
ibm.com/redbooks

Front cover

IBM System Blue Gene
Solution: Blue Gene/P
Application Development

Carlos P. Sosa

Understand the Blue Gene/P
programming environment

Learn how to run and
debug MPI programs

Learn about Bridge and
Real-time APIs

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM System Blue Gene Solution: Blue Gene/P
Application Development

December 2007

SG24-7287-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2007)

This edition applies to Version 1, Release 1, Modification 1 of IBM System Blue Gene/P Solution (product
number 5733-BGP).

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team that wrote this book . xi
Become a published author . xiii
Comments welcome. xiii

Part 1. Blue Gene/P: System and environment overview . 1

Chapter 1. Hardware overview . 3
1.1 System architecture overview . 4

1.1.1 System buildup . 5
1.1.2 Compute and I/O Nodes . 5
1.1.3 Blue Gene/P environment . 6

1.2 What is new on Blue Gene/P . 7
1.3 Microprocessor . 8
1.4 Compute Nodes . 9
1.5 I/O Nodes . 10
1.6 Networks . 10
1.7 Blue Gene/P programs . 11
1.8 Blue Gene specifications. 12
1.9 Host system . 13

1.9.1 Service Node . 13
1.9.2 Front End Nodes. 13
1.9.3 Storage Nodes . 13

1.10 Host system software . 14

Chapter 2. Software overview . 15
2.1 Blue Gene/P software at a glance. 16
2.2 Compute Node Kernel. 17

2.2.1 Threading support on Blue Gene/P . 18
2.3 Message Passing Interface on Blue Gene/P . 18
2.4 Memory considerations . 18

2.4.1 Memory leaks . 21
2.4.2 Memory management . 22
2.4.3 Uninitialized pointers . 22

2.5 Other considerations . 22
2.5.1 Input/output . 22
2.5.2 Linking. 23

2.6 Compilers overview. 23
2.6.1 Programming environment overview. 23
2.6.2 GNU Compiler Collection . 23
2.6.3 IBM XL compilers . 24

2.7 I/O Node software . 24
2.7.1 I/O Node Kernel boot considerations . 24
2.7.2 I/O Node file system services . 24
2.7.3 Socket services for the Compute Node Kernel . 25
2.7.4 I/O Node daemons . 25
© Copyright IBM Corp. 2007. All rights reserved. iii

2.7.5 Control system . 25
2.8 Management software. 26

2.8.1 Midplane Management Control System . 26

Part 2. Kernel overview . 27

Chapter 3. Kernel functionality . 29
3.1 System software overview . 30
3.2 Compute Node Kernel. 30

3.2.1 Boot sequence of a Compute Node . 31
3.2.2 Common Node Services . 32

3.3 I/O Node Kernel . 32
3.3.1 Control and I/O daemon . 33

Chapter 4. Execution process modes . 37
4.1 Symmetrical Multiprocessing Node Mode. 38
4.2 Virtual Node Mode . 38
4.3 Dual Node Mode . 39
4.4 Shared memory support . 40
4.5 Deciding which mode to use . 41
4.6 Specifying a mode. 41

Chapter 5. Memory . 43
5.1 Memory overview . 44
5.2 Memory management . 45

5.2.1 L1 cache . 45
5.2.2 L2 cache . 46
5.2.3 L3 cache . 46
5.2.4 Double data RAM . 46

5.3 Memory protection . 47

Chapter 6. System calls . 51
6.1 Introduction to the Compute Node Kernel . 52
6.2 System calls . 52

6.2.1 Return codes. 52
6.2.2 Supported system calls . 53
6.2.3 Other system calls . 57

6.3 System programming interfaces . 57
6.4 Socket support . 57
6.5 Signal support . 59
6.6 Unsupported system calls . 60

Part 3. Applications environment . 63

Chapter 7. Parallel paradigms . 65
7.1 Programming model . 66
7.2 Blue Gene/P MPI implementation . 66

7.2.1 High performance network for efficient parallel execution 67
7.2.2 Forcing MPI to allocate too much memory . 69
7.2.3 Not waiting for MPI_Test. 70
7.2.4 Flooding of messages. 70
7.2.5 Deadlock the system. 71
7.2.6 Violating MPI buffer ownership rules. 71
7.2.7 Interlocking collectives with point-to-point calls. 73

7.3 MPI communications. 74
iv IBM System Blue Gene Solution: Blue Gene/P Application Development

7.3.1 Blue Gene/P MPI extensions . 74
7.4 MPI functions . 76
7.5 Compiling MPI programs on Blue Gene/P . 77
7.6 MPI communications performance . 79

7.6.1 MPI point-to-point . 80
7.6.2 MPI collective . 81

7.7 OpenMP . 83
7.7.1 OpenMP implementation for Blue Gene/P . 83
7.7.2 Selected OpenMP compiler directives . 83
7.7.3 Selected OpenMP compiler functions. 86
7.7.4 Performance . 86

Chapter 8. Developing applications with IBM XL compilers . 91
8.1 What is new. 92
8.2 Compiling and linking applications on Blue Gene/P . 92
8.3 Default compiler options . 93
8.4 Unsupported options . 94
8.5 Support for threads, OpenMP, and SMP . 94
8.6 XL runtime libraries . 95
8.7 Mathematical Acceleration Subsystem libraries . 96
8.8 Engineering and Scientific Subroutine Library libraries. 96
8.9 Tuning your code for Blue Gene/P . 96

8.9.1 Using the compiler optimization options . 96
8.9.2 PowerPC 450 processor parallel double-precision floating point multiply add unit 97
8.9.3 Using Single Instruction Multiple Data instructions in applications 98

8.10 Tips for optimizing constructs . 100
8.10.1 Structuring data in adjacent pairs . 100
8.10.2 Using vectorizable basic blocks . 101
8.10.3 Using inline functions . 101
8.10.4 Removing possibilities for aliasing (C/C++) . 102
8.10.5 Structure computations in batches . 103
8.10.6 Checking for data alignment . 104
8.10.7 Using XL built-in floating-point functions for Blue Gene/P 106
8.10.8 Complex type manipulation functions . 109
8.10.9 Load and store functions. 111
8.10.10 Move functions . 113
8.10.11 Arithmetic functions. 114
8.10.12 Select functions. 123
8.10.13 Examples of built-in functions usage. 124

Chapter 9. Running and debugging applications . 129
9.1 Running applications. 130

9.1.1 MMCS console . 130
9.1.2 mpirun . 131
9.1.3 LoadLeveler . 131
9.1.4 Other scheduler products . 132

9.2 Debugging applications. 132
9.2.1 General debugging architecture . 132
9.2.2 GNU Project debugger . 133
9.2.3 Core Processor debugger . 138
9.2.4 Starting the Core Processor tool . 138
9.2.5 Attaching running applications . 139
9.2.6 Saving your information . 145
 Contents v

9.2.7 Debugging live I/O Node problems . 145
9.2.8 Debugging core files . 146
9.2.9 The addr2line utility . 148

Chapter 10. Checkpoint and restart support for applications 151
10.1 Checkpoint and restart . 152
10.2 Technical overview . 152

10.2.1 Input/output considerations. 153
10.2.2 Signal considerations . 153

10.3 Checkpoint API . 155
10.3.1 Checkpoint library API . 155

10.4 Directory and file naming conventions . 157
10.5 Restart. 157

10.5.1 Determining the latest consistent global checkpoint . 157
10.5.2 Checkpoint and restart functionality . 158

Chapter 11. Control system (Bridge) APIs . 159
11.1 API requirements . 160

11.1.1 Configuring environment variables . 160
11.1.2 General comments . 161

11.2 APIs. 162
11.2.1 API to the Midplane Management Control System . 162
11.2.2 Asynchronous APIs. 163
11.2.3 State sequence IDs. 163
11.2.4 Bridge API return codes . 163
11.2.5 Blue Gene hardware resource APIs . 164
11.2.6 Partition-related APIs . 166
11.2.7 Job-related APIs . 171
11.2.8 Field specifications for the rm_get_data() and rm_set_data() APIs 178
11.2.9 Object allocator APIs . 189
11.2.10 Object deallocator APIs . 189
11.2.11 Messaging APIs . 190

11.3 Small partition allocation . 191
11.3.1 Subdivided busy base partitions . 192

11.4 API examples . 192
11.4.1 Retrieving base partition information. 192
11.4.2 Retrieving node card information . 193
11.4.3 Defining a new small partition . 194
11.4.4 Querying a small partition . 195

Chapter 12. Real-time Notification APIs . 197
12.1 API support overview . 198

12.1.1 Requirements . 198
12.1.2 General comments . 199

12.2 Real-time Notification APIs . 200
12.3 Real-time callback functions . 201
12.4 Real-time Notification API status codes . 207

12.4.1 Status code specification . 208
12.5 Sample real-time application code . 209

Chapter 13. mpirun . 217
13.1 mpirun implementation on Blue Gene/P . 218
13.2 mpirun setup . 219

13.2.1 User setup. 219
vi IBM System Blue Gene Solution: Blue Gene/P Application Development

13.2.2 System administrator setup. 219
13.3 Invoking mpirun. 220
13.4 Environmental variables . 224
13.5 Return codes. 225
13.6 Examples . 227
13.7 mpirun application program interfaces . 234

Chapter 14. Dynamic Partition Allocator APIs . 237
14.1 Overview of API support . 238

14.1.1 Requirements . 238
14.2 API details . 239

14.2.1 APIs . 239
14.2.2 Return codes. 240

14.3 Sample program . 241

Part 4. Applications . 243

Chapter 15. Performance overview of engineering and scientific applications 245
15.1 Blue Gene/P system from an applications perspective. 246
15.2 Selected Chemistry and Life Sciences applications . 247

15.2.1 Classical Molecular Mechanics and Molecular Dynamics applications. 248
15.2.2 Molecular Docking applications. 252
15.2.3 Electronic structure (Ab Initio) applications. 253
15.2.4 Bioinformatics applications . 254
15.2.5 Performance kernel benchmarks . 256
15.2.6 MPI point-to-point . 257

Part 5. Appendixes . 263

Appendix A. Blue Gene/P hardware naming convention . 265

Appendix B. Header files and libraries . 271
Blue Gene/P applications. 272
Resource management APIs . 273

Appendix C. Files on architectural features . 275
Personality of Blue Gene/P . 276
Example of running personality on Blue Gene/P . 276

Appendix D. Porting applications . 279

Appendix E. Mapping . 281

Appendix F. Statement of completion . 285

References . 287

Related publications . 291
IBM Redbooks . 291
Other publications . 291
Online resources . 293
How to get IBM Redbooks . 294
Help from IBM . 294

Index . 295
 Contents vii

viii IBM System Blue Gene Solution: Blue Gene/P Application Development

Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service might be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right might be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM might
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM might use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You might copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Blue Gene/L™
Blue Gene/P™
Blue Gene®
DB2 Universal Database™
DB2®
eServer™

General Parallel File System™
GPFS™
IBM®
LoadLeveler®
PowerPC®
POWER™
POWER4™

POWER5™
POWER6™
Redbooks®
Redbooks (logo) ®
System p™
Tivoli®

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names might be trademarks or service marks of others.
x IBM System Blue Gene Solution: Blue Gene/P Application Development

Preface

This IBM® Redbooks® publication is one in a series of IBM books written specifically for the
IBM System Blue Gene/P Solution. The Blue Gene/P system is the second generation of a
massively parallel supercomputer from IBM in the IBM System Blue Gene® Solution series.
This book provides an overview of the application development environment for the Blue
Gene/P system. It is intended to help programmers understand the requirements to develop
applications on this high-performance massively parallel supercomputer.

In this book, we explain instances where the Blue Gene/P system is unique in its
programming environment. We also attempt to look at the differences between the IBM
System Blue Gene/L™ Solution and the Blue Gene/P Solution. This book does not delve into
great depth about the technologies that are commonly used in the supercomputing industry,
such as Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) nor tries to
teach parallel programming. References are provided in those instances for you to find more
information if desired.

Prior to reading this book, you must have a strong background in high-performance
computing (HPC) programming. The high-level programming languages that are used
throughout this book are C/C++ and Fortran95. Previous experience using the Blue Gene/L
system can help you understand better some concepts in this book that we do not extensively
discuss. However, several IBM Redbooks publications about the Blue Gene/L system are
available for you to obtain general information about the Blue Gene/L system. We recommend
that you refer to “IBM Redbooks” on page 291, for a list of those publications.

The team that wrote this book
This book was produced in collaboration with the IBM Blue Gene developers at IBM
Rochester, Minnesota, and IBM Blue Gene developers at the IBM T. J. Watson Center in
Yorktown Heights, N.Y. The information presented in this book is direct documentation of
many of the Blue Gene/P hardware and software features. This information was published by
the International Technical Support Organization, Rochester, MN.

Carlos P. Sosa is a Senior Technical Staff Member in the Blue Gene Development Group of
IBM, where he has been the team lead of the Chemistry and Life Sciences high-performance
effort since 2006. For the past 18 years, he has focused on scientific applications with
emphasis in Life Sciences, parallel programming, benchmarking, and performance tuning. He
received a Ph.D. degree in Physical Chemistry from Wayne State University and completed
his post-doctoral work at the Pacific Northwest National Laboratory. His areas of interest are
future IBM POWER™ architectures, Blue Gene, Cell Broadband, and cellular molecular
biology.

We thank the following people and their teams for their contributions to this book:

� Tom Liebsch for being the lead source for hardware information
� Harold Rodakowski for software information
� Thomas M. Gooding for kernel information
� Michael Blocksome for parallel paradigms
� Michael T. Nelson and Lynn Boger for their help with the compiler
� Thomas A. Budnick for his assistance with APIs
� Brant L. Knudson and Paul Allen for their extensive contributions
© Copyright IBM Corp. 2007. All rights reserved. xi

We also thank the following people for their contributions to this project:

Gary Lakner
Gary Mullen-Schultz
ITSO, Rochester, MN

Dino Quintero
ITSO, Poughkeepsie, NY

Paul Allen
Mike Blocksome
Lynn Boger
Thomas A. Budnik
Ahmad Faraj
Thomas M. Gooding
Nicholas Goracke
Todd Inglet
Brant L. Knudson
Tom Liebsch
Mark Megerian
Sam Miller
Mike Mundy
Tom Musta
Mike Nelson
Jeff Parker
Joseph Ratterman
Richard Shok
Brian Smith
IBM Rochester

Philip Heidelberg
Sameer Kumar
Martin Ohmacht
James C. Sexton
Robert E. Walkup
Robert Wisniewski
IBM Watson Center

Mark Mendell
IBM Toronto

Ananthanaraya Sugavanam
Enci Zhong
IBM Poughkeepsie

Kirk Jordan
IBM Waltham

Jerrold Heyman
IBM Raleigh

Subba R. Bodda
IBM India
xii IBM System Blue Gene Solution: Blue Gene/P Application Development

Become a published author
Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv IBM System Blue Gene Solution: Blue Gene/P Application Development

Part 1 Blue Gene/P: System
and environment
overview

The IBM System Blue Gene Solution is the next generation on massively parallel systems
produced by IBM. It follows on the tradition established by the IBM Blue Gene/L Solution in
challenging our thinking to take advantage of this innovative architecture. This next
generation of supercomputers follows the winning formula provided as part of the Blue
Gene/L Solution, that is, orders of magnitude in size and substantially more efficient in power
consumption.

In this part, we present an overview of the two main topics of this book: hardware and
software environment. This part includes the following chapters:

� Chapter 1, “Hardware overview” on page 3
� Chapter 2, “Software overview” on page 15

Part 1
© Copyright IBM Corp. 2007. All rights reserved. 1

2 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 1. Hardware overview

In this chapter, we provide a brief overview of hardware. This chapter is intended for
programmers who are interested in learning about the Blue Gene/P system. This chapter is
also an overview for programmers who are already familiar with the Blue Gene/L system and
want to understand the differences between the Blue Gene/L and Blue Gene/P systems.

It is important to understand where the Blue Gene/P system fits within the multiple systems
that are currently available in the market. To gain a historical perspective as well as a
perspective from an applications point of view, we recommend that you read the first chapter
of the book Unfolding the IBM eServer Blue Gene Solution, SG24-6686. Although this book is
written for the Blue Gene/L system, these concepts apply to the Blue Gene/P system.

In this chapter, we describe the Blue Gene/P architecture. We also provide an overview of the
machine with a brief description of some of the components. Specifically we address the
following topics:

� “System architecture overview” on page 4
� “What is new on Blue Gene/P” on page 7
� “Microprocessor” on page 8
� “Compute Nodes” on page 9
� “I/O Nodes” on page 10
� “Networks” on page 10
� “Blue Gene/P programs” on page 11
� “Blue Gene specifications” on page 12
� “Host system” on page 13
� “Host system software” on page 14

1

© Copyright IBM Corp. 2007. All rights reserved. 3

1.1 System architecture overview
The IBM System Blue Gene Solution is a revolutionary and important milestone for IBM in the
high-performance computing arena. The Blue Gene/L system has been the fastest
supercomputer in the last few years as noted by the TOP500 organization.1 Now IBM has
introduced the Blue Gene/P system as the next-generation of massively-parallel
supercomputers, based on the same successful architecture in the Blue Gene/L system.

The Blue Gene/P system includes the following key features and attributes among others:

� Dense number of cores per rack: 4096 cores per rack

� PowerPC®, Book E compliant, 32-bit microprocessor, 850 MHz

� Double precision, dual pipe floating point acceleration on each core

� 24-inch/42U server rack air cooled

� Low power per flop ratio on Blue Gene/P™ compute application-specific integrated circuit
(ASIC), 1.8 watts per GFlop/sec. per SOC

� Includes memory controllers, caches, network controllers, and high-speed input/output
(I/O)

� Linux® Kernel running on I/O Nodes

� Message Passing Interface (MPI)2 support between nodes via MPI library support

� Open Multi-Processing (OpenMP)3 application programming interface (API)

� Scalable control system based on external Service Node and Front End Node

� Standard IBM XL family of compilers– support with XLC/C++, XLF, and GNU Compiler
Collection5

� Software support for LoadLeveler®,6 General Parallel File System™ (GPFS™),7 and
Engineering and Scientific Subroutine Library (ESSL)8

Figure 1-1 illustrates the Blue Gene/P system architecture. It provides an overview of the
multiple system components, from the microprocessor to the full system.

