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Chapter 1

APPLICATIONS: MONTE
CARLO SENSITIVITY
SIMULATIONS TO THE
PROBLEM OF AIR POLLUTION
TRANSPORT

The aim of this chapter is to develop a special Monte Carlo sensitivity technique in
order to study the influence of some input parameters of the atmospheric chemistry
to the level of concentrations of pollutants in a real-live scenario of air-pollution
transport over Europe.

First, the developed technique is applied on the box-model in order to study the
sensitivity of the concentrations of some important pollutants (like NO2 and O3). It
is shown that the most important parameter (from the point of view of sensitivity
simulations) is the rate constant of the reaction producing NO2 from O3 and NO.
The results are sensitive to small variances of the rate constant.

Second, the developed Monte Carlo simulation technique is applied to the Danish
Eulerian Model. For running the model to get realistic results for a real-live scenario
of air-pollution transport the vector machine CRAY Y-MP C90A is used.

It is shown that the results of the real-life modeling of air-pollution transport are
not equally sensitive to different parameters used in the model as input parameters.
There are some parameters (like the rate constant of the reaction producing NO2 from
O3 and NO), which are very important since the results are sensitive to small changes
of the values of these parameters. In this sense the Monte Carlo sensitivity simulation
could by used as a special ”advisor” to physicists, because this simulation permits to
find how accurately the input parameters have to be measured, as well as how much
theory is needed to describe some of the processes of air-pollution transport.

High concentrations and/or depositions of certain chemical species may cause
damages on plants, animals and humans. Such species can be transported over long
distances. Therefore areas far away from the large emission sources can also be
highly polluted (under certain meteorological conditions, at least). That is why it is
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necessary to study the pollution levels on large space domains (e.g. on space domains
containing a given continent). Big mathematical models are indispensable tools in the
attempts to determine the levels of concentrations and depositions of the harmful air
pollutants on very large space domains. Such models are often described by systems
of partial differential equations (the number of equations being equal to the number of
chemical species studied by the model). Discretization and splitting techniques lead
to the solution, over thousands of time-steps, of several very large systems of ordinary
differential equations. It is not uncommon that each of these systems contain several
million equations. This means that the computational tasks arising in the treatment
of large-scale air pollution models are enormous, and great difficulties arise even when
modern high-speed computers are used. Therefore, it is highly desirable to simplify
as much as possible the model. One way to do this is to apply the simplest physical
and chemical mechanisms which will still ensure the achievement of reliable results. A
careful sensitivity analysis is needed in order to decide where and how simplifications
can be made.

In this chapter the first step in a procedure, related to the sensitivity of the concen-
trations and depositions to variations of certain chemical rate constants, is described.
We started by determining qualitatively a rate constant the variation of which causes
big variations of the concentrations of two selected chemical species (nitrogen di-oxide
and ozone), which are harmful when their concentrations and/or depositions are high.
A simple box model has been used in these tests. After that a big mathematical model
for studying air pollution levels in Europe, the Danish Eulerian Model, has been used
to study quantitatively the effect of varying the selected chemical rate constant to the
concentrations of the two most involved chemical species in different parts in Europe.
A Monte Carlo technique has been used in these tests. The results show that the
variations of the concentrations in different parts of Europe are different, although the
variations of the rate constant were the same at all grid-points in the space domain.

High pollution levels may lead to the destruction of eco-systems and may cause
damages on plants, animals and humans. Therefore, the pollution levels must be stud-
ied carefully. It is necessary to find out whether the pollution levels are under some
critical levels and, if they are, to find reliable control strategies to keep them there.
These tasks can be solved successfully by developing and using reliable mathematical
models for studying different pollution phenomena. These models must satisfy several
important requirements:

1. The mathematical models must be defined on large space domains, because the
long range transport of air pollution is an important environmental phenomenon
and high pollution levels are not limited to the areas where the high emission
sources are located.

2. All relevant physical and chemical processes must be adequately described in
the models used.

3. Enormous files of input data (both meteorological data and emission data) are
needed.
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4. Also the output files are normally very big, and fast visualization tools must
be used in order to represent the trends and tendencies, hidden behind many
megabytes (or even many gigabytes) of digital information, so that even non-
specialists can easily understand them.

