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Introduction to elliptic finite element equations

Scalar elliptic model problem
Let us consider the elliptic boundary value problem

−∇ · (a(x)∇u(x)) = f (x) in Ω, (1a)

u = 0 on ΓD, (1b)

(a(x)∇u(x)) · n = 0 on ΓN , (1c)

for an unknown function u(x) where Ω is a polygonal domain in Rd ,
d = 2, 3, and f (x) is a given squared Lebesgue integrable function, i.e.,

f ∈ L2(Ω) := {v : v is defined on Ω and
∫

Ω
v2 dx < ∞}.

We assume that a(x) in (1) is SPD and uniformly bounded in Ω, i.e.,

c1‖v‖2 ≤ vT a(x) v ≤ c2‖v‖2 ∀v ∈ Rd ,∀x ∈ Ω,

for some positive constants c1 and c2, and n is the outward unit vector
normal to the boundary Γ = ∂Ω for which Γ = Γ̄D ∪ Γ̄N holds.
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Introduction to elliptic finite element equations

Conforming finite element (FE) methods
The numerical solution of (1) by a conforming finite element method
uses a proper finite-dimensional subspace

Vh := {v ∈ C0(Ω) : v |e ∈ Pr (e) ∀e ∈ Th} of

H1(Ω) := {v : v is defined on Ω and
∫

Ω
v2 + ∇v · ∇v dx < ∞}

defined for a shape-regular triangulation Th of Ω into elements e ∈ Th

where Pr (e) := {w : w is a polynomial of degree ≤ r on e} ∀e ∈ Th.

Conforming FEM: Find uh ∈ Vh where Vh ⊂ V(= H1(Ω)) such that

Ah(uh, vh) = Lh(vh) ∀vh ∈ Vh, (2a)

Ah(uh, vh) ≡ A(uh, vh) :=

∫

Ω
a(x)∇uh(x) · ∇vh(x) dx, (2b)

Lh(vh) ≡ L(vh) :=

∫

Ω
f (x) vh(x) dx. (2c)
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Introduction to elliptic finite element equations

Nonconforming finite element (FE) methods
Violating the conformity condition Vh ⊂ V the V-norm in general is no
longer well-defined on Vh. A remedy is to use mesh-dependent norms
in the convergence analysis, e.g., given a partition Th of Ω, we define

‖v‖m,h :=

√∑

e∈Th

‖v‖2
m,e

where ‖ · ‖m,e is the induced norm on the space Hm(e).
The bilinear form Ah(·, ·) in the the weak formulation (2) of problem (1)
can be defined by

Ah(uh, vh) :=
∑

e∈Th

∫

e
a(e)∇uh(x) · ∇vh(x) dx.

Here a(e) is a piecewise constant SPD matrix, defined by

a(e) =
1
|e|

∫

e
a(x) dx ∀e ∈ Th.
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Introduction to elliptic finite element equations

The discrete problem

The general procedure is to consider a basis of the finite element
space Vh, which we denote by Φ = {φ1, φ2, . . . , φN}. Then

vh =
N∑

i=1

viφi

where the real numbers vi are the expansion coefficients of vh.
Representing the solution uh of (2) as uh =

∑N
i=1 uiφi it can easily be

seen that (2) is equivalent to
N∑

i=1

Ah(φi , φj)ui = Lh(φj), j = 1, 2, . . . , N,

which in matrix form reads as
Au = b.

Here u = (ui) ∈ RN is the vector of unknowns, and the right-hand side
vector b = (bj) ∈ RN is defined by bj = Lh(φj ) 1 ≤ j ≤ N.
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Introduction to elliptic finite element equations

Why preconditioning?
PDE on Ω → PDE discretizations → Au = b

A is large, sparse, positive definite, ill-conditioned (κ(A) = O(h−2))

Johannes Kraus (RICAM-Austria) Robust multilevel methods JKS 2012 7 / 57



Introduction to elliptic finite element equations

Why preconditioning?
PDE on Ω → PDE discretizations → Au = b

A is large, sparse, positive definite, ill-conditioned (κ(A) = O(h−2))

Solve algebraic linear systems Au = b:

Direct methods (Gaussian elimination....LU, LDLT ):

⊲ Very robust but caution: Computational cost is O(Nα), α > 1,
N ≈ 106 to 109 in practice.