The system contains the following components:

Chip The Blue Gene/P base component is a quad-core chip (also referred
throughout this book as a Compute Node or node). The frequency of a
single core is 850 MHz.

Compute card One chip is soldered to a small processor card, one per card, together
with memory (DRAM), to create a compute card (one node). The
amount of DRAM per card is 2 GB.

Compute Node card The compute cards are plugged on a node card. These are two rows
of sixteen compute cards on the card (planar). From zero to two I/O
Nodes per Compute Node card can be added to the Compute Node
card.

Rack A rack holds a total of 32 Compute Node cards.

System A full petaflop system consists of 72 racks.
4 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 1-1 Blue Gene/P system overview from the microprocessor to the full system

1.1.1 System buildup

Similar to the Blue Gene/L system, the number of cores in a system can be computed as
follows:

Number of cores = (number of racks) x (number of node cards per rack) x (number of
compute cards per node card) x (number of cores per compute card)

This equation corresponds to cores and memory. However, I/O is carried out through the I/O
Node that is connected externally via a 10 Gigabit Ethernet network. This network
corresponds to the functional network. I/O Nodes are not considered in the previous equation.

Finally, the Compute and I/O Nodes are connected externally (to the outside world) via the
following peripherals:

� One Service Node
� One or more Front End Nodes
� Global file system

1.1.2 Compute and I/O Nodes

Nodes are made of one quad-core with 2 GB of memory. These nodes do not have a local file
system. Therefore, they must route I/O operations to an external device. In order to reach this
external device (outside the environment), a Compute Node sends data to an I/O Node,
which in turn, carries out the I/O requests.

The hardware for both types of nodes is virtually identical. They only differ in the way that they
are used. For example, there might be also extra RAM on the I/O Nodes, and the physical
connectors are different. A Compute Node runs a light, UNIX®-like proprietary kernel,

Cabled
8x8x16

System
72 racks

Rack
32 node cards

Node Card
(32 chips 4x4x2)

32 compute, 0-1 IO cards

Compute Card
1 chip, 40
DRAMs

Chip
4 processors

13.6 GF/s
8 MB EDRAM

13.6 GF/s
2.0 GB DDR

435 GF/s
64 GB

14 TF/s
2 TN

1 PF/s
144 TB
Chapter 1. Hardware overview 5

referred as Compute Node Kernel. The Compute Node Kernel ships all network bound
requests to the I/O Node.

The I/O Node is connected to the external device through an Ethernet port to the 10 Gigabit
functional network and can perform file I/O operations.

In the next section, we provide an overview of the Blue Gene environment, including all the
components that fully populate the system.

1.1.3 Blue Gene/P environment

The Blue Gene/P environment consists of all the components that form part of the full system.
Figure 1-2 illustrates the multiple components that form the Blue Gene/P environment.

The Blue Gene/P system consists of the following key components:

Service Node This node provides control of the Blue Gene/P system.

Front End Node This node provides access to the users to submit, compile, and build
applications.

Compute Node This node runs applications. Users cannot login to this node.

I/O Node This node provide access to external devices, and I/O requests are all
routed through this node.

Functional network This network is used by all components of the Blue Gene/P system
except the Compute Node,

Control network This network is the service network for specific system control
functions between the Service Node and the I/O Node.

In the remainder of this chapter, we describe these key components.

Figure 1-2 Blue Gene/P environment

Service Node

System
Console

Scheduler

DB2 MMCS

Frontend
Nodes

File
Servers

Collective Network Pset 1151

I/O Node 1151I/O Node 0 I/O Node 1151C-Node 0 I/O Node 1151I/O Node 1151

Collective Network Pset 0

.

.

.

.

.

.

.

.

Linux

fs client

ciod

CNK

MPI

app

CNK

MPI

app

torus

Functional
10 Gbps
Ethernet

Control
Gigabit

Ethernet

iCon+
Palomino

I2C

JTAG

I/O Node 1151C-Node 0

CNK

fs client

ciod

I/O Node 1151C-Node 63

CNK

fs client

ciod

I/O Node 1151I/O Node 1151

Linux

fs client

ciod
6 IBM System Blue Gene Solution: Blue Gene/P Application Development

1.2 What is new on Blue Gene/P

The Blue Gene/P Solution is a highly scalable multi-node supercomputer. Table 1-1 shows
key differences between the Blue Gene/L and Blue Gene/P systems. Each node consists of a
single ASIC and forty 512 Mb SDRAM-DDR2 memory chips. The nodes are interconnected
through six networks, one of which connects the nearest neighbors into a three-dimensional
(3D) torus or mesh. A system with 72 racks has a (x, y, z) 72 x 32 x 32 3D torus. The ASIC
that is powering the nodes is in IBM CU-08 (CMOS9SF) system-on-a-chip technology and
incorporates all of the compute and communication functionality that is needed by the core
Blue Gene/P system. It contains 8 MiB of high-bandwidth embedded DRAM that can be
accessed by the four cores in approximately 20 cycles for most L1 cache misses.

The scalable unit of Blue Gene/P packaging consists of 512 Compute Nodes on a
doubled-sided board, called a midplane, with dimensions of approximately 20 inches x
25 inches x 34 inches.

Each node operates at Voltage Drain Drain (VDD) = 1.1v or 1.2v or 1.3v, Temp_junction
<70C, and a frequency of 850 MHz. Using an IBM PowerPC 450 processor and a
single-instruction, multiple-data (SIMD), double precision floating point multiply add unit
(double floating point multiply add (FMA)), it can deliver four floating point operations per
cycle, or a theoretical maximum of 7.12 teraflops/sec. at peak performance for a single
midplane. Two midplanes are contained within a single cabinet.

A midplane set of processing nodes, from a minimum of 16 to a maximum of 128, can be
attached to a dedicated quad-processor I/O Node for handling I/O communications to and
from the Compute Nodes. The I/O Node is assembled using the same ASIC as a Compute
Node. Each Compute Node has a separate light-weight kernel, the Compute Node Kernel,
which is designed for high performance scientific and engineering code. With help from the
I/O Node kernel, the Compute Node Kernel provides Linux-like functionality to user
applications. The I/O Nodes run an embedded Linux operating system that is extended to
contain additional system software functionality to handle communication with the external
world and other services.

The I/O Nodes of the Blue Gene/P system are connected to an external 10 Gigabit Ethernet
switch, as previously mentioned, which provides I/O connectivity to file servers of a
cluster-wide file system as illustrated in Figure 1-2. The 10 Gigabit Ethernet switch connects
the Blue Gene/P system to the Front End Node and other computing resources. The Front
End Node supports interactive logins, compiling, and overall system management.

MiB: 1 MiB = 220 bytes = 1,048,576 bytes = 1,024 kibibytes

Note: This is the smallest unit that supports the full 3D torus.
Chapter 1. Hardware overview 7

Table 1-1 compares selected features between the Blue Gene/L and Blue Gene/P systems.

Table 1-1 Feature comparison between the Blue Gene/L and Blue Gene/P systems

Appendix A, “Blue Gene/P hardware naming convention” on page 265, provides an overview
of how the Blue Gene/P hardware locations are assigned. You will find that the naming is
used consistently throughout both the hardware and software chapters. Understanding the
naming convention is particularly useful when running applications on the Blue Gene/P
system.

1.3 Microprocessor
The microprocessors is a PowerPC 450, Book E compliant, 32-bit microprocessor with a
clock speed of 850 MHz. The PowerPC 450 microprocessor, with double-precision floating
point multiply add unit (double FMA), can deliver four floating point operations per cycle with
3.4 GFlop/sec. per core.

Feature Blue Gene/L Blue Gene/P

Node

Cores per node 2 4

Core clock speed 700 MHz 850 MHz

Cache coherency Software managed SMP

Private L1 cache 32 KB per core 32 KB per core

Private L2 cache 14 stream prefetching 14 stream prefetching

Shared L3 cache 4 MB 8 MB

Physical memory per node 512 MB - 1 GB 2 GB

Main memory bandwidth 5.6 GBps 13.6 GBps

Peak performance 5.6 GFlop/sec. per node 13.6 GFlop/sec. per node

Network topologies

Torus

Bandwidth 2.1 GBps 5.1 GBps

Hardware latency (nearest
neighbor)

200 ns (32B packet) and 1.6 μs
(256B packet)

100 ns (32B packet) and 800 ns
(256B packet)

Tree

Bandwidth 700 MBps 1.7 GBps

Hardware latency (round trip
worst case)

5.0 μs 3.0 μs

Full system

Peak performance 410 TFlop/sec. (72 racks) 1 PFlop/Sec. (72 racks)

Power 1.7 MW (72 racks) 2.1 MW (72 racks)
8 IBM System Blue Gene Solution: Blue Gene/P Application Development

1.4 Compute Nodes
The Compute Node contains four PowerPC 450 processors with 2 GB of shared RAM and
run a lightweight kernel to execute user-mode applications only. Typically all four cores are
used for computation either in Dual Node Mode, Virtual Node Mode, or symmetrical
multiprocessing. (Chapter 4, “Execution process modes” on page 37, covers these different
modes.) Data is moved to and from the I/O Nodes over the global collective network.
Figure 1-3 illustrates the components of a Compute Node.

Compute Nodes consist of the following components:

� Four 850 MHz PowerPC 450 cores
� 2 GB RAM per node
� Six connections to the torus network at 3.4 Gbps per link
� Three connections to the global collective network at 6.8 Gbps per link
� Four connections to the global interrupt network
� One connection to the control network (JTAG)

Figure 1-3 Blue Gene/P ASIC

M
ultiplexing sw

itch
M

ultiplexing sw
itch

PPC 450
FPU

L1
Prefetching

L2
4MB

eDRAM
L3

DDR-2
Controller

PPC 450
FPU

L1 Prefetching
L2

PPC 450

FPU
L1

Prefetching
L2

4MB
eDRAM

L3

DDR-2
Controller

PPC 450
FPU

L1
Prefetching

L2

Torus Collective BarrierJTAG 10Gb
Ethernet

DMA

BlueGene/P node

Internal bus

6 directions *
4bits/cycle,
bidirectional

3 ports * 8
bits/cycle,

bidirectional

4 ports,
bidirectional

Control
Network

2*16B bus @
½ proc speed

To 10Gb
physical layer

16B/cycle read (each), 16B/cycle write (each)

Data read @ 8 B/cycle
Data write @ 8 B/cycle
Instruction @ 8 B/cycle

16B/cycle
DDR2 DRAM

bus

4 symmetric ports for
Tree, torus and global

barriers

DMA module allows
Remote direct
“put” & “get”

M
ultiplexing sw

itch
M

ultiplexing sw
itch

PPC 450
FPU

L1
Prefetching

L2
4MB

eDRAM
L3

DDR-2
Controller

PPC 450
FPU

L1 Prefetching
L2

PPC 450

FPU
L1

Prefetching
L2

4MB
eDRAM

L3

DDR-2
Controller

PPC 450
FPU

L1
Prefetching

L2

Torus Collective BarrierJTAG 10Gb
Ethernet

DMA

BlueGene/P node

Internal bus

6 directions *
4bits/cycle,
bidirectional

3 ports * 8
bits/cycle,

bidirectional

4 ports,
bidirectional

Control
Network

2*16B bus @
½ proc speed

To 10Gb
physical layer

16B/cycle read (each), 16B/cycle write (each)

Data read @ 8 B/cycle
Data write @ 8 B/cycle
Instruction @ 8 B/cycle

16B/cycle
DDR2 DRAM

bus

4 symmetric ports for
Tree, torus and global

barriers

DMA module allows
Remote direct
“put” & “get”
Chapter 1. Hardware overview 9

1.5 I/O Nodes

I/O Nodes run an embedded Linux kernel with minimal packages required to support an
Network File System (NFS) client and Ethernet network connections. They act as a gateway
for the Compute Nodes in their respective rack to the external world (see Figure 1-4). The I/O
Nodes present a subset of standard Linux operating interfaces to the user. The 10 Gigabit
Ethernet interface of the I/O Nodes is connected to the core Ethernet switch.

The node cards have the following components among others:

� 850 MHz PowerPC 450 cores
� 2 GB DDR2 SDRAM
� One 10 Gigabit Ethernet adapter connected to the 10 Gigabit Ethernet network
� Three connections to the global collective network at 6.8 Gbps per link
� Four connections to the global interrupt network
� One connection to the control network (JTAG)

Figure 1-4 Blue Gene/P I/O Node card

1.6 Networks

Five networks are used for various tasks on the Blue Gene/P system:

� Three-dimensional torus: Point-to-point

The torus network is used for general-purpose, point-to-point message passing and
multicast operations to a selected “class” of nodes. The topology is a three-dimensional
torus constructed with point-to-point, serial links between routers that are embedded
within the Blue Gene/P ASICs. Therefore, each ASIC has six nearest-neighbor
connections, some of which can traverse relatively long cables. The target hardware
bandwidth for each torus link is 425 MBps in each direction of the link for a total of
5.1 GBps bidirectional bandwidth per node. The three-dimensional torus network supports
the following features:

– Interconnection of all Compute Nodes (73,728 for a 72 rack system)
– Virtual cut-through hardware routing
– 3.4 Gbps on all 12 node links (5.1 GBps per node)

Node Card

32 Compute
Nodes

Local DC-DC
regulators

(six required, eight
with redundancy)

Optional I/O card
(one of two possible)
with 10 Gb optical link
10 IBM System Blue Gene Solution: Blue Gene/P Application Development

– Communications backbone for computations
– 1.7/3.8 TBps bisection bandwidth, 67 TBps total bandwidth

� Global collective: Global operations

The global collective network is a high-bandwidth, one-to-all network that is used for
collective communication operations, such as broadcast and reductions, and to move
process and application data from the I/O Nodes to the Compute Nodes. Each Compute
and I/O Node has three links to the global collective network at 850 MBps per direction for
a total of 5.1 GBps bidirectional bandwidth per node. Latency on the global collective
network is less than 2 µs from the bottom to top of the Collective, with an additional 2 µs
latency to broadcast to all. The global collective network supports the following features:

– One-to-all broadcast functionality
– Reduction operations functionality
– 6.8 Gbps of bandwidth per link; latency of network traversal 2 µs
– 62 TBps total binary network bandwidth
– Interconnects all compute and I/O Nodes (1088)

� Global interrupt: Low latency barriers and interrupts

The global interrupt network is a separate set of wires based on asynchronous logic,
which forms another network that enables fast signaling of global interrupts and barriers
(global AND or OR). Round-trip latency to perform a global barrier over this network for a
72 K node partition is approximately 1.3 microseconds.

� 10 Gigabit Ethernet: File I/O and host interface

The 10 Gigabit Ethernet (optical) network consists of all I/O Nodes and discrete nodes that
are connected to a standard 10 Gigabit Ethernet switch. A Cisco switch is typically used
because it can be configured as a non-blocking switch and is scalable from a one-frame to
many-frame configuration without requiring additional switches. The Compute Nodes are
not directly connected to this network. All traffic is passed from the Compute Node over
the global collective network to the I/O Node and then onto the 10 Gigabit Ethernet
network.

� Control: Boot, monitoring, and diagnostics

The control network consists of a JTAG interface to a 1 Gigabit Ethernet interface with
direct access to shared SRAM in every Compute and I/O Node. The control network is
used for system boot, debug, and monitoring. It allows the Service Node to provide
runtime non-invasive reliability, availability, and serviceability (RAS) support as well as
non-invasive access to performance counters.

1.7 Blue Gene/P programs

The Blue Gene/P software for the Blue Gene/P core rack includes the following programs:

� Compute Node Kernel, MPI support for hardware implementation and abstract device
interface, control system, and system diagnostics

� Compute Node Kernel and services

Provides an environment for execution of user processes. The services that are provided
are process creation and management, memory management, process debugging and
RAS management.

� I/O Node Kernel and services

Provides file system access and sockets communication to applications executing in the
Compute Node.
Chapter 1. Hardware overview 11

� GNU Compiler Collection Toolchain Patches (Blue Gene/P changes to support GNU
Compiler Collection)

The system software that is provided with each Blue Gene/P core rack or racks includes the
following programs:

� DB2® Universal Database™ Enterprise Server Edition: System administration and
management

Provide overall control and monitoring of the Blue Gene/P system. These services are
performed from the Service Node.

� Compilers: XL C/C++ Advanced Edition for Linux with OpenMP support and XLF (Fortran)
Advanced Edition for Linux

1.8 Blue Gene specifications

Table 1-2 lists the features of the Blue Gene/P Compute Nodes and I/O Nodes.

Table 1-2 Blue Gene/P node properties

Node properties

Node processors (Compute and I/O) Quad 450 PowerPC

Processor frequency 850 MHz

Coherency symmetrical multiprocessing

L1 Cache (private) 32 KB per core

L2 Cache (private) 14 stream prefetching

L3 Cache size (shared) 8 MB

Main store memory/node 2 GB

Main store memory bandwidth 16 GBps

Peak performance 13.6 GFlop/sec. (per node)

Torus network

Bandwidth 6 GBps

Hardware latency (nearest neighbor) 64 ns (32 B packet), 512 ns (256 B packet)

Hardware latency (worst case) 3 μs (64 hops)

Global collective network

Bandwidth 2 GBps

Hardware latency (round trip worst case) 2.5 μs

System properties (for 73,728 Compute Nodes)

Peak performance 1 PFlop/sec.

