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Abstract. The problen of the backscattering of electrons from metal
targets is subject of extensive theoreticel and experimental work in sur-
face analysis. We are interested in the angular distribution of the back-
scattered electrons. The flow of electrons satisfies an integral equation,
which might be solved by Monte Carlo methods. The Monte Carlo ap-
proach, used by A.Dubus, A. Jablonski and S.Tougaard in their paper
“Evaluation of theoretical models for elastic electron backscattering from
surfaces” (1999), is based upon direct simulation of the physical process.
We introduce different weights in the Monte Carlo algorithm, which de-
crease the variance. We also introduce artificial absorption probability
and demonstrate significant improvements in the efficiency of the algo-
rithm. Results of extensive numerical tests are presented.

1 Introduction

We consider the distribution of the “elastically backscattered” electrons, when
a monoenergetic beam of electrons is bombarding a metal target. Studying the
distribution of the emitted electrons with the same energy as the incident elec-
trons is important for many experimental techniques, like disappearance-potential
spectroscopy, high-energy appearance potential spectroscopy, scanning electron
microscopy and others (see, e.g., [8,5,4]).

Usually the solid is considered as a homogeneous semi-infinite medium. The
electrons undergo elastic collisions with the randomly distributed ionic cores,
and the inelastic collisions are interpreted as absorption events, since only in the
distribution of the same energy electrons is considered. Therefore the electron
transport problem is a monoenergetic one. In [1] the problem is formulated in
terms of a Boltzmann equation and then many different numerical methods are
compared. The Monte Carlo approach is considered as one of the most accurate
ones from theoretical viewpoint. However, in order to decrease the statistical
error, long computational times are needed. Having the FORTRAN sources of
the programs, used for the Monte Carlo computations in [1], we were able to
substantially reduce the computational times, needed to obtain results with the
same statistical error.
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2 Overview of the Problem

We consider the electron transport problem, when a metal target is bombarded
by a beam of electrons, and we are only interested in the flow of electrons with the
same energy as initially. In [1], using the fact that the problem is monoenergetic,
the target is homogeneous, etc., it is shown that the flow of electrons Φ(z,Ω)
satisfies the following simplified form of the Boltzmann equation:

µ
∂Φ
(
z,Ω

)
∂z

+ΣtΦ
(
z,Ω

)
=
∫
4π

Σs(Ω
′
→ Ω)Φ(z,Ω

′
)dΩ

′
, (1)

where µ = Ω lz = cosθ is the cosine of the angle of the electron direction with
respect to the inward normal to the surface lz. The total cross-section Σt (inverse
mean free path) and the scattering cross-section Σs are constants, specific to
the material of the solid. The boundary condition describes the incoming flux of
electrons:

Φ
(
0, Ω

)
=
J0
|µ0|δ(Ω −Ω0), Ω lz ≥ 0,

corresponding to the interaction on the boundary vacuum - solid (Ω0 is the
initial angle). Such an equation may be transformed into an integral equation of
the form Φ = KΦ + Φ0, as one can see for instance in more general setting in
([2], p. 169–173). When Φ depends on 6 variables - r = (x, y, z) for the position
and ω = (ω1, ω2, ω3) for the direction of the electron, the integral equation has
a kernel

K(r′, ω′, r, ω) =
Σsg(µ) exp(−Σt|r′ − r|)

2π|r′ − r|2 δ

(
ω − r − r′

|r′ − r|
)
, µ =

(ω′, r − r′)
|r − r′| .

Since the problem is isotropic, as it was pointed out also in [1], the equations
becomes two-dimensional, the variables are z and the angle w between the z-
axis and the direction of the electron. In order to estimate the distribution of
the backscattered electrons, we compute the integrals:

π∫
0

Φ(0, w)ψj(w)dw, (2)

where ψj(w) = H(w−aj+1)−H(w−aj), j = 1, 20, H being the Heaviside func-

tion, and aj = cos
(
4.5π(j − 1)

180

)
, j = 1, 21. This is equivalent to computing

the following functional of the solution:

∞∫
0

π
2∫

0

Φ(z, w)δ(z)ψj(w)dwdz. (3)

In the following we consider only the case when the initial angle w0 is π. However,
the algorithm and the computer program can deal with any value of w0.
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The statistical error of a Monte Carlo algorithm for finding linear functionals
of the solution of such an integral equation is measured by the variation of the
corresponding random variables, if the estimates are nonbiased. Since in our case
we are using 20 random variables, then the sum of all 20 variations measures the
statistical error of the method, as in ([2], p. 161).

