SuperCA++ Supercomputing Applications Bansko, Bulgaria April 23-24, 2012

Some Issues in Reliable High-Performance Simulations of Combustion for Engine Applications

Pasqua D'Ambra

pasqua.dambra@cnr.it

Institute for High Performance Computing and Networking National Research Council of Italy (ICAR-CNR)

ICAR-CNR Naples Branch

Engine Institute CNR, Naples

USAM

HIGH-PERFORMANCE ALGORITHMS AND SOFTWARE FOR DIESEL ENGINE MODELING

Collaborations and Credits

- Laura Antonelli (ICAR)
- Paola Belardini (IM)
- Claudio Bertoli (IM)
- Stefania Corsaro (ICAR)
- Valentina Fraioli (IM)
- Francesco Gregoretti (ICAR)
- Gennaro Oliva (ICAR)

Outline

- Motivation
- Mathematical Model & Numerical Algorithm
- Reliable Combustion Solver & Adaptivity
- Parallel Combustion Software Architecture
- Data Distribution & Load Balancing
- Some Results
- Conclusions & Remarks

Motivation

Impact of air quality on human health leads Government to impose strong limits for engines pollutant emissions

Design Cost Performance Fun To Drive Customer's Cost

MARKET

Combustion Noise CO₂ Emissions Soot Emissions

ENVIRONMENT

Engine designers make use of multi-dimensional, multi-physics, multi-scales simulations codes for matching different requirements National Research Council of Italy

Engine Design Procedure

Main Physical Phenomena

Mathematical Model

Unsteady compressible Navier-Stokes equations for reactive flows

Numerical Algorithm

Physical (Linear) Splitting

 $\rho^{n+1} = L(\Delta t)\rho^{n} \qquad \rho^{n} = \rho \ (t_{0} + n\Delta t)$ $L(\Delta t) \approx L^{S} (\Delta t)L^{C} (\Delta t)L^{CFD} (\Delta t)$ $\rho^{n+1/3} = L^{S} (\Delta t)\rho^{n}$ $\rho^{n+2/3} = L^{C} (\Delta t)\rho^{n+1/3}$ $\rho^{n+1} = L^{CFD} (\Delta t)\rho^{n+2/3}$ Dif

 $L^{S} = Spray model$ $L^{C} = Combustion model$ $L^{CFD} = CFD model$

Different physical phenomena are decoupled

Different sub-models are solved independently on 3D computational grid representing engine cylinder

National Research Council of Italy

Combustion (Chemical) Model

Gustavsson & Golovitchev (2003)

Combustion (Mathematical) Model

an ODE system per each grid cell

$$\dot{\rho}_m = W_m \sum_{r=1}^R (b_{mr} - a_{mr}) \dot{\omega}_r (\rho_1, ..., \rho_m, T)$$
 m = 1,..., M

 ρ_m MASS DENSITY OF SPECIES M **R TOTAL NUMBER OF REACTIONS** M TOTAL NUMBER OF SPECIES W_m molecular weight of species mON amr, bmr INTEGRAL STOICHIOMETRIC COEFFICIENTS K_{fr}, K_{br}, coefficients depending on temperature a'mr, b'mr, REACTION ORDERS

DEPENDING CHEMISTRY

inherently parallel model

Current simulation codes

- e.g. KIVA3V-II (1999) as well as KIVA4 (2006)
- > Reduced chemical reaction mechanisms
- > Equilibrium assumption for fast chemical reactions
- > Inefficient numerical ODE solvers

Inadequate for emission predictions in modern engines

Goal of the project

Design and implement **parallel software** for detailed combustion modeling based on **advanced numerical algorithms and software**

✓ based on:

- •MPI library for message passing
- •CHEMKIN-II package (*Sandia National Laboratories*) for setting ODE systems of combustion

general-purpose up-to-date ODE solvers

✓ interfaced with KIVA3V-II (Los Alamos National Laboratory) a sequential finitevolume Fortran code for engine simulations;

Parallel Combustion Solver

processes concurrently solve ODE systems

Chemical Issues in Combustion

- chemical kinetics involves high number of intermediates with low density and very high reaction rates, specially in the LOW temperature phase. These species are fundamental for ignition starting.
- after pressure rise (during **HIGH temperature** phase), kinetic dynamics becomes smooth, and a lot of species are rapidly damped.