Average/peak total power 1.8 MW/2.5 MW (25 kW/34 kW per rack)
12 IBM System Blue Gene Solution: Blue Gene/P Application Development

1.9 Host system

In addition to the Blue Gene/P core racks, the host system shown in Figure 1-5 is required for
a complete Blue Gene/P system. There is generally one host rack for the core Ethernet
switch, Service Node, and Front End Node. It might also house the Hardware Management
Console (HMC) control node, monitor, keyboard, KVM switch, terminal server, and Ethernet
modules.

Figure 1-5 Blue Gene/P rack and host system

1.9.1 Service Node

The Service Node performs many functions for the operation of the Blue Gene/P system,
including system boot, machine partitioning, system performance measurements, and
monitoring system health. The Service Node uses DB2 as the data repository for system and
state information. The Service Node can also be used as the Front End Node.

1.9.2 Front End Nodes

The Front End Node provide interfaces for users to login, compile their applications, and
submit their jobs to run from these nodes. They have direct connections to both the Blue
Gene/P internal VLAN and the public Ethernet networks.

1.9.3 Storage Nodes

The Storage Nodes provide mass storage for the Blue Gene/P system. We recommend that
the Storage Nodes run GPFS locally in order to provide a single unified file system
namespace to the Blue Gene/P system. However the I/O Nodes will access the GPFS file
system over standard NFS mounts.

The storage rack generally contains the terminal server, Storage Nodes with RAM, Gigabit
Ethernet adapters connected to the core Ethernet switch, and adapters connected to a hard
disk drive (HDD).

Blue Gene core rack
1024 Compute Nodes/rack

Up to 64 I/O Nodes/rack

Blue Gene program software
Compute Node Kernel

Host system
Service and Front End Nodes, storage system,

Ethernet switch, cabling, SLES10

System software
DB2, XLF/C compilers

Optional HPC software
LoadLeveler, GPFS, ESSL
Chapter 1. Hardware overview 13

1.10 Host system software

The operating system requires installation of SUSE Linux Enterprise Server 10 (SLES10,
64 bit) on the Service Node and Front End Node.

The following software applications for high-performance computing are optionally available
for the Blue Gene/P system:

� Cluster System Management 1.5

Partition and job management provides allocation of nodes to job partitions; Service Node
provides the core partition and job management services.

� File system: GPFS for Linux Server with NFS Client

� Job Scheduler: LoadLeveler for Blue Gene/P

� Engineering and Scientific Subroutine Library

� Application development tools for Blue Gene/P, which include debugging environments,
application performance monitoring and tuning tools, and compilers
14 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 2. Software overview

In this chapter, we provide an overview of the software that runs on the Blue Gene/P system.
As shown in Chapter 1, “Hardware overview” on page 3, the Blue Gene/P environment
consists of Compute and I/O Nodes. It also has an external set of systems where users can
perform system administration and management, partition and job management, application
development, and debugging. In this heterogeneous environment, software must be able to
interact.

Specifically, we cover the following topics:

� “Blue Gene/P software at a glance” on page 16
� “Compute Node Kernel” on page 17
� “Message Passing Interface on Blue Gene/P” on page 18
� “Memory considerations” on page 18
� “Other considerations” on page 22
� “Compilers overview” on page 23
� “I/O Node software” on page 24
� “Management software” on page 26

2

© Copyright IBM Corp. 2007. All rights reserved. 15

2.1 Blue Gene/P software at a glance

Blue Gene/P software includes the following key attributes among others:

� Full Linux kernel running on I/O Nodes

� Proprietary kernel dedicated for the Compute Nodes

� Message Passing Interface (MPI)9 support between nodes via MPI library support

� Open Multi-Processing (OpenMP)10 application programming interface (API)

� Scalable control system based on an external Service Node and Front End Node

� Standard IBM XL family of compilers11 support with XLC/C++, XLF, and GNU Compiler
Collection12

� Software support that includes LoadLeveler,13 GPFS,14 and Engineering and Scientific
Subroutine Library (ESSL)15

From a software point of view, the Blue Gene/P system is comprised of the following
components:

� A Compute Node
� I/O Node
� Front End Node where users compile and submit jobs
� The control management network
� The Service Node, which provides capabilities to manage jobs running in the racks
� Hardware in the racks

The Front End Node consists of the interactive resources on which users login to access the
Blue Gene/P system. Users edit and compile applications, create job control files, launch jobs
on the Blue Gene/P system, post process output, and perform other interactive activities.
System administrators also use the Front End Node to control and configure the Blue Gene/P
system.

An Ethernet switch is the main communication path for applications that run on the Compute
Node to the external devices. This switch provides high-speed connectivity to the file system,
which is the main disk storage for the Blue Gene/P system. This switch also gives other
resources access to the files on the file system.

A Control and Management Network provides system administrators with a separate
command and control path to the Blue Gene/P system. This private network is not available to
unprivileged users.

The software for the Blue Gene/P system consists of the following integrated software
subsystems:

� System administration and management
� Partition and job management
� Application development and debugging tools
� Compute Node Kernel and services
� I/O Node Kernel and services

The five software subsystems are required in three hardware subsystems:

� Host complex (including Front End Node and Service Node)
� I/O Node
� Compute Node
16 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 2-1 illustrates these components.

Figure 2-1 Software stack overview

The software environment illustrated in Figure 2-1 relies on a series of header files and
libraries. A selected set is listed in Appendix B, “Header files and libraries” on page 271.

2.2 Compute Node Kernel

The Compute Node Kernel provides an environment for execution of user processes.
Compute Node Kernel services include:

� Process creation and management.
� Memory management.
� Process debugging.
� Reliability Availability and Serviceability (RAS) management.
� File I/O.
� Network.

The Compute Nodes on Blue Gene/P are implemented as quad cores on a single chip with
2 GB of dedicated physical memory in which applications run.

There are three main modes in which a process is executed on Blue Gene/P nodes:

� Symmetrical Multiprocessing (SMP) Node Mode
� Virtual Node Mode (VN)
� Dual Node Mode (DUAL)

User Data Management, Pre/Post Processing
DB, Visualization,
User Job Scripting,

User Job and Partition Management

High Level Control System
System Management, Block Management, Booting

RAS Collection, Diagnostics,
Job Control, File Systems

Libraries (ESSL, etc.)

Messaging (MPI,
Open MP, Other)

System Call Layer

Message Layer
(Compute &
I/O Node)

Diags ION
Linux

CN
LinuxLWK

Kernel Development Toolkit
Devices, Primitives, RAS,
Mailbox, Interrupt Services

Low Level Control System
Power On/Off, Discovery, Partitioning support,

Machine Controller API, Machine Server,
Diag APIs (standalone and integrated), RAS

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

I/O Node
I/O Node

Link Card
Link Card

Node Card
Node Card

Node Card

Service Card

Service Node
Service Node

Front End Node

File Systems

D
ev

ic
e

La
ye

r
A

pp
 L

ay
er

S
ys

te
m

 L
ay

er

User Data Management, Pre/Post Processing
DB, Visualization,
User Job Scripting,

User Job and Partition Management

High Level Control System
System Management, Block Management, Booting

RAS Collection, Diagnostics,
Job Control, File Systems

Libraries (ESSL, etc.)

Messaging (MPI,
Open MP, Other)

System Call Layer

Message Layer
(Compute &
I/O Node)

Diags ION
Linux

CN
LinuxLWK

Kernel Development Toolkit
Devices, Primitives, RAS,
Mailbox, Interrupt Services

Low Level Control System
Power On/Off, Discovery, Partitioning support,

Machine Controller API, Machine Server,
Diag APIs (standalone and integrated), RAS

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

I/O Node
I/O Node

I/O Node
I/O Node

Link Card
Link Card

Link Card
Link Card

Node Card
Node Card

Node Card

Node Card
Node Card

Node Card

Service Card

Service Node
Service Node

Front End Node

File SystemsService Node
Service Node

Service Node
Service Node

Front End Node

File Systems

D
ev

ic
e

La
ye

r
A

pp
 L

ay
er

S
ys

te
m

 L
ay

er
Chapter 2. Software overview 17

Application programmers see the Compute Node Kernel software as a Linux-like operating
system. This type of operating system is accomplished on Blue Gene/P software stack by
providing a standard set of runtime libraries for C, C++, and Fortran95. To the extent that is
possible, the supported functions maintain open standard POSIX-compliant interfaces. We
discuss the Compute Node Kernel further in Part 2, “Kernel overview” on page 27.
Applications can access system calls that provide hardware or system features, as illustrated
by the examples in Appendix C, “Files on architectural features” on page 275.

2.2.1 Threading support on Blue Gene/P

The threading implementation on the Blue Gene/P system supports OpenMP. The XL
OpenMP implementation provides a futex compatible syscall interface, so that the NPTL
pthreads implementation in glibc runs without modification. These syscalls allow only a total
of four threads, limited support for mmap, and testing only with usage behavior of OpenMP. The
Compute Node Kernel provides a special thread function for I/O handling in MPI.

2.3 Message Passing Interface on Blue Gene/P

The implementation of MPI on the Blue Gene/P system is the MPICH2 standard that was
developed by Argonne National Labs. For more information about MPICH2, see the Message
Passing Interface (MPI) standard Web site at:

http://www-unix.mcs.anl.gov/mpi/

A function of the MPI-2 standard that is not supported by Blue Gene/P is Dynamic Process
Management (creating new MPI processes).16 However, the various thread modes are
supported.

2.4 Memory considerations
On the Blue Gene/P system, the entire physical memory of a Compute Node is 2 GB. Of that
space, some is allocated for the Compute Node Kernel itself. In addition, shared memory
space is also allocated to the user process at the time at which the process is created.

The Compute Node Kernel keeps track of collisions of stack and heap as the heap is
expanded via a brk syscall. On the Blue Gene/P system, there are stack guard pages.

The Compute Node Kernel and its private data are protected from read/write by the user
process or threads. The code space of the process is protected from writing by the process or

Important: The Compute Node Kernel supports the execution of one quad-threaded
process, where each of the four cores in the Blue Gene/P node is assigned hard affinity to
each of a maximum of four threads. The Compute Node Kernel also supports the
execution of four single-threaded processes per core on a node.

Important: In C, C++ and Fortran, the malloc routine returns a NULL pointer when users
request more memory than the physical memory available. We recommend that you
always check malloc return values for validity.

The hardware issues a segment violation (SEGV) interrupt and terminates the application
on all nodes in the partition when referencing data using a NULL pointer.
18 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www-unix.mcs.anl.gov/mpi/

threads. Code and read-only data are shared between the processes in Virtual Node Mode
unlike in the Blue Gene/L system.

In general, give careful consideration to memory when writing applications for the Blue
Gene/P system. Unlike the Blue Gene/L system, at the time at which this book was written,
each node had 2 GB of physical memory.

As previously mentioned, memory addressing is an important topic in regard to the Blue
Gene/P system. Here we update the section on memory addressing presented in Unfolding
the IBM eServer Blue Gene Solution, SG24-6686, as it applies to Blue Gene/P. As mentioned
in that section, when an application stores data in memory, it can be classified as follows:

data Initialized static and common variables
bss Uninitialized static and common variables
heap Controlled allocatable arrays
stack Controlled automatic arrays and variables

You can use the Linux size command to gain an idea of the memory size of the program.
However, the size command does not provide any information about the runtime memory
usage of the application nor on the classification of the types of data. Figure 2-2 illustrates
memory addressing based on the different node modes that are available on the Blue Gene/P
system.

Figure 2-2 Memory addressing on the Blue Gene/P system as a function of the different node modes

Table 2-1 compares the three modes based on the memory addressing program introduced in
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. This program is shown in
Example 2-1 on page 20 with the memory parameters used here.

Table 2-1 Memory addressing as a function of the three Blue Gene/P node modes

Parameters SMP DUAL VN

heapsize function
address

10012c0 10012c0 10012c0

printf function address 1002434 1002434 1002434

end of code address 1067b38 1067b38 1067b38
Chapter 2. Software overview 19

The text section starts at address 0. The heap section begins from the bottom, after the data
and bss sections. The stack section starts from the top, at address 7fffd31c in SMP Node
Mode (approximately 2 GB) and at address 403fd31c in Dual Node Mode (approximately
1 GB) and 209fd31c in Virtual Node Mode (approximately 512 MB).

Example 2-1 Program for memory addressing

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h> // for 'brk ()' and 'sbrk ()'

extern int _etext; // end of code area
extern int _edata; // end of data area
extern int __bss_start; // start of bss area
extern int _end; // end of bss area

#define SIZE 1024*256 // 1 MB of long
//#define SZ 2000 // SMP node mode
//#define SZ 998 // DUAL node mode
#define SZ 492 // VN node mode

unsigned long heapsize ()
 {
 return (unsigned long) sbrk (0) - (unsigned long) & _end;
 }

variable initialized
address

1101c98 1101c98 1101c98

end of data address 11023a8 11023a8 11023a8

start of bss address 11023a8 11023a8 11023a8

variable uninitialized
address

11023a8 11023a8 11023a8

end of bss address 1103cf0 1103cf0 1103cf0

start of heap address 1600010 1600010 1600010

end of heap_array0
address

7e60000c 3fc0000c 2020000c

start of heap_array
address

7e601010 3fc01010 20201010

end of heap_array
address

7e70100c 3fd0100c 2030100c

end of heap address 1127000 1127000 1127000

Heap size 144144 23310 144144 23310 144144 23310

start of stack address 7fffd31c 403fd31c 209fd31c

end of stack address 2ffd320 1dfd320 1dfd320

Parameters SMP DUAL VN
20 IBM System Blue Gene Solution: Blue Gene/P Application Development

void * gotostack ()
 {
 long st[SZ*SIZE];
 st[0]=123456;
 printf ("\nstart of stack address %9lx\n", &st[SZ*SIZE-1]);
 printf ("end of stack address %9lx\n\n", st);
 }

int initialized = 123; // goes to data area
int uninitialized; // goes to bss
int main (int argc, char * argv [])
{
int loop;
long long_integer;
long * heap_array;
long * heap_array0;

errno=0;
if ((heap_array0 = (long *) malloc (SZ*SIZE*sizeof(long_integer))) == NULL)
 printf("error, could not allocate\n");
 if(errno !=0){
 printf ("malloc errno : %d\n",errno); errno=0; }
if ((heap_array = (long *) malloc (SIZE*sizeof(long_integer))) == NULL)
 printf("error, could not allocate\n");
 if(errno !=0){
 printf ("malloc errno : %d\n",errno); errno=0;}
printf ("Memory mapping\n\n");
printf ("heapsize function address %9lx\n", heapsize);
printf ("printf function address %9lx\n", printf);
printf ("end of code address %9lx\n", &_etext);
printf ("variable initialized address %9lx\n", &initialized);
printf ("end of data address %9lx\n", &_edata);
printf ("start of bss address %9lx\n", &__bss_start);
printf ("variable uninitialized address %9lx\n", &uninitialized);
printf ("end of bss address %9lx\n", &_end);
printf ("start of heap address %9lx\n", heap_array0);
printf ("end of heap_array0 address %9lx\n", &heap_array0[SZ*SIZE-1]);
printf ("start of heap_array address %9lx\n", heap_array);
printf ("end of heap_array address %9lx\n", &heap_array[SIZE-1]);
printf ("end of heap address %9lx\n", sbrk(0));
long_integer=heapsize();
printf ("\nHeap size %lu %9lx\n\n",long_integer,long_integer);
gotostack();

2.4.1 Memory leaks
Given that there is no virtual paging on the Blue Gene/P system, any memory leaks in your
application can quickly consume available memory. When writing applications for the Blue
Gene/P system, you must be especially diligent that you release all memory that you allocate.
This is true on any machine. Therefore, we recommend that an application is ported to
multiple architectures.
Chapter 2. Software overview 21

2.4.2 Memory management
The Blue Gene/P computer implements a 32-bit memory model. It does not support a 64-bit
memory model, but provides large file support and 64-bit integers.

In the case of the Blue Gene/P system, if the memory requirement per MPI task is greater
than 512 MB in Virtual Node Mode or greater than 1 GB in Dual Node Mode, then the
application will not run on the Blue Gene/P system. However, in SMP Node Mode, 2 GB of
memory are available. The application will only work if you take steps to reduce the memory
footprint.

In some cases, you can reduce the memory requirement by distributing data that was
replicated in the original code. In this case, additional communication might be needed. It
might also be possible to reduce the memory footprint by being more careful about memory
management in the application, such as by not defining arrays for the index that corresponds
to the number of nodes.

2.4.3 Uninitialized pointers

Blue Gene/P applications run in the same address space as the Compute Node Kernel and
the communications buffers. You can create a pointer that does not reference your own
application’s data, but rather that references the area used for communications. The Compute
Node Kernel itself is well protected from rogue pointers.

2.5 Other considerations
It is important to understand that the operating system that is present on the Compute Node,
the Compute Node Kernel, is not a full-fledged version of Linux. Because of this, there are
areas in which you must use care, as explained in the following sections, when writing
applications for the Blue Gene/P system. For a full list of supported system calls, see Part 2,
“Kernel overview” on page 27.

2.5.1 Input/output
I/O is an area where you must pay special attention in your application. The Compute Node
Kernel does not perform I/O. This is carried out by the I/O Node.

File I/O
A limited set of file I/O is supported. Do not attempt to use asynchronous file I/O, because it
results in runtime errors.

Standard input
Standard input (stdin) is supported on the Blue Gene/P system. It is no longer necessary to
pass input to your application using only file I/O.

Sockets calls
Sockets are supported on the Blue Gene/P system. For additional information, see Chapter 6,
“System calls” on page 51.
22 IBM System Blue Gene Solution: Blue Gene/P Application Development

2.5.2 Linking

Dynamic linking is not supported on the Blue Gene/L system. However, it is supported on the
Blue Gene/P system. You can now statically link all code into your application or use dynamic
linking.

2.6 Compilers overview

Read-only sections are supported in the Blue Gene/P system. However, this might not be true
of read-only sections within dynamically located modules.