Sobol in ([11], p. 97) introduced the notion of computational complexity C(A)
of a Monte Carlo algorithm A (when the estimate is nonbiased and the rate of
convergence O(N− 1

2 ) as the product of the (in our case cumulative) variation
and the CPU time for realization of one instance of the random variable (in our
case - trajectory).

The idea is that if one of the algorithms has 2 times smaller computational
complexity than the other, than on the average 2 times less time is needed for
the same accuracy. In the sequel we are going to compare the computational
complexity of our improved algorithms with the original Monte Carlo algorithm
of Dubus, Jablonski and Tougaard. Since CPU times are involved, this measure
depends on the computer architecture. While we present results only for SGI
Origin 2000, the same calculations performed on Intel Pentium processor yield
similar results. For the comparisons we use the empirical value of the varia-
tion, obtained during the calculations. We note that this value is obtained with
sufficient accuracy (apparently within 5 %).

3 Description of the Improved Monte Carlo Algorithm

In the sequel the letter U denotes a uniformly distributed pseudo-random num-
ber, taken from the pseudo-random number generator. We had two different
approaches for generating suitable random variables. The first one is preferable
when only one of the functionals has to be calculated, the second one when all
20 functionals are to be calculated with one run of the program.
1. Read initial data:
(a) parameters of the problem - element’s atomic number Z, energy of the

electrons E (in eV), initial angle of the electrons w0;
(b) parameters of the algorithm - algorithm version -A.1 or A.2, absorption

probability - constant or variable, absorption parameter ε, number of points
Ntr.

2. Calculate some physical constants:
(a) the elastic scattering cross-section σel is taken from the database and the

mean free path λ is calculated as
1

Nσel
, where N is the atomic density of

the target. By σc we denote
1
λ
;

(b) the inelastic mean free path (IMFP) λin =
E

E2
p

{
β ln(γE)− C

E + D
E2

} , where
Ep, β, γ, C,D are taken from the database physical constants (see [12]),
corresponding to the element’s atomic number Z, and E is the energy of
the electrons;
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(c) the full scattering cross-section σ = σc +
1
λin

;

(d) load from database the arrays xi and yi, describing the distribution of the
scattering angle.

3. The interval
[
0,
π

2

]
is divided into 20 sectors (αi, αi+1), i = 1 . . . 20.

4. For j = 1 to Ntr:
(a) Set initial data

i. number of collisions i = 0;
ii. weight W0 =

σc

σ
;

iii. the cosine of the initial angle with z-axis: u0 = − cosw0;

iv. the z coordinate of the first collision z0 = − 1
σu0

logU .

(b) Calculate cosine of the new angle with z axis after the collision:

ui+1 = ui cos(θ) +
√
1− u2i cos(πU)

√
1− cos2θ.

where θ is the scattering angle. The FORTRAN procedure used by Dubus,
Jablonski and Tougaard is applied for generating θ.

(c) Calculate the contribution of the collision to the functionals:
i. If the version is A.1, go to 4.3.2, if it is A.2, go to 4.3.3.
ii. For k = 1 to 20 calculate the contribution of the point to the kth func-
tional:
– choose random direction inside the kth sector by generating a uniformly
distributed angle ξ in the interval [0, π) - ξ = πU1, and a uniformly
distributed angle w in the interval [αk, αk+1) - w = αk+(αk+1−αk)U2.

– Calculate the scattering angle r by

r = arccos
(
ui cosw +

√
1− u2i cos ξ sinw

)

if ui �= 1, else set r = π − w;
– calculate the azimuthal angle ϕ = arccos

cosw − ui cos r√
1− u2i sin r

;

– calculate the Jacobian of the change of variables:

J(ξ, w) =

∂r

∂w

∂ϕ

∂w

∂r

∂ξ

∂ϕ

∂ξ

∂r

∂w
= − 1

sin r

(
−ui sinw +

√
1− u2i cos ξ

)
,

∂r

∂ξ
=

√
1− u2i cos ξ sinw

sin r
,
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∂ϕ

∂w
=
sinw − ui sin r ∂r

∂ξ + cot r
∂r
∂w (cosw − ui cos r)√

1− u2i sinϕ sin r
,

∂ϕ

∂ξ
= − (ui − cot r (cosw − ui cos r))√

1− u2i sinϕ sin r
∂r

∂ξ
,

when ui = π the Jacobian J(ξ, w) is 1;
– the density p(r) is calculated by

p(r) =
1
200

((√
1− cos r

2
− xl

)
yl+1 − yl
xl+1 − xl

+ yl

)
×

sin r
(xl+1 − xl)(yl+1 + yl)

√
2(1− cos r)

,

where l is determined such that r ∈ [arccos(1−2x2l ) , arccos(1−2x2l+1)].
– the contribution of the point to the kth functional is

|J(ξ, w)| p(r) exp
(
σ
zi
ui

)
Wi

and is added to the estimator Sk go to (4.4).
iii. If the new direction, determined by the cosine is upwards (i.e. ui+1 > 0)

then determine for which k we have

ui ∈ [arccosαk+1, arccosαk) and add exp
(
σ
zi
ui

)
Wi to the estimator Sk.