Iterative methods X

Multilevel preconditioning
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Why preconditioning?
PDE on Ω → PDE discretizations → Au = b

A is large, sparse, positive definite, ill-conditioned (κ(A) = O(h−2))

Solve algebraic linear systems Au = b:

Direct methods (Gaussian elimination....LU, LDLT ):

⊲ Very robust but caution: Computational cost is O(Nα), α > 1,
N ≈ 106 to 109 in practice.

Iterative methods X

Multilevel preconditioning

Goal: Develop uniformly convergent iterative methods for Au = b

Algebraic multilevel iteration

Idea: Approximate block factorization + stabilization

Other related methods: Domain decomposition, (algebraic) multigrid, ....
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Introduction to elliptic finite element equations

Preconditioned conjugate gradient (PCG) method
Convergence rate estimate:
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Solution time (and nit) for Poisson equation on a unit square

h−2 ≈ N DIRECT CG PCG-MILU PCG-AMLI-V PCG-AMLI-W
1024 0.02 0.05 (84) 0.04 (21) < 0.01 (16) < 0.01 (16)
4096 0.17 0.12 (163) 0.09 (30) 0.02 (18) 0.02 (17)

16384 2.21 0.91 (320) 0.52 (46) 0.09 (22) 0.09 (17)
65536 30.8 9.2 (630) 3.8 (68) 0.49 (25) 0.45 (17)

262144 – 81.6 (1256) 27.8 (102) 2.7 (28) 2.3 (17)
1048576 – 805 (2439) 214 (152) 13.3 (31) 10.5 (17)

κ = O(h−2) κ = O(h−1) κ = O(1)
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Introduction to elliptic finite element equations

Goals

There are many important classes of problems for which an efficient
solution of the arising linear systems is a challenging task, e.g.,

anisotropic problems

linear systems obtained from nonconforming FE discretization

problems with highly varying coefficients (multiscale problems)

discontinuous Galerkin (DG) finite element systems

linear elasticity problems for nearly incompressible materials

problems with a large near null space, e.g., in V = H(Ω, div)

etc.

We will discuss robust multilevel preconditioner for anisotropic
problems, nonconforming FEM, and problems with highly varying
coefficients.
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Two- and multilevel methods Two-level preconditioners
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Two- and multilevel methods Two-level preconditioners

Two-level hierarchical basis
Let TH be a coarse mesh and Th be a fine mesh obtained from regular
refinement of TH . Consider the two-level hierarchical basis

{φ̃(k)
h , k = 1, 2, · · · , Nh}:= {φ(l)

H on TH} ∪ {φ(m)
h on Th\TH} (3)

and let us denote by Ãh and by Ah the two-level hierarchical and nodal
basis stiffness matrix, respectively. Under the splitting (3) we have

Ah =

[
A11 A12

A21 A22

]
}Nh\H

}NH

Ãh =

[
Ã11 Ã12

Ã21 Ã22

]
=

[
A11 Ã12

Ã21 AH

]
}Nh\H

}NH
.

where the transformation which relates the nodal point vectors for the
standard and for the hierarchical basis is given by

Jh =

[
I J12

0 I

]
, v =

[
v1

v2

]
= Jh

[
ṽ1

ṽ2

]
,

v1 = ṽ1 + J12ṽ2

v2 = ṽ2
.
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Two- and multilevel methods Two-level preconditioners

Multiplicative and additive two-level preconditioners
Starting point is the exact two-by-two block factorization of Ãh (or A):

A =

[
I

A21A−1
11 I

] [
A11

S

] [
I A−1

11 A12

I

]
.