2.6.1 Programming environment overview

The diagram in Figure 2-3 provides a quick view into the software stack that supports the
execution of Blue Gene/P applications.

Figure 2-3 Software stack supporting the execution of Blue Gene/P applications

2.6.2 GNU Compiler Collection
The standard GNU Compiler Collection 4.1.1 for C, C++, and Fortran is supported on the
Blue Gene/P system. The current versions are:

� gcc 4.1.1.
� binutils 2.17.
� glibc 2.4.

You can find the GNU Compiler Collection in the /bgsys/drivers/ppcfloor/gnu-linux/bin
directory. For more information, see Chapter 8, “Developing applications with IBM XL
compilers” on page 91.

GLIBC

Compute Node Kernel

CIOD (runs on I/O Node)

GCC Libs

XL Libs

Application

GLIBC

Compute Node Kernel

CIOD (runs on I/O Node)

GCC Libs

XL Libs

Application
Chapter 2. Software overview 23

2.6.3 IBM XL compilers
The following IBM XL compilers are supported for developing Blue Gene/P applications:

� XL C/C++ Advanced Edition V9.0 for Blue Gene/P
� XL Fortran Advanced Edition V11.1 for Blue Gene/P

See Chapter 8, “Developing applications with IBM XL compilers” on page 91, for more
compiler-related information.

2.7 I/O Node software

The Blue Gene/P system is a massively parallel system with a large number of nodes.
Compute Nodes are reserved for computations, and I/O is carried out via the I/O Nodes.
These nodes serve as links between the Compute Nodes and external devices. For instance,
applications running on Compute Nodes can access file servers and communicate with
processes in other machines.

The I/O Node software and the Service Node software communicate to exchange various
data relating to machine configuration and workload. Communications use a key-based
authentication mechanism with keys using at least 256 bits.

The I/O Node Kernel is a standard Linux kernel and provides file-system access and sockets
communication to applications that execute on the Compute Nodes.

2.7.1 I/O Node Kernel boot considerations

The I/O Node Kernel is designed to be booted as infrequently as possible due to the
numerous possible failures of mounting remote file systems. The bootstrap process involves
loading a ramdisk image and booting the Linux kernel. The ramdisk image is extracted to
provide the initial file system, which contains minimal commands to to mount the Service
Node via the Network File System (NFS). The boot continues by running startup scripts from
the NFS and running customer-supplied startup scripts to perform site-specific actions such
as logging configuration and mounting high performance file systems.

The Blue Gene/P system has considerably more content over the Blue Gene/L system in the
ramdisk image to reduce the loadon the Service Node that was exported by the NFS as the
I/O Node boot. Toolchain shared libraries and all of the basic Linux text and shell utilities are
local to the ramdisk. Packages, such as GPFS, and customer provided scripts are NFS
mounted for administrative convenience.

2.7.2 I/O Node file system services

The I/O Node Kernel supports an NFS client or GPFS client, which provides a file system
service to application processes that execute on its associated Compute Node. The NFSv3
and GPFS file systems supported as part of the Blue Gene/L system continue with the Blue
Gene/P system. As with the Blue Gene/L system, customers can still add their own parallel
file systems by modifying Linux on the I/O Node as needed.
24 IBM System Blue Gene Solution: Blue Gene/P Application Development

2.7.3 Socket services for the Compute Node Kernel

The I/O Node include a complete Internet Protocol (IP) stack, with TCP and UDP services. A
subset of these services is available to user processes running on the Compute Node that is
associated with an I/O Node. Application processes communicate with processes that are
running on other systems using client side sockets via standard socket permissions and
network connectivity. In addition, server-side sockets are available.

Note that the I/O Node implements the sockets so that all the Compute Nodes within a
processor set (pset) behave as though the compute tasks are executing on the I/O Node. In
particular, this means that the socket port number is a single address space within the pset
and they share the IP address of the I/O Node.

2.7.4 I/O Node daemons

The I/O Node include the following daemons:

� Control and I/O daemon
� File-system client daemons
� Syslog
� sshd
� ntpd on at least one I/O Node

2.7.5 Control system

The control system retains the high-level components from the Blue Gene/L system with a
considerable change in low-level components to accommodate the updated control hardware
in the Blue Gene/P system as well as to increase performance for the monitoring system. The
MMCS server and mcserver are now the processes that make up the control system on the
Blue Gene/P system.

� The Midplane Management Control System (MMCS; console and server) is similar to the
Blue Gene/L system in the way it handles commands, interacts with DB2, boots blocks,
and runs jobs.

� mcServer is the process through which MMCS makes contact with the hardware
(replacing idoproxy of the Blue Gene/L system). mcServer handles all direct interaction
with the hardware. Low-level boot operations are now part of this process and not part of
MMCS.

� The standard mpirun command to launch jobs can be used from any Front End Node or
the Service Node. This command is often invoked automatically from a higher level
scheduler.

The components that reside on the Service Node contain the following functions:

� Bridge APIs

A scheduler that dynamically creates and controls blocks typically uses Bridge APIs. A
range of scheduler options includes ignoring these APIs and using mpirun on statically
created blocks to full dynamic creation of blocks with pass-through midplanes. For the
Blue Gene/P system, there is a new set of APIs that notifies the caller of any changes, in
real time. Callers can register for various entities (entities are jobs, blocks, node cards,
midplanes, and switches) and only see the changes. Callers can also set filters so that
notifications occur for only specific jobs or blocks.
Chapter 2. Software overview 25

� ciodb

ciodb is now integrated as part of the MMCS server for the Blue Gene/P system. This is
different from the Blue Gene/L system. ciodb is responsible for launching jobs on already
booted blocks. Communication to ciodb occurs via the database and can be initiated by
either mpirun or the Bridge APIs.

� MMCS

The MMCS daemon is responsible for configuring and booting blocks. It can be controlled
either via a special console interface (similar to the Blue Gene/L system) or via the Bridge
APIs. The mmcs daemon also is responsible for relaying RAS information into the RAS
database.

� mcServer

The mcServer daemon has low-level control of the system, which includes a parallel
efficient environmental monitoring capability as well as a parallel efficient reset and code
load capability for configuring and booting blocks on the system. The diagnostics for the
Blue Gene/P system directly leverage this daemon for greatly improved diagnostic
performance over that of the Blue Gene/L system.

� bgpmaster

The bgpmaster daemon monitors the other daemons and restarts any failed components
automatically.

� Service actions

Service actions are a suite of administrative shell commands that are used to service
hardware. They are divided into device-specific actions with a “begin” and “end” action.
Typically the “begin” action powers down hardware so it can be removed from the system,
and the “end” action powers up the replacement hardware. The databases are updated
with these operations, and they coordinate automatically with the scheduling system as
well as the diagnostic system.

2.8 Management software

The Blue Gene/P management software is based on a a set of databases that run on the
Service Node. The database software is DB2.

2.8.1 Midplane Management Control System

Both Blue Gene/P hardware and software are controlled and managed by the MMCS. The
Service Node, Front End Node, and the file servers are not under the control of the MMCS.
The MMCS currently consists of several functions that interact with a DB2 database running
on the Service Node.
26 IBM System Blue Gene Solution: Blue Gene/P Application Development

Part 2 Kernel overview

The kernel provides the glue that makes all components in Blue Gene/P work together. In this
part, we provide only an overview of the kernel functionality for applications developers. This
part is for those who require information about system-related calls and interaction with the
kernel.

This part contains the following chapters:

� Chapter 3, “Kernel functionality” on page 29
� Chapter 4, “Execution process modes” on page 37
� Chapter 5, “Memory” on page 43
� Chapter 6, “System calls” on page 51

Part 2
© Copyright IBM Corp. 2007. All rights reserved. 27

28 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 3. Kernel functionality

In this chapter, we provide an overview of the functionality implemented as part of the
Compute Node Kernel and I/O Node Kernel. We discuss the following topics:

� “System software overview” on page 30
� “Compute Node Kernel” on page 30
� “I/O Node Kernel” on page 32

3

© Copyright IBM Corp. 2007. All rights reserved. 29

3.1 System software overview

In general, the function of the kernel is to enable applications to run on a particular hardware
system. This enablement consists of providing such services as applications execution, file
I/O, memory allocation, and many others. In the case of the Blue Gene/P system, the system
software provides two kernels:

� Compute Node Kernel
� I/O Node Kernel

3.2 Compute Node Kernel

The kernel that runs on the Compute Node is called the Compute Node Kernel and is IBM
proprietary. It has a subset of the Linux system calls. The Compute Node Kernel is a flexible,
lightweight kernel for Blue Gene/P Compute Nodes that are capable of supporting both
diagnostic modes and user applications.

The Compute Node Kernel is intended to be a Linux-like operating system, from the
application point-of-view, supporting a large subset of Linux compatible system calls. This
subset is taken from the subset that is used successfully on the Blue Gene/L system, which
demonstrates good compatibility and portability with Linux.

Now, as part of the Blue Gene/P system, the Compute Node Kernel supports threads and
dynamic linking for further compatibility with Linux. The Compute Node Kernel has been
tuned for the capabilities and performance of the Blue Gene/P System. In Figure 3-1, you see
the interaction between the application space and the kernel space.

Figure 3-1 Compute Node Kernel overview
30 IBM System Blue Gene Solution: Blue Gene/P Application Development

When running a user application, the Compute Node Kernel connects to the I/O Node via the
collective network. This connection communicates to a process that is running on the Linux
I/O Node called the control and I/O daemon (CIOD). All function-shipped system calls are
forwarded to the CIOD process and executed on the I/O Node.

At the user-application level, the Compute Node Kernel supports the following application
programming interfaces (APIs) among others:

� Message Passing Interface (MPI)17 support between nodes via MPI library support

� Open Multi-Processing (OpenMP)18 API

� Standard IBM XL family of compilers– support with XLC/C++, XLF, and GNU Compiler
Collection19

� Highly optimized mathematical libraries such as IBM Engineering and Scientific
Subroutine Library (ESSL)20

� GNU Compiler Collection (GCC) C Library, or glibc, which is the C standard library and
interface of GCC for a provider library plugging into an other library (system programming
interfaces (SPIs))

The following services are some of those that are provided by the Compute Node Kernel:

� Torus direct memory access (DMA),21 which provides memory access for reading, writing,
or doing both independently of the processing unit

� Shared-memory access on a local node

� Hardware configuration

� Memory management

� MPI topology

� File I/O

� Sockets connection

� Signals

� Thread management

� Transport layer via collective network

3.2.1 Boot sequence of a Compute Node

The Blue Gene/P hardware is a stateless system. When power is initially applied, the
hardware must be externally initialized. Given the architectural and reliability improvements in
the Blue Gene/P design, reset of the Compute Nodes should be an infrequent event.

The following procedure explains how to boot a Compute Node as part of the main partition.
Independent reset of a single Compute Node and independent reset of a single I/O Node are
different procedures.

The Compute Node Kernel must be loaded into memory after every reset of the Compute
Node. In order to accomplish this task, several steps must occur to prepare a Compute Node
Kernel for running an application:

1. The control system loads a small bootloader into SRAM.

2. The control system loads the personality into SRAM. The personality is a data structure
that contains node-specific information, such as the X, Y, Z coordinates of the node.
Chapter 3. Kernel functionality 31

3. The control system releases the Compute Node from reset.

4. The bootloader starts executing and initializes the hardware.

5. The bootloader communicates with the control system over the mailbox to load Common
Node Services and Compute Node Kernel images.

6. The bootloader then transfers control to the Common Node Services.

7. The Common Node Services perform its setup and then transfer control to the Compute
Node Kernel.

8. The Compute Node Kernel performs its setup and communicates to the CIOD.

At this point, the Compute Node Kernel will submit the job to the CIOD.

3.2.2 Common Node Services

Common Node Services provide low-level services that are both specific to the Blue Gene/P
system and common to the Linux and the Compute Node Kernel. As such, these services
provide a consistent implementation across node types while insulating the kernels from the
details of the control system.

The Common Node Services provide the same low-level hardware initialization and setup
interfaces to both Linux and the Compute Node Kernel. The interface to Common Node
Services is described via doxygen and the interfaces are published.

The Common Node Services provide the following services:

� Access to the SRAM mailbox for performing I/O operations over the service network to the
console

� Initialization of hardware for various networks

� Access to the personality

� Low-level services for RAS, including both event reporting and recovery handling

� Access to the Blue Gene interrupt controller

3.3 I/O Node Kernel

The kernel of the I/O Node (Figure 3-2) is referred as the Mini-Control Program (MCP). It is a
port of the Linux Kernel, which means it is GPL/LGPL licensed. It is similar to the Blue Gene/L
I/O Node. The I/O Node Kernel on the Blue Gene/P system has the following characteristics:

� Embedded Linux Kernel

– Linux version 2.6.16
– 4-way symmetrical multiprocessing (SMP)
– Paging disabled (no swapping available)

� Ethernet

– New 10 Gigabit Ethernet driver
– Large Maximum Transmission Unit (MTU) support, which allows for Ethernet frames to

be increased from the default value of 1500 bytes to 9000 bytes

Note: See Appendix C, “Files on architectural features” on page 275, for an example of
how to use a personality.
32 IBM System Blue Gene Solution: Blue Gene/P Application Development

– TCP checksum offload engine support
– Availability of /proc files for configuring and gathering status

� File systems supported

– Network File System (NFS)
– Parallel Virtual File System (PVFS)
– General Parallel File System (GPFS)
– Lustre File System

� CIOD

– Lightweight proxy between Compute Nodes and the outside world
– Debugger access into the Compute Nodes
– SMP support

Figure 3-2 I/O Node Kernel overview

The I/O service is provided to the Compute Nodes from the Compute Node I/O proxy (CIOD),
which is started by the initialization script during the boot procedure of the MCP. CIOD is a
user-level process that controls and services applications in the Compute Node and interacts
with the Midplane Management and Control System (MMCS).

3.3.1 Control and I/O daemon

The CIOD serves the following roles:

� Interface to and from the control system
� Proxy for the Compute Node
� Proxy for the debug server

BusyBox
and other
packages

ntpd
syslogd

etc
CIOD

Linux Kernel
Device
drivers

/proc
files

Common Node Services

Note: To access this functionality, use Telnet to connect to the I/O Node on port 9000 and
type help for a list of commands.
Chapter 3. Kernel functionality 33

Figure 3-3 shows a high-level overview of the CIOD.

Figure 3-3 CIOD overview

The CIOD for the Blue Gene/P system includes the following major changes:

� Single process to many processes:

– Takes advantage of 4-way SMP
– Cleans up tracking of Compute Node

� CIOStream (control messages from the control system)

� DataStream (stdout/stderr/stdin messages)

� Cio protocol (interface to Compute Node Kernel)

� Support for tool daemons

MMCS

CIOD Debug
Server

CNK
CNK

CNK

C
io

C
io

St
re

am

D
at

aS
tre

am

CioDebug
34 IBM System Blue Gene Solution: Blue Gene/P Application Development

CIOD threading architecture
CIOD reads from the collective network and places the message into the shared memory that
is dedicated to the sending node I/O proxy. Figure 3-4 shows the threading architecture of the
CIOD.

Figure 3-4 CIOD threading architecture

C N K
n o d e

0

IO P ro x y 0

IO P ro x y 1

IO P ro x y n

B u f fe r

B u f fe r

B u f fe r

•••

•••

C N K
n o d e

1

C N K
n o d e

n

C IO D

C o lle c t iv e
N e tw o rk

L in u x
K e rn e l

o p e n ()

c h d ir ()

G P F
S

1 0 G b p s
E th e rn e

t

N F S

S o c k e
ts

Fu
nc

tio
na

l E
th

er
ne

t

Chapter 3. Kernel functionality 35

36 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 4. Execution process modes

The Compute Nodes on Blue Gene/P are implemented as quad-cores on a single chip with
2 GB of dedicated physical memory in which applications run. There are three main modes in
which a process is executed on Blue Gene/P nodes:

� Symmetrical Multiprocessing (SMP) Node Mode
� Virtual Node Mode (VN)
� Dual Node Mode (DUAL)

In this chapter, we explore these modes in detail. In the Blue Gene/L system, we have only
two node modes, which are the Coprocessor Node Mode and Virtual Node Mode.

4

© Copyright IBM Corp. 2007. All rights reserved. 37

4.1 Symmetrical Multiprocessing Node Mode
In the default mode of operation of the Blue Gene/P system, the SMP Node Mode, each
physical Compute Node executes a single task (Message Passing Interface (MPI) task) per
node with a maximum of four threads. The Blue Gene/P system software treats those four
cores in a Compute Node symmetrically. This mode is referred as SMP mode (1X4), where
1 corresponds to one task and 4 corresponds to four threads.

In Figure 4-1, you see the interaction of this mode between the application space and the
kernel space. The task or process can have up to four threads. Pthreads and OpenMP are
supported in this mode. In this mode, each thread is pinned to a processor.

Figure 4-1 SMP Node Mode

4.2 Virtual Node Mode
The Compute Node Kernel in the Compute Nodes also supports a Virtual Node Mode of
operation for the machine. In this mode, the kernel runs four separate processes on each
Compute Node. Node resources (primarily the memory and the torus network) are shared by
all processes. This mode is referred as VN mode (4X1), where 4 corresponds to four tasks
and 1 corresponds to one thread. In Figure 4-2, Virtual Node Mode is illustrated with four
tasks per node and one thread per process. Shared memory is available between processes.

In Virtual Node Mode, an application can use any of the cores in a node simply by
quadrupling its number of MPI tasks. The now distinct MPI tasks running on four cores of a
Compute Node have to communicate to each other. This is done transparently via direct
memory access (DMA) on the node. DMA puts data destined for a physically different node
on the torus, while it locally copies data when it is destined for the same physical node.
38 IBM System Blue Gene Solution: Blue Gene/P Application Development

In Virtual Node Mode, the four cores of a Compute Node act as different processes. Each has
its own rank in the message layer. The message layer supports Virtual Node Mode by
providing a correct torus to rank mapping and first in, first out (FIFO) pinning in this mode.
The hardware FIFOs are shared equally between the processes. Torus coordinates are
expressed by quadruplets instead of triplets. In Virtual Node Mode, communication between
the four threads in a Compute Node is done via DMA local copies.

