1{

∑l
i=0 qiCi

i+m−1Wi}j

.

Using the same presentations for a positive value of q we formulate the RMC
algorithm for calculating the dominant eigenvalue.

5 Parallel implementation

In this section a parallelization of the Monte Carlo algorithms is considered.
Estimates for time (algorithm complexity), speedup and parallel efficiency are
obtained. These estimates are confirmed by numerical tests performed on a
cluster of workstations. We establish the results illustrating:

• high parallel efficiency and good speedup;
• independence between computing time and matrix size for large sparse ma-

trices.

Advantages and disadvantages of the MC algorithms in the context of its
parallel realization using MPI are presented and discussed.

5.1 Time, speedup and parallel efficiency estimations

Consider a multiprocessor configuration consisting of p nodes (processors).
Every node performs its own instructions on the data in its own memory.
The inherent parallelism of the Monte Carlo methods lies in the possibility of
calculating each realization of the random variable θ on a different processor.
There is no need for communication between the nodes during the time of
calculating the realizations - the only need for communication occurs at the
end when the averaged value is to be calculated.

We consider the parallel efficiency Ef as a measure characterizing the quality
of the proposed algorithms. We use the following definition:

Efp(X) =
Sp(X)

p
=

ET1(X)

pETp(X)
,

where by X we denote the Monte Carlo algorithm, ETi(X) is the expected
value of the computational time for implementing the algorithm X on a sys-
tem of p nodes and Sp(X) is the speedup of the algorithm X realized on p
processors.
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5.2 Estimations for the resolvent based MC algorithm

Every move in a Markov chain is done according to the following algorithm:

• (i) generation of a random number (it is usually done in k arithmetic oper-
ations where k = 2 or 3);

• (ii) determination of the next element of the matrix : this step includes a
random number of logical operations 2 ;

• (iii) calculating the corresponding random variable.

Since the Monte Carlo Almost Optimal (MAO) algorithm is used (see, [Di86]),
the random process never visits the zero-elements of the matrix A. (This is one
of the reasons why MAO algorithm has high algorithmic efficiency for sparse
matrices.) Let di be the number of non-zero elements of the i-th row of the
matrix A. Obviously, the number of logical operations γL in every move of the
Markov chain can be estimated using the following expression

EγL ≈ 1

2

1

n

n∑

i=1

di =
1

2
d. (16)

Since γL is a random variable we need an estimation of the probable error of
(16). It depends on the balance of the matrix. For matrices which are not very
disbalanced and of not very small-size, the probable error of (16) is negligible
small in comparison with γL. The number of arithmetic operations, excluding
the number of arithmetic operations k for generating the random number is
γA. The mathematical expectation of the operations needed for each move of
any Markov chain is

Eδ = (k + γA)sA +
1

2
dsL,

where sA and sL are the numbers of sub-operations of the arithmetic and
logical operations, respectively. In order to obtain the initial density vector
and the transition density matrix, the algorithm needs di multiplications for
obtaining the i-th row of the transition density matrix and 2dn arithmetic
operations for constructing the transition density matrix {pαβ}n

α,β=1, where d is
determined by (16). Thus, the mathematical expectation of the computational
complexity (total time of the algorithm) becomes

ET1(RMC) ≈ 2
[
(k + γA)sA +

1

2
dsL

]
lN + 2n(1 + d)sA, (17)

2 Here the logical operation deals with testing the inequality ”a < b”.
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where l is the numbers of moves in every realization of the Markov chain,
and N is the number of realizations. It is worth noting that the main term
of (17) does not depend on the size n of the matrix. It depends linearly on
the mean value of the number of the non-zero elements per row. This result
means that the time required for calculating the eigenvalue of a sparse matrix
by RMC practically does not depend on n. The parameters l and N depend
on the spectrum of the matrix, but do not depend on the size n. The above
mentioned result was confirmed for a wide range of matrices during the actual
numerical experiments. It is easy to see that the main term in our estimate (17)
coincides with Halton’s result [Ha92] in the case of dense matrices, because of
d = n.