Then we define the two-level preconditioners Bmul and Badd by

B−1
mul:=

[
I

A21B−1
11 I

] [
B11

B22

] [
I B−1

11 A12

I

]

B−1
add:=

[
B11

B22

]

where B11 and B22 approximate A11 and the exact Schur complement
S = A22 − A21A−1

11 A12. We assume in an SPSD sense (0 < α1, . . . , β̃2):

α1A11 ≤ B11 ≤ β1A11 for Badd&Bmul

α2A22 ≤ B22 ≤ β2A22 for Badd

α̃2A22 ≤ B22 + A21B−1
11 A12 ≤ β̃2A22 for Bmul
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Two- and multilevel methods Two-level preconditioners

Condition number estimates

In the simple case when B11 = A11 and B22 = A22 we have:

Theorem 1 ([Ax-94]):

Let w =

[
v1

v2

]
be a block-vector which is consistent with the

two-by-two representation of A. Further let Bii = Aii , i = 1, 2. Then

(1 − γ)wT B−1
addw ≤ wT Aw ≤ (1 + γ)wT B−1

addw.

The CBS constant can be defined as the minimal real number γ
satisfying the strengthened Cauchy-Bunyakowski-Schwarz inequality

|vT
1 A12v2| ≤ γ

{
vT

1 A11v1 vT
2 A22v2

}1/2
.

O. Axelsson: Iterative Solution Methods. Cambridge University Press,
1994.
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Two- and multilevel methods Two-level preconditioners

Condition number estimates, cont.
Theorem 2 ([Ax-94]):
The following estimates hold for the multiplicative two-level
preconditioner with Bii = Aii , i = 1, 2:

(1 − γ2)wT B−1
mulw ≤ wT Aw ≤ wT B−1

mulw.

Corollary 1:
Let Bii = Aii , i = 1, 2. Then the following estimates for κadd and κmul hold:

κadd:= κ (BaddA) ≤ 1 + γ

1 − γ
=

(1 + γ)2

1 − γ2 ,

κmul:= κ (BmulA) ≤ 1
1 − γ2 .

In general, when Bii ≈ Aii the estimates of κadd and κmul additionally
depend on the spectral equivalence constants in Bii ≈ Aii .
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Two- and multilevel methods From two-level to multilevel: Linear AMLI
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Two- and multilevel methods From two-level to multilevel: Linear AMLI

Motivation: The effect of smoothing
Classical stationary iterative methods, which are based on updating a current iterate
at a node based on the values of the iterate at neighboring nodes, reduce the highly
oscillatory error components fast.

The resulting smooth error can be represented accurately using fewer degrees of
freedom, i.e., on a coarse grid.
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Two- and multilevel methods From two-level to multilevel: Linear AMLI

Construction of linear AMLI
Consider a sequence of meshes T0, T1, . . . , Tℓ obtained by regular refinement
of a coarsest mesh T0 and let

A(k) =

[
A(k)

11 A(k)
12

A(k)
21 A(k)

22

]

denote the corresponding two-by-two block partitioned (hierarchical) matrix at
any given level k = 1, 2, . . . , ℓ.

The AMLI-cycle multigrid preconditioner B(k) at level k is defined by

B(k) := R̃(k) + (I − (R(k))T A(k))P(k)B(k−1)
ν (P(k))T (I − A(k)R(k))

where

R̃(k) = R(k) or R̃(k) = R(k) + (R(k))T − (R(k))T A(k)R(k),

B(k−1)
ν = B(k−1)q(k)(A(k−1)B(k−1)) = q(k)(B(k−1)A(k−1))B(k−1) ,

R(k) is a so-called smoothing iteration (e.g., Richardson, Gauss-Seidel, ILU),
P(k) is an interpolation operator, and q(k) is a properly chosen polynomial.
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Two- and multilevel methods From two-level to multilevel: Linear AMLI

Construction of linear AMLI, cont.
The (original) multiplicative (linear) AMLI preconditioner (as proposed in
[AxVa-89]) satisfies the following recurrence relation:

B(0) := (A(0))−1 ,

B(k) := L(k)T
D(k)L(k) ,

L(k) :=

[
I 0

−A(k)
21 B(k)

11

−1
I

]
, D(k) :=

[
B(k)

11

−1
0

0 B(k−1)
ν

]
,

where

B(k−1)
ν :=

(
I − p(k)(B(k−1)A(k−1))

) (
A(k−1)

)−1

and p(k)(t) is a properly scaled and shifted Chebyshev polynomial of
degree νk satisfying p(k)(0) = 1.