Figure 4-2 Virtual Node Mode

Each virtual node executes one compute process. Processes allocated in the same Compute
Node share memory, which can be reserved at job launch. An application that wants to run
with four tasks per node can dedicate a large portion for shared memory if the tasks need to
share global data. This data can be read/write, and data coherency is handled in hardware.

The Blue Gene/P MPI implementation supports Virtual Node Mode operations by sharing the
systems communications resources of a physical Compute Node between the four compute
processes that execute on that physical node. The low-level communications library of the
Blue Gene/P system, that is the message layer, virtualizes these communications resources
into logical units that each process can use independently.

4.3 Dual Node Mode
A new mode in the Blue Gene/P system is the Dual Node Mode (DUAL). In this mode, each
physical Compute Node executes two tasks (MPI tasks) per node with a maximum of four
threads (two per task). Each task in Dual Node Mode gets half the memory and cores, so that
it can run two threads per task. This mode is referred as DUAL mode (2X2), where the first
2 corresponds to two tasks and the second 2 corresponds to two threads.
Chapter 4. Execution process modes 39

In Figure 4-3, you see two processes per node. Each process can have up to two threads.
OpenMP and Pthreads are supported. Shared memory is available between processes.
Threads are pinned to a processor.

Figure 4-3 Dual Node Mode

4.4 Shared memory support

Shared memory is supported in Dual Node Mode and Virtual Node Mode process models.
Shared-memory usage in the SMP Node Mode is excluded since each processor already has
access to all of the node’s memory.

Shared memory is allocated via standard Linux methods (shm_open and mmap). However, since
the Compute Node Kernel does not have virtual pages, the physical memory that backs the
shared memory must come out of a memory region that is dedicated for shared memory. This
memory region has its size fixed at job launch.

BG_SHAREDMEMPOOLSIZE: The BG_SHAREDMEMPOOLSIZE environmental
variable specifies in MB the amount of memory to be allocated. This can be done via the
mpirun -env flag, for example, BG_SHAREDMEMPOOLSIZE=8. This allocates 8 MB of shared
memory storage.
40 IBM System Blue Gene Solution: Blue Gene/P Application Development

The user can change the amount of memory to be set aside for this memory region at job
launch. Figure 4-4 illustrates shared-memory allocation.

Figure 4-4 Shared-memory allocation

Figure 4-5 illustrates shared-memory deallocation.

Figure 4-5 shared-memory deallocation

The shm_open() and shm_unlink() routines access a pseudo-device, /dev/shm/filename,
which the kernel interprets. Since multiple processes can access or close the shared-memory
file, allocation and deallocation are tracked by a simple reference count. As such, the
processes do not need to coordinate deallocation of the shared memory region.

4.5 Deciding which mode to use
The choice of the node mode largely depends on the type of application and the parallel
paradigm that has been implemented for a particular application. The obvious case involves
applications where a hybrid paradigm between MPI and OpenMP has been implemented. In
this case, it is beneficial to use the SMP Node Mode. Single threaded applications should
consider Virtual Node Mode.

I/O-intensive tasks that require a relatively large amount of data interchange between
Compute Nodes benefit more by using Virtual Node Mode. Those applications that are
primarily CPU bound, and do not have large working memory requirements (the application
gets only half of the node memory), run more quickly in Virtual Node Mode.

4.6 Specifying a mode
The default mode for mpirun is the Virtual Node Mode. To specify SMP Node Mode and Dual
Node Mode, you use the following commands:

mpirun ... -mode smp ...
mpirun ... -mode DUAL ...

See Chapter 13, “mpirun” on page 217, for more information about the mpirun command.

fd = shm_open(SHM_FILE, O_RDWR, 0600);
ftruncate(fds[0], MAX_SHARED_SIZE);
shmptr1 = mmap(NULL, MAX_SHARED_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

munmap(shmptrl, MAX_SHARED_SIZE);
close(fd)
shm_unlink(SHM_FILE);
Chapter 4. Execution process modes 41

42 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 5. Memory

In this chapter, we provide an overview of the memory subsystem and explain how it relates
to the Compute Node Kernel. This chapter includes the following topics:

� “Memory overview” on page 44
� “Memory management” on page 45
� “Memory protection” on page 47

5

© Copyright IBM Corp. 2007. All rights reserved. 43

5.1 Memory overview

Similar to the Blue Gene/L system, there is support for virtual memory on Blue Gene/P
nodes. Memory is laid out as a single, flat, fixed-size virtual address space shared between
the operating system kernel and the application program.

The Blue Gene/P system is a distributed-memory supercomputer, which includes an on-chip
cache hierarchy, and memory is off-chip. It contains optimized on-chip symmetrical
multiprocessing (SMP) support for locking and communication between the four ASIC
processors.

The aggregate memory of the total machine is distributed in the style of a multi-computer, with
no hardware sharing between nodes. The total physical memory amount supported is 2 GB
per Compute Node.

The first level (L1) cache is contained within the PowerPC 450 core (see Figure 1-3 on
page 9). The PowerPC 450 L1 cache is 64-way set associative.

The second level (L2R and L2W) caches, one dedicated per core, are 2 KB in size. They are
fully associative and coherent. They act as prefetch and write-back buffers for L1 data. The L2
cache line is 128 bytes in size. Each L2 cache has one connection toward the L1 instruction
cache running at full processor frequency. Each L2 cache also has two connections toward
the L1 data cache, one for the writes and one for the loads, each running at full processor
frequency. Read and write are 16 bytes wide.

The third level (L3) cache is 8-way set associative, 8 MB in size, with 128-byte lines. Both
banks can be accessed by all processor cores. The L3 cache has three write queues and
three read queues: one for each processor core and one for the 10 Gigabit network. Ethernet
and direct memory access (DMA) share the L3 ports. Only one unit can use the port at a time.
The Compute Nodes use DMA, and the I/O Nodes use the Ethernet. The last one is used on
the I/O Node and for torus network DMA on the Compute Networks. All the write queues go
across a four-line write buffer to access the eDRAM bank. Each of the two L3 banks
implements thirty 128-byte-wide write combining buffers, for a total of sixty 128-byte-wide
write combining buffers per chip.

Table 5-1 provides an overview of some of the features of different memory components.

Table 5-1 Memory system overview

Cache Total per
node

Size Replacement
policy

Associativity

L1 instruction 4 32 KB Round-Robin � 64-way set-associative
� 16 sets
� 32-byte line size

L1 data 4 32 KB Round-Robin � 64-way set-associative
� 16 sets
� 32-byte line size

L2 prefetch 4 14 x 256 bytes Round-Robin � Fully associative (15-way)
� 128-byte line size

L3 2 2 x 4 MB Least recently
used

� 8-way associative
� 2 bank interleaved
� 128-byte line size

Double data RAM
(DDR)

2 � Minimum 2 x 512 MB
� Maximum 4 GB

N/A � 128-byte line size
44 IBM System Blue Gene Solution: Blue Gene/P Application Development

5.2 Memory management

You must give careful consideration to managing memory on the Blue Gene/P system. This is
particularly true in order to achieve optimal performance. The memory subsystem of Blue
Gene/P nodes has specific characteristics and limitations that the programmer should know
about.

5.2.1 L1 cache

On the Blue Gene/P system, the PowerPC 450 internal L1 cache does not have automatic
prefetching. Explicit cache touch instructions are supported. Although the L1 instruction
cache was designed with support for prefetches, it was disabled for efficiency reasons.

Figure 1-3 on page 9 shows the L1 caches in the PowerPC 450 architecture. The size of the
L1 cache line is 32 bytes. The L1 cache has two buses toward the L2 cache: one for the
stores and one for the loads. The buses are 128 bits in width and run at full processor
frequency. The theoretical limit is 16 bytes/cycle. However, 4.6 bytes is achieved on L1 load
misses and 5.6 bytes is achieved on all stores (write through). This value of 5.6 bytes is
achieved for the stores but not for the loads. The L1 cache has only a three-line fetch buffer.
Therefore, there are only three outstanding L1 cache line requests. The fourth one waits for
the first one to complete before it can be sent.

The L1 hit latency is four cycles for floating-point and three cycles for integer. The L2 hit
latency is at about 12 cycles for floating-point and 11 cycles for integer. The 4.6-byte
throughput limitation is a result of the limited number of line fill buffers, L2 hit latency, the
policy when a line fill buffer commits its data to L1, and the penalty of delayed load
confirmation when running fully recoverable.

Since there are only three outstanding L1 cache line load requests at the same time, at most
three cache lines can be obtained every 18 cycles. The maximum memory bandwidth is three
times 32 bytes divided by 18 cycles, which yields 5.3 bytes per cycle, which written as an
equation looks like this:

(3 x 32 bytes) / 18 cycles = 5.3 bytes per cycle

Important:

� Avoid instructions when prefetching data in L1 cache on the Blue Gene/P system.
Using the processor, you can concurrently fill in three L1 cache lines. Therefore, it is
mandatory to reduce the number of prefetching streams to three or less.

To optimize the floating point units (FPUs) and feed the floating point registers, a
programmer can use the XL compiler directives or assembler instructions (dcbt) to
prefetch data in the L1 data cache. The applications that are specially tuned for IBM
POWER4™ or POWER5™ processors that take advantage of four or eight prefetching
engines will choke the memory subsystem of the Blue Gene/P processor.

� To take advantage of the single-instruction, multiple-data (SIMD) instructions, it is
essential to keep the data in the L1 cache as much as possible. Without an intensive
reuse of data from the L1 cache and the registers, because of the number of registers,
the memory subsystem is unable to feed the double FPU and provide two
multiply-addition operations per cycle.
Chapter 5. Memory 45

In the worst case, SIMD instructions can hurt the global performance of the application. For
that reason, we advise that you disable the SIMD instructions in the porting phase by
compiling with -qarch=450. Then recompile the code with -qarch=450d and analyze the
performance impact of the SIMD instructions. Perform the analysis with a data set and a
number of processors that is realistic in terms of memory usage.

5.2.2 L2 cache

The L2 cache is the hardware layer that provides the link between the embedded cores and
the Blue Gene/P devices, such as the 8 MB L3-eDRAM and the 32 KB SRAM. The 2 KB L2
cache line is 128 bytes in size. Each L2 cache is connected to one processor core.

The L2 design and architecture were created to provide optimal support for the PowerPC 450
cores for scientific applications. Thus, a logic for automatic sequential stream detection and
prefetching to the L2 added on the PowerPC 440 is still available on PowerPC 450. The logic
is optimized to perform best on sequential streams with increasing addresses. The L2 boosts
the overall performance for almost any application and does not require any special software
provisions. It autonomously detects streams, issues the prefetch requests, and keeps the
prefetched data coherent.

You can achieve latency and /bandwidth results close to the theoretical limits (4.6 bytes per
cycle) dictated by the PowerPC 450 core by doing careful programming. The L2 accelerates
memory accesses for one to seven sequential streams.

5.2.3 L3 cache

The L3 cache is 8 MB is size. The line size is 128 bytes. Both banks are directly accessed by
all processor cores and the 10 Gb network, only on the I/O Node, and are used in Compute
Nodes for torus DMA. There are three write queues and three read queues. The read queues
directly access both banks.

Each L3 cache implements two sets of write buffer entries. Into each of the two sets, one
32-byte data line can deposit a set per cycle from any queue. In addition, one entry can be
allocated for every cycle in each set. The write rate for random data is much higher in the Blue
Gene/P system than in the Blue Gene/L system. The L3 cache can theoretically complete an
aggregate of four write hits per chip every two cycles. However, banking conflicts reduce this
number in most cases.

5.2.4 Double data RAM

The theoretical memory bandwidth on a Blue Gene/P node to transfer a 128-byte line from
the external DDR to the L3 cache is 16 cycles. Nevertheless, this bandwidth can only be
sustained with sequential access. Random access can reduce bandwidth significantly.

Optimization tips:

� The optimization of the applications must be based on the 32 KB of the L1 cache.
� The benefits of the SIMD instructions might be cancelled out if data does not fit in the

L1 cache.

Optimization tip: Random access can divide the write sustained bandwidth of the L3
cache by a factor of three on Compute Nodes and more on I/O Nodes.
46 IBM System Blue Gene Solution: Blue Gene/P Application Development

Table 5-2 illustrates latency and bandwidth estimates for the Blue Gene/P system.

Table 5-2 Latency and bandwidths estimates

5.3 Memory protection

The PowerPC 450 processor has limited flexibility with regard to supported translation
look-aside buffer (TLB) sizes and alignments. There is also a small number of TLB slots per
processor. These limitations create situations where the dual goal of both static TLBs and
memory protection is difficult to achieve with access to the entire memory space. This
depends on the node’s memory configuration, process model, and size of the applications
sections.

On the Blue Gene/P system, the Compute Node Kernel reads only sections from the
application. This prevents an application from accidentally corrupting its text (that is, its code)
section due to an errant memory write. Additionally, the Compute Node Kernel prevents an
application from corrupting the Compute Node Kernel text segments or any kernel data
structures.

When a debugger is not attached to the running application, Compute Node Kernel can
protect the active thread’s stack using the data-address-compare debug registers in the
PowerPC 450 processor. You can use this mechanism for stack protection without incurring
TLB miss penalties. For the main thread, this protection is just above the maximum mmap()
address. For a spawned thread, this protection is at the lower bound of the thread’s stack.
This protection is not available when the debugger is being used, because the debugger is
managing those register settings.

The Compute Node Kernel is strict in terms of TLB setup. For example, the Compute Node
Kernel does not create a 256 MB TLB that covers only 128 MB of real memory. By precisely
creating the TLB map, any user-level page faults (also known as segfaults) are immediately
caught.

In the default mode of operation of the Blue Gene/P system, which is SMP Node Mode, each
physical Compute Node executes a single task (MPI task) per node with a maximum of four

Latencya

a. This corresponds to integer load latency. Floating-point latency is one cycle higher.

Sustained bandwidth
(bytes/cycle)b, c

b. This is the maximum sustainable bandwidth for linear sequential access.
c. Random access bandwidth is dependent on the access width and overlap access,
respectively.

Sequential access

L1 3 8

L2 11 4.6

L3 50 4.6

External DDR (single
processor)

104 40

External DDR (dual processor)

External DDR (triple processor)

External DDR (quad processor) 3.7
Chapter 5. Memory 47

threads. The Blue Gene/P system software treats those four core threads in a Compute Node
symmetrically. Figure 5-1 illustrates how memory is accessed in SMP Node Mode. The user
space is divided into user space “read, execute” and user-space “read/write, execute”. The
latter corresponds to global variables, stack and heap. In this mode, the four threads have
access to the global variables, stack, and heap.

Figure 5-1 Memory access protection in SMP Node Mode

Figure 5-2 shows how memory is accessed in Virtual Node Mode. In this mode, the four core
threads of a Compute Node act as different processes. The Compute Node Kernel reads only
sections of an application from local memory. There is no user access between processes in
the same node. User space is divided into user-space “read, execute” and user-space
“read/write, execute”. The latter corresponds to global variables, stack, and heap. These two
sections are designed to avoid data corruption.

Figure 5-2 Memory access protections in Virtual Node Mode
48 IBM System Blue Gene Solution: Blue Gene/P Application Development

In Virtual Node Mode, each physical Compute Node executes two tasks (MPI tasks) per node
with a maximum of four threads. Each task in Dual Node Mode gets half the memory and
cores so it can run two threads per task. Figure 5-3 shows that there is no user access
between the two processes. Although there is a layer of shared-memory per node and the
user-space “read, execute” is common to the two tasks, the two user-spaces “read/write,
execute” are local to each process.

Figure 5-3 Memory access protections in Dual Node Mode
Chapter 5. Memory 49

50 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 6. System calls

System calls provide an interface between an application and the kernel. In this chapter, we
provide information about the service points through which applications running on the
Compute Node request services from the Compute Node Kernel. This set of entry points into
the Compute Node Kernel is referred as system calls (syscall). System calls on the Blue
Gene/P system have substantially changed from system calls on the Blue Gene/L system. In
this chapter, we describe system calls that are defined on the Blue Gene/P system.

In general, there are two types of system calls:

� Local system calls
� Function-shipped system calls

Local system calls are handled by the Compute Node Kernel only and provide Blue
Gene/P-specific functionality. The following examples are of standard, local system calls:

� brk()
� mmap()
� clone()

Alternatively, function-shipped system calls are forwarded by the Compute Node Kernel over
the collective network to the control and I/O daemon (CIOD). The CIOD then executes those
system calls on the I/O Node and replies to the Compute Node Kernel with the resultant data.
Examples of function-shipped system calls are functions that manipulate files and socket
calls.

6

© Copyright IBM Corp. 2007. All rights reserved. 51

6.1 Introduction to the Compute Node Kernel
The role of the kernel on the Compute Node is to create an environment for the execution of a
user process that is “Linux-like.” It is not a full Linux kernel implementation, but rather
implements a subset of POSIX functionality.

The Compute Node Kernel is a single-process operating system. It is designed to provide the
services that are needed by applications that are expected to run on the Blue Gene/P system,
but not for all applications. The Compute Node Kernel is not intended to run system
administration functions from the Compute Node.

To achieve the best reliability, a small and simple kernel is a design goal. This enables a
simpler checkpoint function. See Chapter 10, “Checkpoint and restart support for
applications” on page 151.

6.2 System calls
The Compute Node Kernel system calls are divided into the following categories:

� File I/O
� Directory operations
� Time
� Process information
� Signals
� Miscellaneous
� Sockets
� Compute Node Kernel

6.2.1 Return codes
As is true for return codes on a standard Linux system, a return code of zero from a system
call indicates success. A value of negative one (-1) indicates a failure. In this case, errno
contains further information about exactly what caused the problem.