(d) Increase the number of collisions - i = i+ 1.
(e) Calculate the new z coordinate of the electron, using the new cosine: zi =

zi−1 +
1

σui−1
logU .

(f) If zi < 0 then the electron has gone out of the surface, so go to 4.
(g) If i = 1 we do not allow the electron to be absorbed, so set the new weight

Wi equal to Wi−1 and go to (4.11).
(h) Calculate the threshold h depending on the absorption type, h = 1 − ε, if

constant absorption type, h = exp(εzi−1) if variable.
(i) Compare random number U with h, and if it is smaller, go to 4.

(j) Change the weight: Wi =
Wi−1

h
.

(k) Set Wi =
σc

σ
Wi and go to (4.2).

4 Numerical Experiments and Conclusions

This section contains results from the calculations of the distribution of the
elastically backscattered electrons are presented in the following tables. Experi-
ments are carried out for energies of the electrons 100, 500, 1000 and 5000 eV,
and for targets made of Aluminum, Copper, Silver and Gold. The CPU times
are from computations on SGI Origin 2000, using double precision floating point
arithmetics. Similar improvement ratios were observed on Intel processors.
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Table 1. The best results for each energy and atomic number.

Z Alg. E(eV) Eps Prob. Ntr D C(.) C(Orig)/C(A)
13 Orig. 100 107 3.51E-02 1017 3.57E-06

A.1 100 0.2 var. 105 4.03E-04 23 9.30E-08 38
A.2 100 0.3 var. 106 1.34E-02 15 1.96E-07 18
Orig. 500 107 1.22E-02 1421 1.73E-06
A.1 500 0.1 var. 105 1.04E-03 22 2.32E-07 7
A.2 500 0.4 const. 106 5.49E-03 19 1.05E-07 16
Orig. 1000 107 5.56E-03 1634 9.09E-07
A.1 1000 0.4 const. 105 8.42E-04 29 2.47E-07 4
A.2 1000 0.4 const. 106 2.72E-03 19 5.28E-08 17
Orig. 5000 107 7.28E-04 1938 1.41E-07
A.1 5000 0.2 var. 105 2.64E-04 16 4.33E-08 3
A.2 5000 0.3 var. 106 6.58E-04 11 7.49E-09 18

29 Orig. 100 107 4.91E-02 1029 5.05E-06
A.1 100 0.1 var. 105 1.67E-03 33 5.59E-07 9
A.2 100 0.4 const. 106 2.22E-02 18 4.08E-07 12
Orig. 500 107 3.90E-02 1277 4.98E-06
A.1 500 0.3 const. 105 6.97E-03 34 2.38E-06 2
A.2 500 0.3 const. 106 2.32E-02 23 5.27E-07 9
Orig. 1000 107 2.59E-02 1460 3.78E-06
A.1 1000 0.3 const. 105 1.22E-02 35 4.33E-06 0.9
A.2 1000 0.3 const. 106 1.84E-02 23 4.30E-07 9
Orig. 5000 107 4.82E-03 1869 9.01E-07
A.1 5000 0.2 const. 105 9.11E-03 52 4.74E-06 0.2
A.2 5000 0.2 const. 106 4.23E-03 33 1.40E-07 6

47 Orig. 100 107 2.85E-02 1285 3.66E-06
A.1 100 0.1 var. 105 1.81E-03 38 6.89E-07 5
A.2 100 0.1 var. 106 1.45E-02 26 3.77E-07 10
Orig. 500 107 3.47E-02 1244 4.32E-06
A.1 500 0.4 const. 105 5.61E-03 28 1.55E-06 3
A.2 500 0.4 const. 106 1.95E-02 19 3.65E-07 12
Orig. 1000 107 2.82E-02 1373 3.87E-06
A.1 1000 0.3 const. 105 7.51E-03 35 2.60E-06 2
A.2 1000 0.4 const. 106 1.97E-02 19 3.74E-07 10
Orig. 5000 107 8.20E-03 1790 1.47E-06
A.1 5000 0.4 var. 105 9.16E-03 16 1.51E-06 1
A.2 5000 0.3 const. 106 8.77E-03 24 2.10E-07 7