O. Axelsson and P. Vassilevski: Algebraic multilevel preconditioning
methods I. Numer. Math., 56, 157-177 (1989).
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Two- and multilevel methods From two-level to multilevel: Linear AMLI

Analysis of linear AMLI
Let us now derive a bound for the condition number κ(B(ℓ)A(ℓ)). This
estimate is based on the approximation property of the two-level
preconditioner B̄(k), i.e.,

θ
(k)
0 vT B̄(k)v ≤ vT A(k)−1

v ≤ θ
(k)
1 vT B̄(k)v ∀v, k = 1, . . . , ℓ (4)

where B̄(k) = L(k)T
D̄(k)L(k) ,

L(k) =

[
I

−A(k)
21 B(k)

11

−1
I

]
, D̄(k) =

[
B(k)

11

−1

A(k−1)−1

]
.

Let us further assume that

0 < θ0 < θ
(k)
0 ≤ θ

(k)
1 < θ1 < ∞ for all k = 1, . . . , ℓ. (5)

Then the following theorem provides an estimate of the (relative)
condition number of the multilevel preconditioner B(ℓ).
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Two- and multilevel methods From two-level to multilevel: Linear AMLI

Analysis of linear AMLI, cont.

Theorem 3:
Assume that the approximation property (4) holds true for the two-level
preconditioner on all levels j = 1, 2, . . . , ℓ, i.e., condition (5) is satisfied for
some positive constants θ0 and θ1.
Further, let 0 < ρ0 < ρ1 < ∞ be positive constants satsifying

ρ0 ≤ θ0

max{1, r1}
≤ θ1

min{1, r0}
≤ ρ1 (6)

where r0 = min
k

min
x∈[ρ1

−1,ρ0
−1]

x q(k)(x),

r1 = max
k

max
x∈[ρ1

−1,ρ0
−1]

x q(k)(x).

Then the estimate
κ(B(ℓ)A(ℓ)) ≤ ρ1

ρ0
(7)

holds uniformly (in the number of levels ℓ).
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Two- and multilevel methods From linear to nonlinear AMLI
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Two- and multilevel methods From linear to nonlinear AMLI

Construction of nonlinear AMLI
Now we define the following nonlinear AMLI-cycle preconditioner:
B(k)[·] : IRNk 7→ IRNk for 1 ≤ k ≤ ℓ by

B(k)[y] := L(k)T
D(k)[L(k)y],

where

L(k) :=

[
I 0

−A(k)
21 B(k)

11

−1
I

]
,

and

D(k)[z] =

[
B(k)

11

−1
z1

B(k−1)
ν [z2]

]
.

J. Kraus: An algebraic preconditioning method for M-matrices:
Linear versus nonlinear multilevel iteration.
Numer. Lin. Alg. Appl., 9, 599-618 (2002).
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Two- and multilevel methods From linear to nonlinear AMLI

Construction of nonlinear AMLI, cont.

The (nonlinear) mapping B(k−1)
ν [·] is defined by

B(k−1)
ν [·] = A(0)−1

if k = 1,

B(k−1)
ν [·] := B(k−1)[·] if ν = 1 and k ≥ 1,

and for k > 1 and ν > 1

B(k−1)
ν [d] := x(ν)

where x(ν) is the ν-th iterate obtained when applying the generalized
conjugate gradient (GCG) algorithm to the linear system A(k−1)x = d
thereby using B(k−1)[·] as a preconditioner and starting with the initial
guess x(0) = 0.
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Two- and multilevel methods Computational complexity
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Two- and multilevel methods Computational complexity

Optimality conditions
If B(k)

11 = A(k)
11 at all levels k = 1, 2, . . . , ℓ the linear AMLI W-cycle (ν = 2)

becomes a uniform preconditioner if
√

ϑ =
1√

1 − γ2
< 2 = ν.

In fact it has been shown in [AxVa-90] under the milder assumption

A(k)
11 ≤ B(k)

11 ≤ (1 + δ1)A
(k)
11

that the condition number of the linear AMLI preconditioner is uniformly
bounded (independent of the mesh size h and the number of levels ℓ) if ν and
γ satisfy the relation

1√
1 − γ2

< ν.