Compute Node application user: The Compute Node application never runs as the root
user. In fact, it runs as the same user (uid) and group (gid) under which the job was
submitted.
52 IBM System Blue Gene Solution: Blue Gene/P Application Development

6.2.2 Supported system calls
Table 6-1 lists all the function prototypes for system calls by category that are supported on
the Blue Gene/P system.

Table 6-1 Supported system calls

Function prototype Category Header required Description and type

int access(const char *pathname,
int mode);

File I/O <unistd.h> Determines the accessibility of a file;
function-shipped to CIOD; mode: R_OK,
X_OK, F_OK; returns 0 if OK or -1 on error

int chmod(const char *pathname,
mode_t mode);

File I/O <sys/types.h>
<sys>/<stat.h>

Changes the access permissions on an
already open file; function-shipped to
CIOD; mode: S_ISUID, S_ISGID,
S_ISVTX, S_IRWXU, S_IRUSR,
S_IWUSR, S_IXUSR, S_IRWXG,
S_IRGRP, S_IWGRP, S_IXGRP,
S_IRWXO, S_IROTH, S_IWOTH, and
S_IXOTH; returns 0 if OK or -1 on error

int chown(const char *pathname,
uid_t owner, gid_t group);

File I/O <sys/types.h>
<sys>/<stat.h>

Changes the owner and group of a file;
function-shipped to CIOD

int close(int filedes); File I/O <unistd.h> Closes a file descriptor; function-shipped
to CIOD; returns 0 if OK or -1 on error

int dup(int filedes); File I/O <unistd.h> Duplicates an open descriptor;
function-shipped to CIOD; returns new file
descriptor if OK or -1 on error

int dup2(int filedes, int
filedes2);

File I/O <unistd.h> Duplicates an open descriptor;
function-shipped to CIOD; returns new file
descriptor if OK or -1 on error

int fchmod(int filedes, mode_t
mode);

File I/O <sys/types.h>
<sys>/<stat.h>

Changes the mode of a file;
function-shipped to CIOD; returns 0 if OK
or -1 on error

int fchown(int filedes, uid_t
owner, gid_t group);

File I/O <sys/types.h>
<unistd.h>

Changes the owner and group of a file;
function-shipped to CIOD; returns 0 if OK
or -1 on error

int fcntl(int filedes, int cmd,
int arg);

File I/O <sys/types.h>
<unistd.h>
<fcntl.h>

Performs the following operations on an
open file, function-shipped to CIOD,
mode: F_GETFL, F_DUPFD, F_GETLK,
F_SETLK, F_SETLKW, F_GETLK64,
F_SETLK64, and F_SETLKW64; what is
returned depends on the command if OK
or NULL on error

int fstat(int filedes, struct
stat *buf);

File I/O <sys/types.h>
<sys>/<stat.h>

Gets the file status; function-shipped to
CIOD; returns 0 if OK or -1 on error

int stat64(const char *path,
struct stat64 *buf);

File I/O <sys/types.h>
<sys>/<stat.h>

Gets the file status

int statfs(const char *path,
struct statfs *buf);

File I/O <sys/vfs.h> Gets file system statistics

long fstatfs64 (unsigned int fd,
size_t sz, struct statfs64
*buf);

File I/O Gets file system statistics
Chapter 6. System calls 53

int fsync(int filedes); File I/O <unistd.h> Synchronizes changes to a file; returns 0
if OK or -1 on error

int ftruncate(int filedes, off_t
length);

File I/O <sys/types.h>
<unistd.h>

Truncates a file to a specified length;
returns 0 if OK or -1 on error

int ftruncate64(int fildes,
off64_t length);

File I/O <unistd.h> Truncates a file to a specified length for
files larger than 2 GB; returns 0 if OK or
-1 on error

int lchown(const char *pathname,
uid_t owner, gid_t group);

File I/O <sys/types.h>
<unistd.h>

Changes the owner and group of a
symbolic link; function-shipped to CIOD;
returns 0 if OK or -1 on error

int link(const char
*existingpath, const char
*newpath);

File I/O <unistd.h> Links to a file; function-shipped to CIOD;
returns 0 if OK or -1 on error

off_t lseek(int filedes, off_t
offset, int whence);

File I/O <sys/types.h>
<unistd.h>

Moves the read/write file offset;
function-shipped to CIOD; returns 0 if OK
or -1 on error

int _llseek(unsigned int fd,
unsigned long offset_high,
unsigned long offset_low, loff_t
*result, unsigned int whence);

File I/O <unistd.h>
<sys/types.h>
<linux/unistd.h>
<errno.h>

Moves the read/write file offset

int lstat(const char *pathname,
struct stat *buf);

File I/O <sys/types.h>
<sys>/<stat.h>

Gets the symbolic link status;
function-shipped to CIOD; returns 0 if OK
or -1 on error

int lstat64(const char
*pathname, struct stat64 *buf);

File I/O <sys/types.h>
<sys/stat.h>

Gets the symbolic link status; determines
the size of a file that is larger than 2 GB

int open(const char *pathname,
int oflag, mode_t mode);

File I/O <sys/types.h>
<sys>/<stat.h>
<fcntl.h>

Opens a file; function-shipped to CIOD;
oflag: O_RDONLY, O_WRONLY,
O_RDWR, O_APPEND, O_CREAT,
O_EXCL, O_TRUNC, O_NOCTTY,
O_NONBLOCK, O_SYNC, mode:
S_IRWXU, S_IRUSR, S_IWUSR,
S_IXUSR, S_IRWXG, S_IRGRP,
S_IWGRP, S_IXGRP, S_IRWXO,
S_IROTH, S_IWOTH, and S_IXOTH;
returns file descriptor if OK or -1 on error

ssize_t read(int filedes, void
*buff, size_t nbytes);

File I/O <unistd.h> Reads from a file; function-shipped to
CIOD; returns number of bytes read if OK,
0 if end of file, or -1 on error

int readlink(const char
*pathname, char *buf, int
bufsize);

File I/O <unistd.h> Reads the contents of a symbolic link;
function-shipped to CIOD; returns number
of bytes read if OK or -1 on error

ssize_t readv(int filedes, const
struct iovec iov[], int iovcnt)

File I/O <sys/types.h>
<sys/uio.h>

Reads a vector, function-shipped to CIOD;
returns number of bytes read if OK or
-1 on error

int rename(const char *oldname,
const char *newname);

File I/O <stdio.h> Renames a file; function-shipped to
CIOD; returns 0 if OK or -1 on error

Function prototype Category Header required Description and type
54 IBM System Blue Gene Solution: Blue Gene/P Application Development

int stat(const char *pathname,
struct stat *buf);

File I/O <sys/types.h>
<sys/stat.h>

Gets the file status; function-shipped to
CIOD; returns 0 if OK or -1 on error

int stat64(const char *pathname,
struct stat64 *buf);

File I/O <sys/types.h>
<sys/stat.h>

Gets the file status

int statfs (char *Path, struct
statfs *StatusBuffer);

File I/O <sys/statfs.h> Gets file system statistics

long statfs64 (const char *path,
size_t sz, struct statfs64
*buf);

File I/O <sys/statfs.h> Gets file system statistics

int symlink(const char
*actualpath, const char
*sympath);

File I/O <unistd.h> Makes a symbolic link to a file;
function-shipped to CIOD; returns 0 if OK
or -1 on error

int truncate(const char
*pathname, off_t length);

File I/O <sys/types.h>
<unistd.h>

Truncates a file to a specified length;
function-shipped to CIOD; returns 0 if OK
or -1 on error

truncate64 File I/O Truncates a file to a specified length

mode_t umask(mode_t cmask); File I/O <sys/types.h>
<sys/stat.h>

Sets and gets the file mode creation
mask; function-shipped to CIOD; returns
the previous file mode creation mask

int unlink(const char
*pathname);

File I/O <unistd.h> Removes a directory entry;
function-shipped to CIOD; returns 0 if OK
or -1 on error

int utime(const char *pathname,
const struct utimbuf *times);

File I/O <sys/types.h>
<utime.h>

Sets file access and modification times;
function-shipped to CIOD; returns 0 if OK
or -1 on error

ssize_t write(int filedes, const
void *buff, size_t nbytes);

File I/O <unistd.h> Writes to a file; function-shipped to CIOD;
returns the number of bytes written if OK
or -1 on error

ssize_t writev(int filedes,
const struct iovec iov[], int
iovcntl);

File I/O <sys/types.h>
<sys/uio.h>

Writes a vector; function-shipped to
CIOD; returns the number of bytes written
if OK or -1 on error

int chdir(const char *pathname); Directory <unistd.h> Changes the working directory;
function-shipped to CIOD; returns 0 if OK
or -1 on error

char *getcwd(char *buf, size_t
size);

Directory <unistd.h> Gets the path name of the current working
directory; function-shipped to CIOD;
returns buf if OK or NULL on error

int getdents(int fildes, char
**buf, unsigned nbyte);

Directory <sys/types.h> Gets the directory entries in a file system;
function-shipped to CIOD; returns 0 if OK
or -1 on error

getdents64 Directory <sys/dirent.h> Gets the directory entries in a file system

int mkdir(const char *pathname,
mode_t mode);

Directory <sys/types.h>
<sys/stat.h>

Makes a directory; function-shipped to
CIOD; mode S_IRUSR, S_IWUSR,
S_IXUSR, S_IRGRP, S_IWGRP,
S_IXGRP, S_IROTH, S_IWOTH, and
S_IXOTH; returns 0 if OK or -1 on error

Function prototype Category Header required Description and type
Chapter 6. System calls 55

int rmdir(const char *pathname); Directory <unistd.h> Removes a directory; returns 0 if OK or
-1 on error

int getitimer(int which, struct
itimerval *value);

Time <sys/time.h> Gets the value of the interval timer; local
system call; returns 0 if OK or -1 on error

int gettimeofday(struct timeval
*restrict tp, void *restrict
tzp);

Time <sys/time.h> Gets the date and time; local system call;
returns 0 if OK pr NULL on error

int setitimer(int which, const
struct itimerval *value,
struct itimerval *ovalue);

Time <sys/time.h> Sets the value of an interval timer; only the
following operations are supported:
� ITIMER_PROF
� ITIMER_REAL
Note: An application can only set one
active timer at a time.

time_t time(time_t *calptr); Time <time.h> Gets the time; local system call; returns
the value of time if OK or -1 on error

gid_t getgid(void); Process
information

<unistd.h> Gets the real group ID

 pid_t getpid(void); Process
information

<unistd.h> Gets the process ID. The value is the MPI
rank of the node, meaning that 0 is a valid
value.

 int getrlimit(int resource,
struct rlimit *rlp)

Process
information

<sys/resource.h> Gets information about resource limits

 int getrusage(int who, struct
rusage *r_usage);

Process
information

<sys/resource.h> Gets information about resource
utilization. All time reported is attributed to
the user application. so the reported
system time is always zero.

 uid_t getuid(void); Process
information

<unistd.h> Gets the real user ID

int setrlimit(int resource,
const struct rlimit *rlp);

Process
information

<sys/resource.h> Sets resource limits. Only RLIMIT_CORE
can be set.

clock_t times(struct tms *buf); Process
information

<sys/times.h> Gets the process times. All time reported
is attributed to the user application, so the
reported system time is always zero.

int brk(void
*end_data_segment);

Miscellaneous <unistd.h> Changes the data segment size

int execve(const char *filename,
char *const argv[],
char *const envp[]);

Miscellaneous <unistd.h> Runs a new program in the process

void exit(int status) Miscellaneous <stdlib.h> Terminates a process

int uname(struct utsname *buf); Miscellaneous <sys/utsname.h> Gets the name of the current system, and
other information, for example, version
and release

Function prototype Category Header required Description and type
56 IBM System Blue Gene Solution: Blue Gene/P Application Development

6.2.3 Other system calls
Although there are many unsupported system calls, you must be aware of the following
unsupported calls:

� The Blue Gene/P system does not support the use of the system() function. Therefore, for
example, you cannot use something such as the system('chmod -w file') call. Although,
system() is not a system call, it uses fork() and exec() via glibc. Both fork() and
exec() are currently not implemented.

� The Blue Gene/P system does not provide the same support for gethostname() and
getlogin() as Linux provides.

� Calls to usleep() are not supported.

See 6.6, “Unsupported system calls” on page 60, for a complete list of unsupported system
calls.

6.3 System programming interfaces

Low-level access to Blue Gene/P specific interfaces, such as direct memory access (DMA), is
provided by the system programming interfaces (SPIs). These interfaces provide a consistent
interface for Linux and Compute Node Kernel-based applications to access the hardware.

The following Blue Gene/P-specific interfaces are included in the SPI:

� Collective network
� Torus network
� Direct memory access
� Global interrupts
� Performance counters
� Lockbox

The following items are not included in the SPI:

� L2
� Snoop
� L3
� DDR hardware initialization
� serdes
� Environmental monitor

This hardware is setup by either the bootloader or Common Node Services. The L1
interfaces, such as TLB miss handlers, are typically extremely operating system specific, and
therefore an SPI is not defined. TOMAL and XEMAC are present in the Linux 10 Gb Ethernet
device driver (and therefore open source), but there are no plans for an explicit SPI.

6.4 Socket support

The Compute Node Kernel provides socket support via the standard Linux socketcall()
system call. The socketcall() is a kernel entry point for the socket system calls. It
determines which socket function to call and points to a block that contains the actual
parameters, which are passed through to the appropriate call. The Compute Node Kernel
function-ships the socketcall() parameters to the CIOD, which then performs the requested
operation. The CIOD is a user-level process that controls and services applications in the
Compute Node and interacts with the Midplane Management Control System (MMCS).
Chapter 6. System calls 57

This socket support allows the creation of both outbound and inbound socket connections
using standard Linux application programming interfaces (APIs). For example, an outbound
socket can be created by calling socket(), followed by connect(). An inbound socket can be
created by calling socket() followed by bind(), listen(), and accept().

Communication through the socket is provided via the glibc send(), recv(), and select()
function calls. These function calls invoke the socketcall() system call with different
parameters. Table 6-2 summarizes the list of Linux 2.4 socket system calls.

Table 6-2 Supported socket calls

Function prototype Category Header
required

Description and type

int accept(int sockfd, struct sockaddr
*addr, socklen_t *addrlen);

Sockets <sys/types.h>
<sys/socket.h>

Extracts the connection request on the
queue of pending connections; creates
a new connected socket; returns a file
descriptor if OK or -1 on error

int bind(int sockfd, const struct
sockaddr *my_addr, socklen_t addrlen);

Sockets <sys/types.h>
<sys/socket.h>

Assigns a local address; returns 0 if OK
or -1 on error

int connect(int socket, const struct
sockaddr *address, socklen_t
address_len);

Sockets <sys/types.h>
<sys/socket.h>

Connects a socket; returns 0 if OK or -1
on error

int getpeername(int socket, struct
sockaddr *restrict address, socklen_t
*restrict address_len);

Sockets <sys/socket.h> Gets the name of the peer socket;
returns 0 if OK or -1 on error

int getsockname(int socket, struct
sockaddr *restrict address, socklen_t
*restrict address_len);

Sockets <sys/socket.h> Retrieves the locally-bound socket
name; stores the address in sockaddr;
and stores its length in the address_len
argument; returns 0 if OK or -1 on error

int getsockopt(int s, int level, int
optname, void *optval, socklen_t
*optlen);

Sockets <sys/types.h>
<sys/socket.h>

Manipulates options that are associated
with a socket; returns 0 if OK or -1 on
error

int listen(int sockfd, int backlog); Sockets <sys/socket.h> Accepts connections; returns 0 if OK or
-1 on error

ssize_t recv(int s, void *buf, size_t
len, int flags);

Sockets <sys/types.h>
<sys/socket.h>

Receives a message only from a
connected socket; returns 0 if OK or -1
on error

ssize_t recvfrom(int s, void *buf,
size_t len, int flags, struct sockaddr
*from, socklen_t *fromlen);

Sockets <sys/types.h>
<sys/socket.h>

Receives a message from a socket
regardless of whether it is connected;
returns 0 if OK or -1 on error

ssize_t recvmsg(int s, struct msghdr
*msg, int flags);

Sockets <sys/types.h>
<sys/socket.h>

Receives a message from a socket
regardless of whether it is connected;
returns 0 if OK or -1 on error

ssize_t send(int socket, const void
*buffer, size_t length, int flags);

Sockets <sys/types.h>
<sys/sockets.h>

Sends a message only to a connected
socket; returns 0 if OK or -1 on error

ssize_t sendto(int socket, const void
*message, size_t length, int flags,
const struct sockaddr *dest_addr,
socklen_t dest_len);

Sockets <sys/types.h>
<sys/socket.h>

Sends a message on a socket; returns
0 if OK or -1 on error
58 IBM System Blue Gene Solution: Blue Gene/P Application Development

6.5 Signal support

The Compute Node Kernel provides ANSI-C signal support via the standard Linux system
calls signal() and kill(). Additionally, signals can be delivered externally by using mpirun.
Table 6-3 summarizes the supported signals.