Numerical Issues in Combustion

- positivity and total density preserving properties
- high accuracy to efficiently solve components related to intermediates species
- strong stability properties in the highly stiff phase (LOW temperature)
- suitable damping properties in the smooth-phase (HIGH temperature)

ODE SOLVERS

VODE – Brown, Byrne, Hindmarsh (1988)

 Multistep Formulas: Variable Coefficient Backward Differentiation Formulas (BDF)

 $\sum_{i=0}^{q} \alpha_{n,i} y_{n-i} + h_n \beta_n \dot{y}_n = 0$ \Lapla Adaptive in order (from 1 to 5) and time-step choice

SDIRK4 – Hairer, Wanner (1996)
• **One-step Formula: Singly Diagonally Implicit Runge-Kutta of order 4**

$$\begin{cases}
Y_{n,i} = y_{n-1} + h_n \sum_{j=1}^{s} a_{ij} f(t_{n-1} + c_j h_n, Y_{n,j}) & i = 1, \dots, s \\
y_n = y_{n-1} + h_n \sum_{j=1}^{s} b_i f(t_{n-1} + c_j h_n, Y_{n,i})
\end{cases}$$

✓Adaptive in time-step choice

VODE: main features

-15 -10 -5 0 5 10 15 20 25 30

courtesy of N. Trefethen

Simplified Newton iterations for non-linear systems at each time
 Jacobian matrix saved and reused for different time steps
 Routines from Linpack for direct solution of linear systems

SDIRK4: main features

- ✓ L-stable formula (*Ehle*, 1969)
 - 1. A-stable formula
 - 2. $R(z), z \in C$ stability function: $\lim_{z \to \infty} R(z) = 0$

prevents stiff components from being damped out very slowly

✓ Simplified Newton iterations for non-linear systems at each time step

1 Jacobian evaluation and 1 LU factorization per time step

✓ Routines from decsol (*Hairer & Wanner*) for direct solution of linear systems

Test case: 16 valves EURO IV Fiat Multijet

Bore	82.0 [мм]		
Stroke	90 [мм]		
Displacement	475 [см ³]		
Compression ratio	16.5:1		
Engine speed	1500 RPM		
Valves per cylinder	4		
Injector	MICROSAC 7 HOLES, \emptyset 0.140 MM		
Injector apparatus	BOSCH COMMON RAIL III GENERATION		

COMPUTATIONAL GRID: 3D CYLINDRICAL SECTOR, WITH ~ 4500 CELLS

~ 99% OF COMPUTING TIME IN ODE SOLVERS

Testing Platform

Software

- Linux Red Hat 9.0
- ➢ GNU Fortran compiler 3.2.2
- > LAM MPI 7.0
- > KIVA3V-II simulation code by Los Alamos Labs.

Hardware

- Beowulf class cluster operated by IM-CNR
 - ✓ 16 (2.9 GHz) Pentium IV processors, each with 1 GB RAM and 256 KB L2 cache
 - ✓ Fast Ethernet (100 Mbit/sec)

ODE solvers stopping criteria

Absolute tolerances depending on species **Relative tolerances** = **10**⁻³ 10k **maximum number of time steps** per splitting intervals

Engine operative conditions

	Rail Pressure bar	EG R	Injection timing CA btdc	Injection Period CA	Injected Fuel mg
Test1	500	40%	12.7 btdc	7.3	8.0
Test2	900	0%	2.3 btdc	5.7	8.7
Test3	500	0%	2.1 btdc	7.3	8.5

Accuracy: VODE vs SDIRK4

well predicts ignition

over-estimates pressure rise does not reach accuracy in high-pressure/high-temperature phase