79 Orig. 100 107 1.97E-02 1406 2.77E-06
A.1 100 0.1 var. 105 2.18E-03 41 8.84E-07 3
A.2 100 0.1 var. 106 1.11E-02 27 3.04E-07 9
Orig. 500 107 2.67E-02 1331 3.55E-06
A.1 500 0.1 var. 105 6.40E-03 29 1.83E-06 2
A.2 500 0.3 const. 106 1.53E-02 23 3.55E-07 10
Orig. 1000 107 3.49E-02 1331 4.64E-06
A.1 1000 0.1 var. 105 1.82E-02 24 4.42E-06 1
A.2 1000 0.3 const. 106 2.21E-02 23 5.07E-07 9
Orig. 5000 107 1.72E-02 1688 2.90E-06
A.1 5000 0.2 var. 105 8.58E-02 17 1.50E-05 0.2
A.2 5000 0.2 const. 106 1.55E-02 32 5.03E-07 6
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Table 2. Numerical experiments for Copper, electron energy 100eV.

Alg. Eps Prob. Ntr D Time C(.) C(Orig)/C(A)

Orig. 107 4.91E-02 1029 5.05E-06
A.1 0.1 var. 105 1.67E-03 33 5.59E-07 9
A.1 0.1 const. 105 1.58E-03 67 1.06E-06 5
A.1 0.2 var. 105 2.34E-03 26 6.04E-07 8
A.1 0.2 const. 105 1.68E-03 42 7.04E-07 7
A.1 0.3 var. 105 9.52E-03 23 2.15E-06 2
A.1 0.3 const. 105 1.88E-03 32 6.01E-07 8
A.1 0.4 var. 105 7.71E-03 21 1.61E-06 3
A.1 0.4 const. 105 2.22E-03 27 5.89E-07 9
A.2 0.1 var. 106 1.88E-02 23 4.40E-07 11
A.2 0.1 const. 106 1.84E-02 44 8.17E-07 6
A.2 0.2 var. 106 2.30E-02 18 4.20E-07 12
A.2 0.2 const. 106 1.90E-02 28 5.38E-07 9
A.2 0.3 var. 106 3.06E-02 16 4.94E-07 10
A.2 0.3 const. 106 2.01E-02 22 4.40E-07 11
A.2 0.4 var. 106 4.34E-02 15 6.50E-07 8
A.2 0.4 const. 106 2.22E-02 18 4.08E-07 12

In Table 2 results for different values of the parameter ε of the two versions
A.1 and A.2 and of the original algorithm are shown. In Table 1 the best com-
putational results of both versions of our algorithm A.1 and A.2 are presented.
In the tables one can see for each test the algorithm that was used, the elements
atomic number, the absorption probability type - variable or constant, the num-
ber of trajectories used in the calculations, the empirical cumulative variance,
the CPU time needed, the computational complexity of the algorithm and its
ratio with the computational complexity of the algorithm of Dubus, Jablonski
and Tougaard.

Figure 1 shows the results for the distribution of the backscattered electrons,
when target is Gold, energy is 1000eV, and the number of trajectories is chosen
so that the CPU time of the original and the improved Monte Carlo algorithm
is made equal. The results of the experiments show that the proposed approach
- adding an artificial absorption probability, controlled by the parameter ε,may
lead to substantial improvement of the efficiency of the Monte Carlo algorithm.
Although the first algorithm is in general less efficient than the second one, it
has the advantage that when the value of only one of the functionals is needed,
it requires about 5 times less operations, than for all 20, while the original one
and the second algorithm requires almost the same number of operations, as for
all 20. Taking this into account, it appears that if we are interested only in the
flow of backscattered electron in certain direction, we should use version A.1,
but if we need the distribution of electrons in all sectors, we should use version
A.2. One can also see that the first version is more efficient when the energy of
the electrons is smaller.
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Fig. 1. Comparison of the results of the original and the new algorithm for Gold,
electron energy 1000eV

Another observation is that in general when the atomic number is higher,
lower values of ε should be used.

We also note that theoretically the estimate used by Dubus, Jablonski and
Tougaard has small bias, since they assume that if an electron trajectory is
more than 40λ, the eventual contribution of such electron to the functionals is
neglectable. Our algorithm provides unbiased estimates.
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