Table 6-3 Supported signals

ssize_t sendmsg(int s, const struct
msghdr *msg, int flags);

Sockets <sys/types.h>
<sys/socket.h>

Sends a message on a socket; returns
0 if OK or -1 on error

int setsockopt(int s, int level, int
optname, const void *optval, socklen_t
optlen);

Sockets <sys/types.h>
<sys/socket.h>

Manipulates options that are associated
with a socket; returns 0 if OK or -1 on
error

int shutdown(int s, int how); Sockets <sys/socket.h> Causes all or part of a connection on
the socket to shut down; returns 0 if OK
or -1 on error

int socket(int domain, int type, int
protocol);

Sockets <sys/types.h>
<sys/socket.h>

Opens a socket; returns a file descriptor
if OK or -1 on error

int socketpair(int d, int type, int
protocol, int sv[2]);

Sockets <sys/types.h>
<sys/socket.h>

Creates an unnamed pair of connected
sockets; returns 0 if OK or -1 on error

Function prototype Category Header
required

Description and type

Function prototype Category Header required Description and type

int kill(pid_t pid, int sig); Signals <sys/types.h>
<signal.h>

Sends a signal. A signal can be sent only
to the same process.

int sigaction(int signum, const
struct sigaction *act, struct
sigaction *oldact);

Signals <signal.h> Manages signals. The only flags
supported are SA_RESETHAND and
SA_NODEFER.

typedef void (*sighandler_t)(int)

sighandler_t signal(int signum,
sighandler_t handler);

Signals <signal.h> Manages signals

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum,
sighandler_t handler);

Signals <signal.h> Returns from a signal handler
Chapter 6. System calls 59

6.6 Unsupported system calls

The role of the kernel on the Compute Node is to create an environment for the execution of a
user process that is “Linux-like.” It is not a full Linux kernel implementation, but rather
implements a subset of the POSIX functionality. The following list indicates the system calls
that are not supported:

� acct � iopl � removexattr

� adjtimex � ipc � rtas

� afs_syscall � kexec_load � rts_device_map

� bdflush � lgetxattr � rts_dma

� break � listxattr � sched_get_priority_max

� capget � llistxattr � sched_get_priority_min

� capset � lock � sched_getaffinity

� chroot � lookup_dcookie � sched_getparam

� clock_getres � lremovexattr � sched_getscheduler

� clock_gettime � lsetxattr � sched_rr_get_interval

� clock_nanosleep � mincore � sched_setaffinity

� clock_settime � mknod � sched_setparam

� create_module � modify_lft � sched_setscheduler

� delete_module � mount � sched_yield

� epoll_create � mpxmq_getsetattr � select

� epoll_ctl � mq_notify � sendfile

� epoll_wait � mq_open � sendfile64

� execve � mq_timedreceive � setdomainname

� fadvise64 � mq_timedsend � setgroups

� fadvise64_64 � mq_unlink � sethostname

� fchdir � multiplexer � setpriority

� fdatasync � nfsservctl � settimeofday

� fgetxattr � nice � setxattr

� flistxattr � oldfstat � stime

� flock � oldlstat � stty

� fork � oldolduname � swapcontext

� fremovexattr � olduname � swapoff

� fsetxattr � oldstat � swapon

� ftime � pciconfig_iobase � sync

� get_kernel_syms � pciconfig_read � sys_debug_setcontext
60 IBM System Blue Gene Solution: Blue Gene/P Application Development

You can find additional information about these system calls on the syscalls(2) - Linux man
page on the Web at:

http://linux.die.net/man/2/syscalls

� getgroups � pciconfig_write � sysfs

� getpgrp � personality � syslog

� getpmsg � pipe � timer_create

� getppid � pivot_root � timer_delete

� getpriority � pread64 � timer_getoverrun

� gettid � prof � timer_gettime

� getxattr � profil � timer_settime

� gtty � ptrace � tuxcall

� idle � putpmsg � umount

� init_module � pwrite64 � umount2

� io_cancel � query_module � uselib

� io_destroy � quotactl � ustat

� io_getevents � readahead � utimes

� io_setup � readdir � vfork

� io_submit � reboot � vhangup

� ioperm � remap_file_pages � vm86
Chapter 6. System calls 61

http://linux.die.net/man/2/syscalls

62 IBM System Blue Gene Solution: Blue Gene/P Application Development

Part 3 Applications
environment

In this part, we provide an overview of some of the software that forms part of the applications
environment. Throughout this book, we consider the applications environment as the
collection of programs that are required to develop applications.

This part includes the following chapters:

� Chapter 7, “Parallel paradigms” on page 65
� Chapter 8, “Developing applications with IBM XL compilers” on page 91
� Chapter 9, “Running and debugging applications” on page 129
� Chapter 10, “Checkpoint and restart support for applications” on page 151
� Chapter 11, “Control system (Bridge) APIs” on page 159
� Chapter 12, “Real-time Notification APIs” on page 197
� Chapter 13, “mpirun” on page 217
� Chapter 14, “Dynamic Partition Allocator APIs” on page 237

Part 3
© Copyright IBM Corp. 2007. All rights reserved. 63

64 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 7. Parallel paradigms

In this chapter, we discuss the parallel paradigms that are offered on the Blue Gene/P
system. One such diagram is the Message Passing Interface (MPI),22 for a
distributed-memory architecture, and OpenMP,23 for shared-memory architectures.

In this chapter, we address the following topics:

� “Programming model” on page 66
� “Blue Gene/P MPI implementation” on page 66
� “MPI communications” on page 74
� “MPI functions” on page 76
� “Compiling MPI programs on Blue Gene/P” on page 77
� “MPI communications performance” on page 79
� “OpenMP” on page 83

7

© Copyright IBM Corp. 2007. All rights reserved. 65

7.1 Programming model

The Blue Gene/P system has a distributed memory system and uses explicit message
passing to communicate between tasks that are running on different nodes. It also has shared
memory on each node; OpenMP and thread parallelism are supported as well.

MPI is the supported message passing standard. It is the industry standard for message
passing. For further information about MPI, refer to the Message Passing Interface Forum site
on the Web at the following address:

http://www.mpi-forum.org/

If your code uses other message passing libraries, you must either change the message
passing calls to MPI or use an intermediate layer that maps your library’s calls to MPI.

7.2 Blue Gene/P MPI implementation

The current MPI implementation on the Blue Gene/P system supports the MPI-1.2 and MPI-2
standards of MPI Version 1.2. They are both extensions to the MPI-1.1 standard. The only
exception is process management. For more information about process management, see
the paper Dynamic Process Management in an MPI Setting by William Gropp and Ewing
Lusk, on the Web at:

http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf

When starting applications on the Blue Gene/P system, you must consider the following
additional details:

� The microkernel that is running on the Compute Nodes does not provide any mechanism
for a command interpreter or shell. Only the executables can be started. Shell scripts are
not supported. Therefore, if your application consists of a number of shell scripts that
control its workflow, the workflow must be adapted. If you start your application with the
mpirun command, you cannot start the main shell script with this command. Instead, you
must run the scripts on the front-end node and only call mpirun at the innermost shell
script level where the main application binary is called.

� Launching an application on the Blue Gene/P system is done in the single program,
multiple data (SPMD) model. Within one run, you cannot load one executable onto a
subset of the Compute Nodes and a different executable onto another subset of the
Compute Nodes. If you need multiple program, multiple data (MPMD) functionality, you
can build this functionality into your code by using a clause similar to the one shown in
Example 7-1. This clause shifts the multiple program feature from the main program level
into the subprogram level.

Example 7-1 Multiple program feature

IF (myrank==something) THEN
CALL some_subprogram(some_args)
ELSE
CALL another_subprogram(some_other_args)
END

Example 7-1 illustrates a way that you can load a single executable onto all nodes. The
executable then branches into different subprograms depending on the local MPI rank.
66 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www.mpi-forum.org/
http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf

The MPI implementation on the Blue Gene/P system is derived from the MPICH2
implementation of the Mathematics and Computer Science Division (MCS) at Argonne
National Laboratory. For additional information, refer to the MPICH2 Web site at:

http://www-unix.mcs.anl.gov/mpi/mpich/

To support the Blue Gene/P hardware, the following additions and modifications have been
made to the MPICH2 software architecture:

� A BGP driver has been added underneath the MPICH2 abstract device interface (ADI).

� Three types of glue code are provided for some MPI collectives. There is one for each of
the three networks that can be used for MPI communication on the Blue Gene/P system:

– Torus for the torus network
– Tree for the collective network
– Global Interrupt (GI) for the barrier network

� Optimized versions of the Cartesian functions exist (MPI_Dims_create, MPI_Cart_create,
MPI_Cart_map).

� MPIX functions create hardware-specific MPI extensions.

� Other parallel paradigms have been included as shown in Figure 7-1.

Figure 7-1 Software stack

From the application programmer’s view, the most important aspect of these changes is the
fact that the collective operations can use different networks under different circumstances. In
7.2.1, “High performance network for efficient parallel execution” on page 67, we briefly
summarize the different networks on the Blue Gene/P system and network routing.

In 7.2.2, “Forcing MPI to allocate too much memory” on page 69, through 7.2.7, “Interlocking
collectives with point-to-point calls” on page 73, we discuss several sample MPI codes to
explain some of the implementation-dependent behaviors of the MPI library.

7.2.1 High performance network for efficient parallel execution

The Blue Gene/P system does not have a single type of network that is capable of
transporting all protocols that are needed in such an environment. Therefore, the Blue
Gene/P system has implemented separate networks for different types of communications.
Chapter 7. Parallel paradigms 67

http://www-unix.mcs.anl.gov/mpi/mpich/

Collective network
The three-dimensional (3D) torus is an efficient network for communicating with neighbors.
However, such calls as all-to-one, one-to-all, and all-to-all more efficiently use the collective
network. The collective network connects all the Compute Nodes in the shape of a tree. Any
node can be the tree root. The MPI implementation uses the collective network, which is more
efficient than the torus network for collective communication.

Point-to-point network
All MPI point-to-point communications are carried out via the torus network. The route from a
sender to a receiver on a torus network has two possible paths:

� Deterministic routing

Packets from a sender to a receiver go along the same path. One advantage of this path is
that the packet order is always maintained without additional logic. However, this
technique also creates network hot spots if several point-to-point communications occur at
the same time and their deterministic routes cross on some node.

� Adaptive routing

Different packets from the same sender to the same receiver can travel along different
paths. The exact route is determined at run time depending on the current load. This
technique generates a more balanced network load, but introduces a latency penalty.

Selecting deterministic or adaptive routing depends on the protocol that is used for the
communication. The Blue Gene/P MPI implementation supports three different protocols:

� MPI short protocol

The MPI short protocol is used for short messages (less than 224 bytes), which consist of
a single packet. These messages are always deterministically routed. The latency for
eager messages is around 3.3 µs.

� MPI eager protocol

The MPI eager protocol is used for medium-sized messages. It sends a message to the
receiver without negotiating with the receiving side that the other end is ready to receive
the message. This protocol also uses deterministic routes for its packets.

� MPI rendezvous protocol

Large (greater than 1200 bytes) messages are sent using the MPI rendezvous protocol. In
this case, an initial connection between the two partners is established. Only after that will
the receiver use direct memory access (DMA) to obtain the data from the sender. This
protocol uses adaptive routing and is optimized for maximum bandwidth. Naturally, the
initial rendezvous handshake increases the latency.

The Blue Gene/P MPI library supports a DCMF_EAGER variable (can be set via mpirun) to
set the message size (in bytes) above which the rendezvous protocol should be used.
Consider the following guidelines:

� Decrease the rendezvous threshold if any of the following situations are true:

– Many short messages are overloading the network.
– Eager messages are creating artificial hot spots.
– The program is not latency-sensitive.

� Increase the rendezvous threshold if any of the following situations are true:

– Most communication is a nearest-neighbor or at least close in Manhattan distance,
where this distance is the shortest number of hops between a pair of nodes.

– You mainly use relatively long messages.
– You need better latency on medium-sized messages.
68 IBM System Blue Gene Solution: Blue Gene/P Application Development

The following guidelines are also necessary for proper MPI usage:

� Overlap communication and computation using MPI_Irecv and MPI_Isend, which allow
DMA to work in the background.

� Avoid load imbalance.

This is important for all parallel systems. However, when scaling to the high numbers of
tasks that are possible on the Blue Gene/P system, it is important to pay close attention to
load balancing.

� Avoid buffered and synchronous sends; post receives in advance.

The MPI standard defines several specialized communication modes in addition to the
standard send function, MPI_Send(). Avoid the buffered send function, MPI_Bsend(). If you
use this function, forcing the MPI library to perform additional memory copies slows down
the application, and you might run short of memory so additional buffering might not be
possible at all. Using the synchronous send function MPI_Ssend() is discouraged because
it is a non-local operation that incurs an increased latency compared to the standard send.

� Avoid vector data and non-contiguous data types.

While the MPI-derived data types can elegantly describe the layout of complex data
structures, using these data types is generally detrimental to performance. Many MPI
implementations pack (that is, memory-copy) such data objects before sending them. This
packing of data objects is contrary to the original purpose of MPI-derived data types,
namely to avoid such memory copies. In addition, the Blue Gene/P MPI implementation
uses the chips’ special quad-word load and quad-word store instructions, which require
appropriately aligned and continuous data.

7.2.2 Forcing MPI to allocate too much memory

Forcing MPI to allocate too much memory is relatively easy to do with basic code. For
example, the snippets of legal MPI code shown in Example 7-2 and Example 7-3 run the risk
of forcing the MPI support to allocate too much memory, resulting in failure, because it forces
excessive buffering of messages.

Example 7-2 CPU1 MPI code that can cause excessive memory allocation

MPI_ISend(cpu2, tag1);
MPI_ISend(cpu2, tag2);
...
MPI_ISend(cpu2, tagn);

Example 7-3 CPU2 MPI code that can cause excessive memory allocation

MPI_Recv(cpu1, tagn);
MPI_Recv(cpu1, tagn-1);
...
MPI_Recv(cpu1, tag1);

Example 7-3 illustrates a section of code that was particularly important on the Blue Gene/L
system. However, on the Blue Gene/P system, we recommend this as good programming
with practice.

DMA and the tree and GI networks: The tree and GI networks do not use DMA. In this
case, operations cannot be completed in the background.
Chapter 7. Parallel paradigms 69

Keep in mind the following points:

� The Blue Gene/P MPI rendezvous protocol does not allocate an unexpected buffer for the
receive. This proper buffer allocation prevents most problems by drastically reducing the
memory footprint of unexpected messages.

� The message queue is searched linearly to meet MPI matching requirements. If several
messages are on the queue, the search can take longer.

You can accomplish the same goal and avoid memory allocation issues by recoding as shown
in Example 7-4 and Example 7-5.

Example 7-4 CPU1 MPI code that can avoid excessive memory allocation

MPI_ISend(cpu2, tag1);
MPI_ISend(cpu2, tag2);
...
MPI_ISend(cpu2, tagn);

Example 7-5 CPU2 MPI code that can avoid excessive memory allocation

MPI_Recv(cpu1, tag1);
MPI_Recv(cpu1, tag2);
...
MPI_Recv(cpu1, tagn);

7.2.3 Not waiting for MPI_Test
According to the MPI standard, an application must either wait or continue testing until
MPI_Test returns true. Not doing so causes small memory leaks, which can accumulate over
time and cause a memory overrun. Example 7-6 shows the code and the problem.

Example 7-6 Potential memory overrun caused by not waiting for MPI_Test

req = MPI_Isend(...);
MPI_Test (req);
... do something else; forget about req ...

Remember to use MPI_Wait or loop until MPI_Test returns true.

7.2.4 Flooding of messages
The code shown in Example 7-7, while legal, floods the network with messages. It can cause
CPU 0 to run out of memory. Even though it can work, it is not scalable.

Example 7-7 Flood of messages resulting in a possible memory overrun

CPU 1 to n-1 code:
MPI_Send(cpu0);

CPU 0 code:
for (i=1; i<n; i++)
 MPI_Recv(cpu[i]);
70 IBM System Blue Gene Solution: Blue Gene/P Application Development

7.2.5 Deadlock the system

The code shown in Example 7-8 is illegal according to the MPI standard. Each side does a
blocking send to its communication partner before posting a receive for the message coming
from the other partner.

Example 7-8 Deadlock code

TASK1 code:
MPI_Send(task2, tag1);
MPI_Recv(task2, tag2);
TASK2 code:
MPI_Send(task1, tag2);
MPI_Recv(task1, tag1);

In general, this code has a high probability of deadlocking the system. Obviously, you should
not program this way. Make sure that your code conforms to the MPI specification. You can
achieve this by either changing the order of sends and receives or by using non-blocking
communication calls.

While you should not rely on the runtime system to correctly handle non-conforming MPI
code, it is easier to debug such situations when you receive a runtime error message than to
try and detect a deadlock and trace it back to its root cause.

7.2.6 Violating MPI buffer ownership rules

A number of problems can arise when the send/receive buffers that participate in
asynchronous message passing calls are accessed before it is legal to do so. All of the
following examples are illegal, and therefore, you must avoid them.

The most obvious case is when you write to a send buffer before the MPI_Wait for that
request has completed as shown in Example 7-9.

Example 7-9 Write to a send buffer before MPI_Wait has completed

req = MPI_Isend(buffer,&req);
buffer[0] = something;
MPI_Wait(req);

The code in Example 7-9 results in a race condition on any message passing machine.
Depending on the runtime factors that are outside the application’s control, sometimes the old
buffer[0] is sent and sometimes the new value is sent.

A more subtle case is a read from the send buffer before the MPI_Wait for that request
completes as shown in Example 7-10.

Example 7-10 Read from the send buffer before the MPI_Wait completes

req = MPI_Isend(buffer,&req);
z = buffer[0];
MPI_Wait(req);

Important: The code presented in Example 7-8 will create a deadlock if the rendezvous
protocol is used. The rendezvous protocol does not allocate buffers for these messages,
which is not the case with the eager protocol.
Chapter 7. Parallel paradigms 71

Although not as obvious as the write case, the code in Example 7-10 is also prohibited by the
MPI standard. The MPI runtime system has full control over the buffer until the MPI_Wait for
the request completes. The application is not allowed to read it. In the current Blue Gene/P
implementation, such code works as expected, but there is no guarantee that future versions
of the MPI library will behave the same way.

In the last example in this thread, a receive buffer is read before the MPI_Wait for the
asynchronous receive request has completed. See Example 7-11.

Example 7-11 Receive buffer before MPI_Wait has completed

req = MPI_Irecv(buffer);
z = buffer[0];
MPI_Wait (req);

The code shown in Example 7-11 is also illegal. The contents of the receive buffer are not
guaranteed until after MPI_Wait is called.