If all these requirements are satisfied, then the treatment of the mathematical
models will lead to very large computational tasks. Indeed, the application of dis-
cretization and splitting procedures leads to several systems of ordinary differential
equations. Every system may contain several millions of equations and has to be
treated during many time-steps (as a rule several thousand time-steps). It is clear
that these computational problems will cause difficulties even when big modern com-
puters are used. That is why it is often necessary to perform some simplifications
in the model. Such simplifications must be made so that the output results are still
reliable. In order to satisfy the last requirement, one has to investigate how the
changes of some parameters or some physical and chemical mechanisms will influence
the output results. If the output results are not very sensitive to the variations of
certain parameter or mechanism, then this means that the model can be simplified
by choosing a simpler algorithm to calculate the parameter under consideration or to
describe the mechanism under consideration by a simpler algorithm. If the output
results are sensitive to changes in a given parameter of the algorithm, then one must
be more careful: the parameter must be calculated in a more accurate way (by a more
complicated algorithm), the mechanism must be described by a more advanced (and,
again, more complicated) algorithm. This short discussion shows that it is useful
to perform some sensitivity analysis in order to understand better the relationships
between parameters and/or mechanisms used in the model and the output results.

The chemical reactions that take place under the transport are one of the most im-
portant processes. Therefore, we decided to concentrate our attention to the chemical
reactions. We shall not present a comprehensive sensitivity analysis of the relation-
ships between changes of the chemical rate constants and the output results, because
this is a very difficult task. Instead of this we shall try to determine which reaction
is the most important one for two selected chemical species (nitrogen di-oxide and
ozone). Then we shall study the influence of changes of the chemical rate constant
of this reaction on the nitrogen di-oxide and ozone concentrations. This is done by
using a special Monte Carlo sensitivity technique.

The chapter is organized as follows. Short information about the particular math-
ematical model (the Danish Eulerian Model), which is used in the computations will
be given in Section 1.1. The Monte Carlo algorithm used will be presented in Section
1.2. A special simple model, called the box model, will be used in Section 1.3 to de-
termine the chemical reaction which is the most important for nitrogen di-oxide and
ozone (changes of the chemical rate constant of this reactions lead to great changes of
the concentrations of these two species). After that, In Section 1.4, the Monte Carlo
algorithm described in Section 1.2 will be used to study the changes of the concen-
trations of nitrogen di-oxide and ozone in different European area that are caused
by changes of the chemical rate constant. Finally, some concluding remarks will be
given in Section 1.5.
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1.1 The Danish Eulerian Model

The Danish Eulerian Model, (see [Zl95]) is described mathematically by the following
system of partial differential equations:
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The number q of equations in this system is equal to the number of chemical
species that are studied by the model. This number varies from 10 to 168 in the
experiments described in [Zl95]. The other quantities involved in the model can be
described as follows (see again [Zl95] for more details):

• the unknowns cs are concentrations of the chemical species,

• u, v and w are the components of the wind along the coordinate axes,

• Kx, Ky and Kz are diffusion coefficients,

• the emissions in the space domain are represented by the functions Es,

• k1s and k2s are coefficients of dry and wet deposition respectively (s = 1, . . . q),

• the chemical reactions between species are described by the non-linear functions
Qs(c1, c2, . . . cq), where s = 1, 2, . . . , q (the condensed CBM IV scheme that was
proposed by [GWKD89], see also [Zl95], is the particular chemical scheme which
will be used here).

It is very difficult to treat directly the system (1.1). Therefore, some kind of
splitting is to be used. Splitting according to the major physical processes is very
popular; see, for example, [Ma85], [MGS84] and [Zl95]. Such splitting procedures
lead often to five sub-models which are to be treated cyclicly at every time-step
([Zl95]). These sub-models describe the horizontal advection, the horizontal diffusion,
the chemical reactions (1.4) including the emissions, the deposition and the vertical
exchange.
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Five large systems of ordinary differential equations can be obtained from the
sub-models (1.2)-(1.6) by applying any space discretization method:

dg(i)/dt = f (i)(t, g(i)) , g(i) ∈ RNx×Ny×Nz×Ns , f (i) ∈ RNx×Ny×Nz×Ns , (1.7)

where Nx, Ny and Nz are the numbers of grid-points on the grid-lines parallel to the
coordinate axes and Ns = q is the number of chemical species involved in the model.
The function f (i) is a vector-function whose components are approximations to the
concentrations at the grid-points, while f (i) depends on the particular discretization
method applied to the corresponding sub-model (see [Zl95]).

The number of equations in any of the five ODE systems in (1.7) is equal to
the product of the number of grid-points and the number of species. Thus, if
Nx = 96, Ny = 96, Nz = 10 and Ns = 35, then every ODE system contains 3225600
equations. Furthermore, the five ODE systems are to be treated numerically dur-
ing many time-steps (typically several thousand time-steps are needed). This shows
that the numerical treatment of large-scale air pollution models leads to very big
computational problems. This is why both fast numerical algorithms and high speed
computers are to be used.