O. Axelsson and P. Vassilevski: Algebraic multilevel
preconditioning methods II.
SIAM J. Numer. Anal., 27, 1569-1590 (1990).
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Two- and multilevel methods Computational complexity

Optimality conditions, cont.
In order to keep the number of arithmetic operations of each PCG (or outer
GCG) iteration at level ℓ at a total cost of order O(N) = O(Nℓ) the polynomial
degree (or equivalently the number of inner iterations) ν at the coarse levels
has to be smaller than the coarsening factor ̺, i.e.,

ν < ̺ ≈ Nk

Nk−1

which is typically ̺ = 4 for 2D problems and ̺ = 8 for 3D problems.
This results in the following optimality conditions

1√
1 − γ2

< ν < ̺

for the multiplicative AMLI and
√

1 + γ

1 − γ
< ν < ̺

for the additive AMLI.
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Additive Schur complement approximation A model problem with highly varying coefficients
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Additive Schur complement approximation A model problem with highly varying coefficients

Model problem

Second-order elliptic boundary value problem:

−∇ · (a(x)∇u(x)) = f (x) in Ω, (8a)

u = 0 on ΓD, (8b)

(a(x)∇u(x)) · n = 0 on ΓN , (8c)

Ω . . . polygonal domain in IRd , d = 2, 3,
f (x) . . . source term in L2(Ω),

Γ = ∂Ω, Γ = ΓD ∪ ΓN . . . boundary of Ω,
n . . . outward normal unit vector on Γ,

a(x) = (aij(x))2
i ,j=1 . . . SPD coefficient matrix.
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Additive Schur complement approximation A model problem with highly varying coefficients

Model problem, cont.

Assumptions:

quasi-uniform partition Th of the domain Ω,

over each element e ∈ Th the functions aij(x) are smooth, i.e.,
a(x) ≈ a(e) = ae, where

ae =

[
ae:11 ae:12

ae:21 ae:22

]
is SPD ∀e ∈ Th.

In particular, we will consider Problem 8 with a diffusion tensor

a(x) = α(x)I = αeI ∀e ∈ Th

where αe > 0 is a scalar quantity that may vary over several orders of
magnitude across element interfaces.

After rescaling we may assume that the αe ∈ (0, 1] for all e ∈ Th.
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Preliminaries and notation

Consider a non-overlapping partition T = Th of Ω into elements e ∈ T .

Definition of structures.
Let us denote by F a collection (union) of elements e from T which we
shall call a structure. Further, let

F = Fh = {F = Fi : i = 1, 2, . . . , nF}

be a set of structures that covers T , i.e., for all e ∈ T there exists a
structure F ∈ F such that e ⊂ F .

Depending on whether the intersection of all mutually distinct (macro)
structures is empty or not, we will refer to F (or G) either as a
non-overlapping or as an overlapping covering of T (F).
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Additive Schur complement approximation Additive Schur complement approximation

Preliminaries and notation

Consider a non-overlapping partition T = Th of Ω into elements e ∈ T .

Definition of macro structures.
Next, by G we denote a collection (union) of structures F from F which
we shall call a macro structure. Further, let

G = Gh = {G = Gi : i = 1, 2, . . . , nG}

be a set of macro structures that covers F (and thus also T ). That is,
for all F ∈ F there exists a macro structure G ∈ G such that F ⊂ G.

Depending on whether the intersection of all mutually distinct (macro)
structures is empty or not, we will refer to F (or G) either as a
non-overlapping or as an overlapping covering of T (F).
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Preliminaries and notation, cont.
We can we can write the assembly of the global stiffness matrix
A = Ah as

A =
∑

e∈Th

RT
e AeRe,

where Re is the restriction operator that restricts a global vector to the
element e. Alternatively, we can assemble A from local matrices AF or
AG associated with the coverings F or G. That is,

A =
∑

F∈F

RT
F AF RF ,

A =
∑

G∈G

RT
GAGRG ,

AF =
∑

e⊂F

σe,F RT
F 7→eAeRF 7→e ,

AG =
∑

F⊂G

σF ,GRT
G 7→F AF RG 7→F .
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Preliminaries and notation, cont.