Now one can estimate the speedup Sp(RMC) of a multiprocessor with p nodes

Sp(RMC) ≈
[
(k + γA)sA + 1

2
dsL

]
lN + n(1 + d)sA[

(k + γA)sA + 1
2
dsL

]
lN

p
+ n

[
1 + d

p

]
sA

.

Suppose that
[
(k + γA)sA + 1

2
dsL

]
lN = 1

ε
n(p + d)sA, where ε is a small posi-

tive number. Then for every p ≥ 1

Sp(RMC) ≥ p

1 + ε
≥ 1.

For the parallel efficiency we have: 1
1+ε

≤ Efp(RMC) ≤ 1. The last inequality
shows that the parallel efficiency of RMC algorithm can be really very close
to 1.

5.3 Numerical tests

The numerical tests are made on a cluster of 48 Hewlett Packard 900 series
700 Unix workstations under MPI (version 1.1), [MPI]. The workstations are
networked via 10Mb switched ethernet segments and each workstation has at
least 64Mb RAM and run at least 60 MIPS. Each processor executes the same
program for N/p number of trajectories, i.e. it computes N/p independent
realizations of the random variable (here p is the number of nodes). At the
end the host processor collects the results of all realizations and computes the
desired value. The computational time does not include the time for initial
loading of the matrix because we consider our problem as a part of bigger
problem (for example, spectral portraits of matrices) and suppose that every
processor constructs it.

The test matrices are sparse and stored in packed row format (i.e. only nonzero
elements). The results for the average time of the algorithm to compute the
eigenvalues are given in Tables 1 and 2. The relative accuracy of all calculated
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Table 1
Implementation of simple iterative MC algorithm using MPI (number of tra-

jectories - N = 105).

Number of

nodes 1 2 3 4 5

Time T (ms) T (ms) T (ms) T (ms) T (ms)

matrix

n = 128 34 17 11 8 7

matrix

n = 1024 111 56 37 27 21

matrix

n = 2000 167 83 56 42 35

Table 2
Implementation of Resolvent Monte Carlo Algorithm for evaluation of λmax

using MPI (number of trajectories - N = 105; q > 0).

Number of

nodes 1 2 3 4 5

Time T (ms) T (ms) T (ms) T (ms) T (ms)

matrix

n = 128 18 9 6 4 3

matrix

n = 1024 30 15 10 7 6

matrix

n = 2000 21 11 7 5 4

values is 10−3. The results show that the speedup is almost linear. For some
calculations we have a superlinear speedup which could be explained by the
more efficient use of the high RAM memory when the number of processor
increases.

Our numerical tests of solving linear systems as well as for computing eigen-
values of real symmetric sparse matrices show that the computational time of
the resolvent MC algorithms decreases with a factor of 2 to 8 times in com-
parison with the time of the corresponding simple iterative MC. The factor of
improvement of the complexity depends on the mean value of the number of
non-zero elements per row of the original and resolvent matrices as well as of
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the norms of the resolvent and original matrices and does not depend on the
size of the matrices. This factor also depends on the truncation error of the
series presenting the resolvent matrix using η terms. We do this comparison
for the same accuracy reached by using both approaches - the simple iterative
MC and the resolvent MC.

6 Concluding remarks

For solving linear algebra problems we consider a common approach based on
resolvent matrix MC iterations. This approach can be applied if some a priori
information is available. It improves the convergence of the algorithms. All we
need is to find the coefficients in the representation of the resolvent matrix
and use them to define the random variable used in the calculations.

We analyze the computational complexity, speedup and efficiency of the resol-
vent algorithm in the case of dealing with sparse matrices. It is shown that for
sparse matrices the computational complexity depends linearly on the mean
value of the number of non-zero elements per row and does not depend on the
size of the matrix. As a special case our result coincides with Halton’s result
obtained for dense matrices.

Our numerical results obtained on a cluster of computers using MPI for large
sparse matrices demonstrate linear speedup and high parallel efficiency of the
algorithms.
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