The chemical sub-model is the most time-consuming part of the model. Therefore,
one should be very careful when numerical algorithms for this sub-model are selected.
The algorithms chosen must be fast. Furthermore, these must be efficient when high
speed computers are used. The difficulties that have to be overcome when the chemical
sub-model is treated are discussed in [SZ97]. It is important, however, to emphasize
the fact that the chemical sub-model consists of Nx × Ny × Nz independent ODE
systems. Each of these systems contains Ns = q equations and can be rewritten as

dg/dt = f(t, g), g ∈ RNs , , f ∈ RNs , (1.8)

where g is a vector whose components are approximations to the concentrations at a
given grid-point, while the right-hand-side vector f depends on the chemical mech-
anism which is used in the model (1.1). It is clear now that (1.8) can sometimes be
considered (instead of the whole chemical sub-model) in studies of some phenomena
which are directly connected to the chemical scheme. The much simpler model (1.8)
will be called the box-model. The box model will be used in Section 1.3.

The two-dimensional version of (1.1) is often used in the computations. We shall
use the two-dimensional version in Section 1.4.

1.2 An Algorithm for Monte Carlo Simulation

Monte Carlo (MC) simulation algorithms are algorithms for solving problems from
different fields of science and engineering by using random variables. In general, the
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MC algorithms replace the task of finding an approximation to the exact solution
with the task of finding an approximation of the mathematical expectation and some
other statistical characteristics of the solution of the problem solved. Let the scalar
variable J be the desired solution of the problem or some desired linear functional of
the solution. A random variable ξ with a mathematical expectation equal to J must
be constructed so that Eξ = J . An approximation to J can be computed as a mean
value by using n independent values ξ1, ξ2, . . . , ξn, of ξ,

J ≈ 1

n
(ξ1 + ξ2 + . . . + ξn) . (1.9)

Monte Carlo simulations are often used to evaluate some important statistical
characteristics of the solution, such as the standard deviation, variance, skewness
and, so on (see, for example, [So73] for more details)

Very often the Monte Carlo simulation is used to study complicated systems and
phenomena when these can be treated as a black box. The main idea is to ”introduce”
some random parameter or random field in the input of the black box and to treat
the calculated results by using well known statistical algorithms. There are two main
problems in a such Monte Carlo simulation:

• how to simulate the input random parameter with a priori given statistical char-
acteristics (mean value, standard deviation, and so on) in order to be sure that
the considered realization of the random parameter is ”near” to the theoretical
one in some measured space

and

• how to handle the output results in order to measure the sensitivity of the black
box to the considered input parameter?

There are many well known generators of normally distributed or uniformly dis-
tributed random variables, which can be used for producing high quality ”input” data
with a priori given statistical characteristics. The generator of the uniformly dis-
tributed random variables used here is based on a special function f(x), see [So73],
which:

• is defined on the interval [0, 1],

• satisfies 0 ≤ f(x) ≤ 1,

• its graph is ”dense” in the unite cube.

It is necessary to take a linear combination of a large number k of values of the
defined above special function f(x) in order to obtain normally distributed random
variables.
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1.3 Finding the Reaction that has Greatest Influ-

ence on the Nitrogen Di-oxide and Ozone Con-

centrations

The box model is defined by the system of ordinary differential equations (1.8) from
Section 1.1. This model has been used to find the reaction that has greatest influence
on the concentrations of nitrogen di-oxide and ozone. The Monte Carlo algorithm
sketched in the previous section is used in the experiments. In each experiment a
sequence of N normally distributed random values of the chemical rate constant of
one of the chemical reactions was produced by using a random number generator.
After that the box model was run for these N random values (in our tests N =
100). This procedure has been carried out for all 70 chemical reactions involved in
the chemical scheme used in the Danish Eulerian Model; the condensed CBM IV
scheme (see [GWKD89] and [Zl95]). This means that N runs were perform per each
chemical reaction with normally distributed random values. The standard deviations
of the nitrogen di-oxide and ozone concentrations produced when the chemical rate
constants were varied as described above were compared. It has been found in this
way that the most important chemical reaction for the nitrogen di-oxide and ozone
concentrations is:

O3 + NO =⇒ NO2 . (1.10)

This means that small changes of the rate constant of this reaction lead to consid-
erably large changes in the concentrations of nitrogen di-oxide and ozone and, more-
over, these changes are larger than the changes, for the same two chemical species,
observed when the rate constants of the other chemical reactions were varied by using
the same procedure.