The non-negative scaling factors σe,F and σF ,G have to be chosen in such a
way that the above assembling properties are satisfied, which implies

∑

F⊃e

σe,F = 1 ∀e ∈ T ,
∑

G⊃F

σF ,G = 1 ∀F ∈ F .

For instance, the scaling factors can be chosen as follows:

σe,F :=
1∑

F ′⊃e 1
∀e ⊂ F , σF ,G :=

1∑
G′⊃F 1

∀F ⊂ G .

Then the assembling property transfers from AF := {AF : F ∈ F} to
AG := {AG : G ∈ G}.

J. Kraus: Additive Schur complement approximation and application to
multilevel preconditioning.

RICAM Report 2011-22, Johann Radon Institute, Linz, 2011.
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Algorithm
Assume that we are given:

a set D of degrees of freedom (DOF) which is the union of a set of
coarse degrees of freedom (CDOF) denoted by Dc and its
complement Df := D \ Dc in D,
a non-overlapping or an overlapping covering F of T ,
a set of structure matrices AF := {AF : F ∈ F} that satisfy the
assembling property.

Then we permute the rows and columns of A according to a two-level
partitioning of D, i.e.,

A =

[
A11 A12

A21 A22

]
= Ah =

[
Aff Afc

Acf Acc

]
} Df

} Dc

The corresponding Schur complement we denote by

S = Sc = SH = Acc − AcfA−1
ff Afc.
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Algorithm, cont.
Additive Schur complement approximation ([Kr-11]):

1 Determine a global two-level numbering according to D = Df ⊕Dc.
2 Determine a covering G of F and a set of scaling factors {σF ,G}.
3 For all G ∈ G perform the following steps:

(a) Determine a “local” two-level numbering of the DOF of G.
(b) Compute

AG =

[
AG:ff AG:fc

AG:cf AG:cc

]
} DG:f

} DG:c

(c) Compute the “local” Schur complement
SG = AG:cc − AG:cfA

−1
G:ffAG:fc.

(d) Determine the “local-to-global” mapping for the CDOF in DG:c.
4 Assemble the global Schur complement approximation Q, i.e.,

Q =
∑

G∈G

RT
G:cSGRG:c
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Nonzero pattern

1 100 200 289

1

100

200

289

1 100 200 289

1

100

200

289

Exact Schur complement

Johannes Kraus (RICAM-Austria) Robust multilevel methods JKS 2012 37 / 57



Additive Schur complement approximation Numerical experiments and illustration

Nonzero pattern

1 100 200 289

1

100

200

289
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289

ASCA: Example 1
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Nonzero pattern
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ASCA: Example 2
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Nonzero pattern

1 100 200 289
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ASCA: Example 3
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Additive Schur complement approximation Numerical experiments and illustration

Multilevel convergence

In this experiment we have islands with a high diffusion coefficient
αe = αmax on a macro scale and inbetween a highly oscillatory
coefficient αe = 10p rand with p ∈ {1, 2, . . . , q}, i.e., αmax/αmin ≈ 10q,
see Figure.

Number of iterations k0 for residual reduction by 108

W-cycle AMLI convergence: Example 3

B11 = BMILUE
11 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

q = 1 6 6 6 6 6
q = 2 7 7 7 7 7
q = 3 7 7 7 7 7
q = 4 8 7 8 8 8
q = 5 8 8 8 8 8
q = 6 8 8 8 8 8

Johannes Kraus (RICAM-Austria) Robust multilevel methods JKS 2012 41 / 57



Robust AMLI algorithms for nonconforming linear finite elements Crouzeix-Raviart (CR) finite elements

Outline
1 Introduction to elliptic finite element equations

2 Two- and multilevel methods
Two-level preconditioners
From two-level to multilevel: Linear AMLI
From linear to nonlinear AMLI
Computational complexity

3 Additive Schur complement approximation
A model problem with highly varying coefficients
Additive Schur complement approximation
Numerical experiments and illustration

4 Robust AMLI algorithms for nonconforming linear finite elements
Crouzeix-Raviart (CR) finite elements
Uniform estimates of the CBS constant
Preconditioning of the pivot block
Numerical tests

Johannes Kraus (RICAM-Austria) Robust multilevel methods JKS 2012 42 / 57
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Crouzeix-Raviart (CR) finite elements:
For the nonconforming CR finite element, where the nodal basis
functions are defined at the face centers, the natural vector spaces
VH(E) := span {φI , φII , φIII} and Vh(E) := span {φi}9

i=1 are no longer
nested, i.e. VH(E) * Vh(E).
This makes the direct construction with V2(E) := VH(E) impossible.