National Research Council of Italy

Accuracy: VODE vs SDIRK4 (cont'd)

under-estimates pressure rise

Efficiency: VODE vs SDIRK4

Computational Cost on Test 1 Function Evaluations vs Crank Angle on 1 processor

National Research Council of Italy

... one more level of adaptivity

VODE in stiff (low temperature/pressure) simulation phase

SDIRK4 in smooth (high temperature/pressure) simulation phase

National Research Council of Italy

Method Selection depending on Chemistry

Accuracy of Multi-method Solver

National Research Council of Italy

Efficiency of Multi-method Solver

Function Evaluations vs Crank Angle on 1 processor SuperCA++ 2012

Engine Simulation Software

SOFTWARE STRUCTURE

1. KIVA3V-II for inizialization
and spray solver;
GRID PARTITIONING
SCATTER grid cells data by MPI

2. CHEMKIN II for ODE systems setting

- 2.1 if phase == AUTOIGNITION ODE solver is VODE
- 2.2 if phase == COMBUSTION ODE solver is SDIRK4

GRID GATHERING GATHER grid cells data by MPI 3-6. KIVA3V-II for CFD solver;

Parallel Computing Issues

Combustion solver deals with:

- detailed kinetic schemes for accurate simulation of combustion
- local physical conditions
- numerical adptivity of solvers

Grid Partitioning for Combustion

Different strategies to be flexible at changes in:

- chemistry model & solvers
- grid size at run time (due to piston movement)
- hw/sw platform (possible heterogeneity)

Performance: Block Partitioning

SIMULATION CYCLE: FROM 5 CA BTDC TO 40 CA ATDC

National Research Council of Italy

 $R_{tot} = (T_{max}^{tot} - T_{med}^{tot})/T_{max}^{tot} \text{ load imbalance}$ $T_{max}^{tot} = \text{max execution time among processes}$ $T_{med}^{tot} = \text{average execution time among processes}$

Performance: Random Partitioning

 $R_{tot} = (T_{max}^{tot} - T_{med}^{tot})/T_{max}^{tot} \text{ load imbalance}$ $T_{max}^{tot} = \text{max execution time among processes}$ $T_{med}^{tot} = \text{average execution time among processes}$

FROM 5 CA BTDC TO 40 CA ATDC National Research Council of Italy

Parallel Combustion

Block-partitioning

Random-partitioning

National Research Council of Italy

Grid Partitioning for Efficient Engine Simulation

RANDOM PARTITIONING

is a good strategy for **reducing load imbalance** in parallel combustion but

parallel PDEs solvers needed for CFD modeling (e.g. KIVA-4MPI) require interaction among contiguous cells at each time-step i.e. **BLOCK PARTITIONING** minimizes T_{com}/T_{calc} (surface/volume effect)

Dynamic Grid Partitioning

introduce in BLOCK PARTITIONING DYNAMIC WORKLOAD BALANCING for preserving contiguousness of grid cells and improving efficiency of computation

estimate at run time load imbalance and possibly re-map grid cells by a non-uniform block partitioning

Process Workload Measure

Dynamic Partitioning: Basic Idea

at the end of each splitting interval **possibly define a new partition** Λ^{new} with **a suitably computed dimension** for reducing "spread" among processes workload

non-uniform block partitioning depending on combustion workloads

Dynamic Load Balancing Algorithm

Let be:
$$T_p^{old} = \sum_{i \in I_p^{old}} T^s(i)$$
 $T_{max}^s = \max_p T_p^{old}$ $T_{med}^s = \sum_p T_p^{old} / P$
 $R_s = \left(T_{max}^s - T_{med}^s\right) / T_{max}^s$

computational load imbalance at the splitting interval s

If $R_s > r$ with threshold 0 < r < <1a new partition of consecutive grid indices is obtained

$$\Lambda^{new} := \{I_p^{new}\}_{p=1,\ldots,P} \text{ where } T_p^{new} = \sum_{i \in I_p^{new}} T^s(i) \leq T_{med}^s$$

then a **re-distribution of grid cells data according with the new partition** is applied using a **greedy algorithm** for local work flow scheduling