1.4 Sensitivity Tests with the Danish

Eulerian Model

Consider the reaction (1.10). It is interesting to see what will happen if the experi-
ment with a sequence of N normally distributed random values of the constant rate
of reaction (1.10) is performed by using the two-dimensional version of the Danish
Eulerian Model (instead of the box model used in the previous section). Several such
experiments, each of them consisting of N runs with the Danish Eulerian Model,
have been carried out. The standard deviation used for calculating the sequence of
normally distributed random values was varied in these experiments. Results ob-
tained when the sequences of N = 100 normally distributed random values of the
constant rate of reaction (1.10) are produced by using standard deviations σ = 0.5
and σ = 0.25 will be presented here, but some other values of the standard deviations
were also used.

The results, obtained after performing N runs with normally distributed random
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values of the constant rate of reaction (1.10), were used to calculate the standard
deviations and the skewness of the nitrogen dioxide and ozone concentrations for
every value of the standard deviation σ used in the experiments. The results are
presented in Figure 9.3 - Figure 9.8 (where by X and Y = σ the mean value and the
standard deviation of the randomly generated normalized rate constants are denoted).
The following major conclusions can be drawn from this experiment:

• The standard deviations of the ozone concentrations given in Figure 9.3 for
σ = 0.5 and Figure 9.5 for σ = 0.25 are greatest in the areas where the European
emissions are biggest (compare Figure 9.3 and Figure 9.5 with Figure 9.1) and
where the nitrogen di-oxide concentrations are highest (compare Figure 9.3 and
Figure 9.5 with Figure 9.2).

• The patterns of the distributions of the standard deviations of the nitrogen
di-oxide concentrations are not so pronounced (see Figure 9.4 and Figure 9.6,
where the results obtained, respectively, with σ = 0.5 and σ = 0.25 are given).
Nevertheless, it is clear that the effect is opposite to the effect observed when
the standard deviations of the ozone concentrations are studied. The standard
deviations in the most polluted with nitrogen species areas are smaller than the
standard deviation in the areas which are far away from the highly polluted
areas; compare Figure 9.4 and Figure 9.6 with Figure 9.1 and Figure 9.2).

• If the standard deviation of the sequences of normally distributed random values
of the rate constant of reaction (1.10) is reduced, then the standard deviations
of the ozone concentrations are also reduced, but the pattern of the distribution
of the highest standard deviations remains the same; compare Figure 9.3 with
Figure 9.5. The same is also true for the pattern of distribution of the highest
standard deviations of the nitrogen di-oxide concentrations; compare Figure 9.4
with Figure 9.6.

• Results concerning the distribution of the skewness (for the sequence obtained
with standard deviation σ = 0.5) are given in Figure 9.7 for the skewness of the
ozone concentrations and in Figure 9.8 for the skewness of the nitrogen di-oxide
concentrations. The two plots indicate that here also the effect is opposite:
in the areas where the skewness of the ozone concentrations is greatest, the
skewness of the nitrogen di-oxide concentrations is smallest.

The main result is that the influence of the rate constant of reaction (1.10) on the
ozone concentrations seems to be great in the highly polluted with nitrogen pollutants
areas. Therefore an accurate value of this rate constant is needed if the model is to
be used on a space domain in which there are highly polluted with nitrogen species
areas. On the other hand, if in the space domain of the model there are not areas
which are highly polluted with nitrogen species, then the accuracy with which this
rate coefficient is determined becomes less important.
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Figure 9.1
European nitrogen oxides emissions

Figure 9.2
Nitrogen di-oxide concentrations in

Europe

Figure 9.3
Standard deviations of the ozone
concentrations (variance 0.50)

Figure 9.4
Standard deviations of the nitrogen

di-oxide concentrations (variance 0.50)
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Figure 9.5
Standard deviations of the ozone
concentrations (variance 0.25)

Figure 9.6
Standard deviations of the nitrogen

di-oxide concentrations (variance 0.25)

Figure 9.7
Skewness of the ozone concentrations

(variance 0.50)

Figure 9.8
Skewness of the nitrogen di-oxide

concentrations (variance 0.50)
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1.5 Concluding Remarks

It is probably worthwhile to carry out some computations with the three-dimensional
version of the Danish Eulerian Model (see [ZDG96]. The experiments presented in
this chapter have shown that different areas in the horizontal plane are influenced in
a different way when certain constant rates are changed. The experiments with the
three-dimensional version of the Danish Eulerian Model may show differences also
in the vertical directions. However, such runs are very time-consuming. It will be
possible to perform such experiments only if new and faster numerical algorithms are
used in the model and, moreover, if bigger and faster computers become available.

It is desirable to use the Danish Eulerian Model in similar experiments, but for
some other chemical rate constants. Maybe, one should also test the combined effect
of changing simultaneously several chemical rate constants on relevant concentrations
and/or depositions.

The sensitivity of the model results to variations of some other parameters (as,
for example, the boundary conditions) should also be studied.
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