(a) III

II

1 2

3
7 4

5

98

4
1 2

I3

θ1

3θ

θ2

(b)

6

The hierarchical basis functions have to be chosen s.t. the resulting
subspaces V1(E) and V2(E) satisfy the direct sum condition

V = V1 ⊕ V2
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Two-level splitting: General form
Let ΦE := {φ(i)}9

i=1 denotes the set of the ”midpoint” basis functions of the four
congruent elements in the macro-element E . Then we define

V1(E) := span {φ1, φ2, φ3, φ4 − φ5, φ6 − φ7, φ8 − φ9} ,

V2(E) := span {φC
1 + φ4 + φ5, φC

2 + φ6 + φ7, φC
3 + φ8 + φ9} ,

where φC
i :=

∑
k cikφk with i, k ∈ {1, 2, 3}.

The transformation matrix corresponding to this general splitting is given by

JE = JE(C) =

[
I3 0 C

0 J− J+

]
(∈ R9×9),

J−:=
1
2




1 −1

1 −1

1 −1




T

, J+:=
1
2




1 1

1 1

1 1




T

φ̃E := (φ̃(i))9
i=1 = JT

E φE , ÃE = JT
E AE JE =

[
ÃE :11 ÃE :12

ÃT
E :12 ÃE :22

]
} ∈ V1(E)

} ∈ V2(E)
,

Ãh :=
∑

E∈TH
RT

E ÃE RE .
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Specific two-level splittings

The transformation for the standard DA splitting, cf. [BlMaNe-04], is
obtained for the choice C = 1

2 I.

A generalized DA splitting (GDA), cf. [KrMaSy-08], is obtained for
C = 1

2 I + µ(1− 3I) where the optimal choice of µ ∈ [0, 1
4 ] depends on

the minimum angle in the triangular mesh. Here 1 denotes the 3×3
matrix of all ones.

R. Blaheta, S. Margenov, and M. Neytcheva: Uniform estimate of the
constant in the strengthened CBS inequality for anisotropic
non-conforming FEM systems.

Numer. Lin. Alg. Appl., 11(4), 309-326, (2004).

J. Kraus, J. Synka, and S. Margenov: On the multilevel preconditioning of
Crouzeix-Raviart elliptic problems.

Numer. Lin. Alg. Appl., 15, 395-416, (2008).
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First reduce (FR) splitting
The first-reduce splitting (FR) is obtained for C = −A−1

E :11 ĀE :13 where

ĀE := JT
±AE J± =




ĀE :11 ĀE :12 ĀE :13

ĀT
E :12 ĀE :22 ĀE :23

ĀT
E :13 ĀT

E :23 ĀE :33




}
V1(E)

} V2(E)

and J± :=

[
I 0 0
0 J− J+

]
.

The name “First Reduce” (FR) expresses that the (global) stiffness matrix is
first reduced (via static condensation) to a system with its Schur complement

B =

[
Ā22 Ā23

ĀT
23 Ā33

]
−

[
ĀT

12

ĀT
13

]
A−1

11

[
Ā12, Ā13

]
.

This can be written equivalently as a new (combined) transformation with

JFR:= J± JB =

[
I −A−1

11 Ā12 −A−1
11 Ā13

0 J− J+

]
⇒ C = −A−1

11 Ā13.
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Local analysis of the CBS constant

Theorem 5 ([KrMaSy-08]):

Let ÃE :33(C) be the macro-element submatrix associated with the coarse

grid. Then, the minimum value for γE is attained for C := −A−1
E :11ĀE :13.