Dynamic Grid Partioning

Testbed

HP XC 6000 Linux cluster

- 64 bi-processor nodes
 - Intel Itanium 2 Madison processor
 - 1.4 Ghz clock frequency
 - 4 GB RAM
- Quadrics QsNetII Elan 4 network (bandwidth of 900 MB/sec, latency 5 *µsec*)
- HP Linux for High Performance Computing 3 (kernel 2.4.21)
- GNU Compiler Collection 4.2
- HP MPI implementation 2.01

COMPUTATIONAL GRID: 3D CYLINDRICAL SECTOR, WITH ~ 4500 CELLS

Simulation cycle: from injection to 40 CA ATDC

Grid size during simulation: min:945 max: 1755

Block Partitioning vs Dynamic Partitioning

Some Conclusions and Remarks

•Detailed combustion for engine simulation is a typical context for HPC

 Reliable and efficient predictive simulations require advanced and adaptive solvers

•Data partitioning and load balancing are main issues to manage adaptivity in a parallel environment

•Flexible software framework should be adapt to **variability in test cases** (operative conditions and grid sizes), **hardware platform** (processor heterogeneity), **software platform** (interfacing with different components needed for different sub-models)

References

- 1. L. Antonelli, P. D'Ambra, Dynamic Load Balancing for High-Performance Simulations of Combustion in Engine Applications, Proc. of the 19th EUROMICRO Conf. on PDP, IEEE CS Pub., 2011.
- 2. L. Antonelli, M. Briani, P. D'Ambra, V. Fraioli, Positivity Issues in Adaptive Solutions of Detailed Chemical Schemes for Engine Simulations, Communications to SIMAI Congress, Vol. 3, 2009.
- 3. L. Antonelli, P. Belardini, P. D'Ambra, F. Gregoretti, G. Oliva, A Distributed Combustion Solver for Engine Simulations on Grids, Journal of Computational and Applied Mathematics, Vol. 226, 2, 2009.
- 4. L. Antonelli, P. D'Ambra, F. Gregoretti, G. Oliva, and P. Belardini, A Parallel Combustion Solver within an Operator Splitting context for Engine Simulations on Grids, in Proc. of LSSC'07, LNCS Series, Vol. 4818, 2007.
- 5. P. Belardini, C. Bertoli, S. Corsaro, P. D'Ambra, V. Fraioli, Application of a Multi-Method ODE Software Component for Simulations of Ultra-Low Emissions Diesel Engines, in Proc. of Fisita'06, P027, 2006.
- 6. P. Belardini, C. Bertoli, S. Corsaro, P. D'Ambra, Introducing Combustion-Turbulence Interaction in Parallel Simulation of Diesel Engines, in Proc. of HPCC'06, M. Gerndt, D. Kranzlmuller eds., LNCS series, Vol. 4208, 2006.
- 7. P. Belardini, C. Bertoli, S. Corsaro, P. D'Ambra, The Impact of Different Stiff ODE Solvers in Parallel Simulations of Diesel Combustion in Proc. of HPCC'05, L.T. Yang, O. Rana, B. Di Martino, J.J. Dongarra eds., LNCS series, Vol. 3726, 2005.
- 8. P. Belardini, C. Bertoli, S. Corsaro, P. D'Ambra, Multidimensional Modeling of Advanced Diesel Combustion System by Parallel Chemistry, in Proc. of Society Automotive Engineers World Congress, SAE Inc. Pub., 2005.
- 9. P. Belardini, C. Bertoli, S. Corsaro, P. D'Ambra, Parallel Simulation of Combustion in Common Rail Diesel Engines by Advanced Numerical Solution of Detailed Chemistry, in Applied and Industrial Mathematics in Italy, M. Primicerio, R. Spigler, V. Valente eds., World Scientic Pub., 2005.

Thanks for your attention