Theorem 6 ([KrMaSy-08]):
Consider the Crouzeix-Raviart finite element discretization of the elliptic
model problem.
Then, comparing the DA, the GDA, and the FR splitting we have the relation

γ2
FR ≤ γ2

GDA ≤ γ2
DA ≤ 3/4. (9)
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Additive and multiplicative preconditioners

Theorem 7 ([BlMaNe-05]):
The following statements hold for any element size and shape and any
coefficient anisotropy:

(a) If C11 is the additive preconditioner to B11 then

κ
(

C−1
11 B11

)
<

1
4

(11 +
√

105). (10)

(b) If C11 is the multiplicative preconditioner to B11 then

κ
(

C−1
11 B11

)
<

15
8

. (11)

(c) The cost of the application of the preconditioner in both cases is
proportional to the number of unknowns.

R. Blaheta, S. Margenov, and M. Neytcheva: Robust optimal multilevel
preconditioners for non-conforming finite element systems.

Numer. Lin. Alg. Appl., 12, 495-514, (2005).
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Nonconforming linear finite elements
We consider the elliptic model problem on the unit square
Ω = (0, 1)×(0, 1) for the coefficient matrix

a(x) = αe

[
ε −δ
−δ 1

]
, ∀e ∈ T

Setting of the experiment:

homogeneous Dirichlet boundary conditions,

ratio 1 : 10 of anisotropy, i.e., ε = 10−1,

δ is varied from 0 to 1/4,

Ω̄ = Ω̄1 ∪ . . . ∪ Ω̄4, where Ω̄1 = [0, 1/2]2, Ω̄2 = [1/2, 1] × [0, 1/2],
Ω̄3 = [0, 1/2] × [1/2, 1], Ω̄4 = [1/2, 1]2

jump of two orders of magnitude in the coefficient αe at interfaces
of subdomains Ω̄i ,

uniform mesh with mesh size h ∈ {1/64, . . . , 1/1024},

stopping criterion ‖r(nit)‖/‖r(0)‖ ≤ 10−6.
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Nonconforming linear finite elements, cont.
Nonlinear AMLI W-cycle: Number of iterations and CPU-time t in sec.

1/h 64 128 256 512 1024
nit t nit t nit t nit t nit t

δ = 0
DA 17 0.12 18 0.71 19 3.58 19 16.5 19 75.6
GDA 13 0.13 13 0.70 13 3.49 13 17.0 13 80.2
FR 10 0.10 10 0.51 10 2.57 10 12.5 10 59.0

δ = 1/8
DA 20 0.16 21 0.94 22 4.86 21 22.5 22 106
GDA 13 0.13 13 0.74 13 3.72 13 17.9 13 82.3
FR 12 0.11 12 0.63 12 3.17 11 14.3 11 66.2

δ = 1/4
DA 19 0.15 20 0.91 20 4.50 20 21.4 20 98.5
GDA 16 0.15 16 0.85 16 4.31 16 20.9 16 97.1
FR 14 0.12 14 0.69 14 3.47 14 17.0 14 78.7
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Nonconforming linear finite elements, cont.

Comparison of multiplicative and additive AMLI W-cycle (FR)

1
h 128 256 512 1024 2048

multiplicative (additive) preconditioner
ε = 1, δ = 0, no jump

nit 9 (17) 9 (17) 9 (17) 9 (17) 9 (17)
ρ 0.18 (0.43) 0.18 (0.44) 0.18 (0.44) 0.18 (0.44) 0.18 (0.44)
t 0.09 (0.13) 0.37 (0.56) 1.75 (2.63) 8.54 (12.5) 40.2 (58.1)

ε = 0.001, δ = 0.01, jump: three orders of magnitude
nit 6 (14) 6 (16) 6 (16) 6 (17) 6 (17)
ρ 0.09 (0.36) 0.10 (0.40) 0.10 (0.41) 0.10 (0.43) 0.10 (0.43)
t 0.08 (0.12) 0.35 (0.59) 1.62 (2.86) 7.77 (14.2) 36.6 (66.4)
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Conclusions:

We

described (optimal order) linear and nonlinear AMLI methods

summarized convergence results

introduced techniques for sparse Schur complement approximations

showed extensions of the AMLI framework to nonconforming FEM

discussed numerical results for elliptic problems

◮ with highly oscillatory coefficients
◮ with anisotropic coefficients
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