Buffer alignment sensitivity
It is important to note that the MPI implementation on the Blue Gene/P system is sensitive to
the alignment of the buffers that are being sent or received. Aligning buffers on 32-byte
boundaries can improve performance. If the buffers are at least 16-bytes aligned, the
messaging software can use internal math routines that are optimized for the double hummer
architecture. Additionally, the L1 cache and DMA are optimized on 32-byte boundaries.

For buffers that are dynamically allocated (via malloc()), the following techniques can be
used:

� Instead of using malloc(), use the following statement and specify 32 for the alignment
parameter:

int posix_memalign(void **memptr, size_t alignment, size_t size)

This statement returns a 32-byte aligned pointer to the allocated memory. You can use
free() to free the memory.

� Use malloc(), but request 32 bytes of more storage than required. Then round the
returned address up to a 32-byte boundary as shown in Example 7-12.

Example 7-12 Request 32 bytes more storage than required

buffer_ptr_original = malloc(size + 32);
buffer_ptr = (char*)(((unsigned)buffer_ptr + 32) & 0xFFFFFFE0);
.
.
.
/* Use buffer_ptr on MPI operations */
.
.
.
free(buffer_ptr_original);
72 IBM System Blue Gene Solution: Blue Gene/P Application Development

For buffers that are declared in static (global) storage, use __attribute__((aligned(32))) on
the declaration as shown in Example 7-13.

Example 7-13 Buffers that are declared in static (global) storage

struct DataInfo
{
unsigned int iarray[256];
unsigned int count;
} data_info __attribute__ ((aligned (32)));
or
unsigned int data __attribute__ ((aligned (32)));
or
char data_array[512] __attribute__((aligned(32)));

For buffers that are declared in automatic (stack) storage, only up to a 16-byte alignment is
possible. Therefore, use dynamically allocated aligned static (global) storage instead.

7.2.7 Interlocking collectives with point-to-point calls

Consider the code shown in Example 7-14, in which task 1 issues a barrier synchronization
before the preceding asynchronous send is known to have completed.

Example 7-14 Barrier synchronization issued before the preceding asynchronous send completed

TASK1 code:
req = MPI_Isend(task2, &req);
MPI_Barrier();
MPI_Wait(req);
TASK2 code:
MPI_Recv(task1);
MPI_Barrier();

The receiver does not join the barrier before its (blocking) receive has completed. Therefore,
this code will potentially deadlock if task 1 enters the barrier before the asynchronous send
completes and if task 1 relies on the MPI_Wait to complete the send operation.

On the Blue Gene/P system, this kind of code works because the asynchronous send is
handled by the torus network, where the barrier is handled by the barrier (global interrupt)
network. Even though task 1 might have already entered the barrier, it is still possible to make
progress on the point-to-point communications on the torus network, and the blocking receive
on task 2 will eventually complete.

To avoid unexpected behavior, do not interlock collectives with point-to-point communications.
For all collectives, except MPI_Barrier, the MPI standard clearly states that programmers
should not rely on collective communications to synchronize the tasks, and at the same time,
should structure their program in a way that allows for such synchronization to take place
without causing a deadlock in the point-to-point communications. In general, we recommend
that you do not mix collectives, which is not good programming practice.
Chapter 7. Parallel paradigms 73

7.3 MPI communications
In this section, we discuss Blue Gene/P-specific features that are related to MPI
communications via the torus network.

7.3.1 Blue Gene/P MPI extensions
Three new application programming interfaces (APIs) make it easier to map nodes to specific
hardware or processor set (pset) configurations. Application developers can use these
functions, as explained in the following list, by including the mpix.h file:

� int MPIX_Cart_comm_create (MPI_Comm *cart_comm);

This function creates a four-dimensional (4D) Cartesian communicator that mimics the
exact hardware on which it is run. The X, Y, and Z dimensions match those of the partition
hardware, while the T dimension has cardinality 1 in symmetrical multiprocessing (SMP)
Node Mode, cardinality 2 in Dual Node Mode, and cardinality 4 in Virtual Node Mode. The
communicator wrap-around links match the true mesh or torus nature of the partition. In
addition, the coordinates of a node in the communicator match exactly its coordinates in
the partition.

It is important to understand that this is a collective operation and it must be run on all
nodes. The function might be unable to complete successfully for several different
reasons, mostly likely when it is run on fewer nodes than the entire partition. It is important
to ensure that the return code is MPI_SUCCESS before continuing to use the returned
communicator.
74 IBM System Blue Gene Solution: Blue Gene/P Application Development

� int MPIX_Pset_same_comm_create (MPI_Comm *pset_comm);

This function is a collective operation that creates a set of communicators (each node
seeing only one), where all nodes in a given communicator are part of the same pset (all
share the same input/output (I/O) node). See Figure 7-2.

The most common use for this function is to coordinate access to the outside world to
maximize the number of I/O Nodes. For example, node 0 in each of the communicators
can be arbitrarily used as the “master node” for the communicator, collecting information
from the other nodes for writing to disk.

Figure 7-2 MPIX_Pset_same_comm_create() creating communicators

� int MPIX_Pset_diff_comm_create (MPI_Comm *pset_comm);

This function is a collective operation that creates a set of communicators (each node
seeing only one), where no two nodes in a given communicator are part of the same pset
(all have different I/O Nodes). See Figure 7-3. The most common use for this function is to
coordinate access to the outside world to maximize the number of I/O Nodes. For
example, an application that has an extremely high bandwidth per node requirement can
run both MPIX_Pset_same_comm_create() and MPIX_Pset_diff_comm_create().

Nodes without rank 0 in MPIX_Pset_same_comm_create() can sleep, leaving those with
rank 0 independent and parallel access to the functional Ethernet. Those nodes all belong
to the same communicator from MPIX_Pset_diff_comm_create(), allowing them to use
that communicator instead of MPI_COMM_WORLD for group communication or
coordination.

Application

Comm
1

Comm
2

Comm
3

Comm
4

1

2

3

4

5

6

7

8

Pset 4

1

2

3

4

5

6

7

8

Pset 3

1

2

3

4

5

6

7

8

Pset 2

1

2

3

4

5

6

7

8

Pset 1

Application

Comm
1

Comm
2

Comm
3

Comm
4

1

2

3

4

5

6

7

8

Pset 4

1

2

3

4

5

6

7

8

Pset 3

1

2

3

4

5

6

7

8

Pset 2

1

2

3

4

5

6

7

8

Pset 1
Chapter 7. Parallel paradigms 75

Figure 7-3 PMI_Pset_diff_comm_create() creating communicators

7.4 MPI functions

MPI functions have been extensively documented in the literature. In this section, we provide
several useful references that provide a comprehensive description of the MPI functions.

Appendix A in Parallel Programming in C with MPI and OpenMP, by Michael J. Quinn,24
describes all the MPI functions as defined in the MPI-1 standard. This reference also provides
additional information and recommendations when to use each function.

In addition, you can find information about the MPI standard on the Message Passing
Interface (MPI) standard Web site at:

http://www-unix.mcs.anl.gov/mpi/

A comprehensive list of the MPI functions is available on the MPI Routines page at:

http://www-unix.mcs.anl.gov/mpi/www/www3/

Comm
1

Comm
2

Comm
3

Comm
4

Comm
5

Comm
6

Comm
7

Comm
8

Pset 4Pset 3Pset 2Pset 1

8888

7777

6666

5555

4444

3333

2222

1111 Comm
1

Comm
2

Comm
3

Comm
4

Comm
5

Comm
6

Comm
7

Comm
8

Pset 4Pset 3Pset 2Pset 1

8888

7777

6666

5555

4444

3333

2222

1111
76 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/www/www3/

MPI Routines page includes MPI calls for C and Fortran. For more information, refer to the
following books about MPI and MPI-2:

� MPI: The Complete Reference, 2nd Edition, Volume 1, by Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker, and Jack Dongarra25

� MPI: The Complete Reference, Volume 2: The MPI-2 Extensions, by William Gropp,
Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
and Marc Snir26

For general information about MPICH2, refer to the MPICH2 Web page at:

http://www-unix.mcs.anl.gov/mpi/mpich/

Since teaching about MPI is beyond the scope of this book, refer to the following Web page
for tutorials and extensive information about MPI:

http://www-unix.mcs.anl.gov/mpi/learning.html

7.5 Compiling MPI programs on Blue Gene/P

The XL C/C++ and Fortran95 family of compilers provide several different commands that you
can use to invoke the compiler with the bgxl prefix, for example bgxlc. These are the most
commonly used commands to invoke the different compilers. However, when using the
standard commands, you must explicitly invoke all the libraries that are required.

Alternatively, simple scripts are available to compile or link MPI programs. These scripts
include the default flags and libraries and can handle alternative compilers and the
associated flags and libraries.

The following flags and environmental variables are provided with the scripts:

includedir, libdir Directories that contain an installed mpich2

prefix, execprefix Often used to define includedir and libdir

CC C compiler

CXX C++ compiler

FC Fortran 77 compiler

MPI_CFLAGS Any special flags needed to compile

MPI_LDFLAGS Any special flags needed to link

MPILIBNAME The name of the MPI library

MPI_OTHERLIBS Other libraries that are needed in order to link

The compiler and the scripts also provide corresponding “_r” versions of most invocation
commands to instruct the compiler to link and bind object files to thread-safe components and
libraries, and produce threadsafe object code for compiler-created data and procedures. The
following scripts are provided in the /bgsys/drivers/ppcfloor/comm/bin directory:

mpicc GNU C compiler with MPI libraries and default compiler flags

mpich2version Script to provide MPICH2 version information

mpicxx GNU C++ compiler with MPI libraries and default compiler flags

mpif77 GNU Fortran 77 (gfortran) compiler with MPI libraries and default
compiler flags
Chapter 7. Parallel paradigms 77

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/learning.html

mpixlc IBM XL C compiler with MPI libraries and no default compiler flags

mpixlc_r Thread-safe version of mpixlc

mpixlcxx IBM XL C++ compiler with MPI libraries and no default compiler flags

mpixlcxx_r Thread-safe version of mpixlcxx

mpixlf2003 IBM XL Fortran 2003 compiler with MPI libraries and no default
compiler flags

mpixlf2003_r Thread-safe version of mpixlf2003

mpixlf77 IBM XL Fortran 77 compiler with MPI libraries and no default compiler
flags

mpixlf77_r Thread-safe version of mpixlf77

mpixlf90 IBM XL Fortran 90 compiler with MPI libraries and no default compiler
flags

mpixlf90_r Thread-safe version of mpixlf90

mpixlf95 IBM XL Fortran 95 compiler with MPI libraries and no default compiler
flags

mpixlf95_r Thread-safe version of mpixlf95

Example 7-15 shows a makefile that does not use the scripts and requires the programmer to
identify all the libraries and include files.

Example 7-15 Makefile with explicit reference to libraries and include files

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include -I$(BGP_FLOOR)/comm/include
BGP_LIBS = -L$(BGP_FLOOR)/comm/lib -lmpich.cnk -L$(BGP_FLOOR)/comm/lib
-ldcmfcoll.cnk -ldcmf.cnk -lpthread -lrt -L$(BGP_FLOOR)/runtime/SPI -lSPI.cna

XL = /opt/ibmcmp/xlf/bg/11.1/bin/bgxlf

EXE = fhello
OBJ = hello.o
SRC = hello.f
FLAGS = -O3 -qarch=450 -qtune=450 -I$(BGP_FLOOR)/comm/include
FLD = -O3 -qarch=450 -qtune=450

$(EXE): $(OBJ)
${XL} $(FLAGS) $(BGP_LDIRS) -o $(EXE) $(OBJ) $(BGP_LIBS)
 ${XL} $(FLAGS) -o $(EXE) $(OBJ) $(BGP_LIBS)
$(OBJ): $(SRC)
 ${XL} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm hello.o fhello

Note: When you invoke the previous scripts, if you do not specify -O (specify whether to
optimize code during compilation), the default is set to -O0.
78 IBM System Blue Gene Solution: Blue Gene/P Application Development

Alternatively, Example 7-16 uses MPI scripts, which create a simpler makefile. The MPI
scripts also handle the proper order in which libraries should be called.

Example 7-16 Use of MPI script mpixlf77

XL = /bgsys/drivers/ppcfloor/comm/bin/mpixlf77

EXE = fhello
OBJ = hello.o
SRC = hello.f
FLAGS = -O3 -qarch=450 -qtune=450
FLD = -O3 -qarch=450 -qtune=450

$(EXE): $(OBJ)
${XL} $(FLAGS) $(BGP_LDIRS) -o $(EXE) $(OBJ) $(BGP_LIBS)
 ${XL} $(FLAGS) -o $(EXE) $(OBJ) $(BGP_LIBS)
$(OBJ): $(SRC)
 ${XL} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm hello.o fhello

7.6 MPI communications performance

Communications performance is an important aspect when running parallel applications,
particularly, when running on a distributed-memory system such as the Blue Gene/P system.
On both the Blue Gene/L and Blue Gene/P systems, instead of implementing a single type of
network that is capable of transporting all protocols that are needed, these two systems have
separate networks for different types of communications.

Usually the following measurements provide information about the network and can be used
to look at parallel performance of applications:

Bandwidth The number of MB of data that can be sent from one node to another
node in one second

Latency The amount of time it takes for the first byte that is sent from one node
to reach its target node

The values for bandwidth and latency provide information about communication.

Here we illustrate two cases. The first case corresponds to a benchmark that involves a single
transfer. The second case corresponds to a collective as defined in the Intel® MPI
Benchmarks. Intel MPI Benchmarks was formerly known as “Pallas MPI Benchmarks
(PMB-MPI1 for MPI1 standard functions only). Intel MPI Benchmarks - MPI1 provides a set of
elementary MPI benchmark kernels.

For more details, see the product documentation included in the package that you can
download from the following Intel Web page:

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
Chapter 7. Parallel paradigms 79

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

7.6.1 MPI point-to-point

In the Intel MPI Benchmarks, a single transfer corresponds to the PingPong and PingPing
benchmarks. We illustrate a comparison between the Blue Gene/L and Blue Gene/P systems
for the case of PingPong. This benchmark illustrates a single message that is transferred
between two MPI tasks, in our case, on two different nodes.

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/L system, the benchmark was run in co-processor mode. (See Unfolding the
IBM eServer Blue Gene Solution, SG24-6686.) On the Blue Gene/P system, we used the
SMP Node Mode. mpirun was invoked as shown in Example 7-17 and Example 7-18 for the
Blue Gene/L and Blue Gene/P systems respectively.

Example 7-17 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd /bglscratch/pallas -exe
/bglscratch/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen 4194304.txt -npmin 512
PingPong" | tee IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Example 7-18 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 PingPong" | tee
IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Figure 7-4 shows the bandwidth on the torus network as a function of the message size, for
one simultaneous pair of nearest neighbor communications. The protocol switch from short to
eager is visible in both cases, where the eager to rendezvous switch is most pronounced on
the Blue Gene/L system (see the asterisks (*)). This figure also shows the improved
performance on the Blue Gene/P system (see the diamonds).

Figure 7-4 Bandwidth versus message size

0
50

100
150
200
250
300
350
400

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

10
48

57
6

41
94

30
4

Message size in Bytes

B
an

dw
id

th
 in

 M
B

/s
80 IBM System Blue Gene Solution: Blue Gene/P Application Development

7.6.2 MPI collective

In the Intel MPI Benchmarks, the collective benchmarks correspond to the Bcast, Allgather,
Allgatherv, Alltoall, Alltoallv, Reduce, REduce_scatter, Allreduce, and Barrier benchmarks.
We illustrate a comparison between the Blue Gene/L and Blue Gene/P systems for the case
of Allreduce, which is a popular collective that is used in certain scientific applications. These
benchmarks measure the message passing power of a system as well as the quality of the
implementation.

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/P system, the benchmark was run in co-processor mode. On the Blue Gene/P
system, we used SMP node mode. mpirun was invoked as shown in Example 7-19 and
Example 7-20 for the Blue Gene/L and Blue Gene/P systems respectively.

Example 7-19 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd
/bglscratch/BGTH/testsmall512nodeBGL/pallas -exe
/bglscratch/BGTH/testsmall512nodeBGL/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen
4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Example 7-20 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Collective operations are more efficient on the Blue Gene/P system. You should try to use
collective operations instead of point-to-point communication wherever possible. The
overhead for point-to-point communications is much larger than for collectives. Unless all of
your point-to-point communication is purely to the nearest neighbor, it is also difficult to avoid
network congestion on the torus network.

Alternatively, collective operations can use the barrier (global interrupt) network or the torus
network. If they run over the torus network, they can still be optimized by using specially
designed communication patterns that achieve optimum performance. Doing this manually
with point-to-point operations is possible in theory, but in general, the implementation in the
Blue Gene/P MPI library will offer superior performance.

With point-to-point communication, the goal of reducing the point-to-point Manhattan
distances necessitates a good mapping of MPI tasks to the physical hardware. For
collectives, mapping is equally important because most collective implementations prefer
certain communicator shapes to achieve optimum performance. Refer to Appendix E,
“Mapping” on page 281, which illustrates the technique of mapping.

Similar to point-to-point communications, collective communications also work best if you do
not use complicated derived data types, and if your buffers are aligned to 16-byte boundaries.
While the MPI standard explicitly allows for MPI collective communications to take place at
the same time as point-to-point communications (on the same communicator), generally we
do not recommend this for performance reasons.
Chapter 7. Parallel paradigms 81

Table 7-1 summarizes the MPI collectives that have been optimized on the Blue Gene/P
system, together with their performance characteristics when executed on the various
networks of the Blue Gene/P system.

Table 7-1 MPI collectives optimized on the Blue Gene/P system

Figure 7-5 shows a comparison between the Blue Gene/L and Blue Gene/P systems for the
MPI_Allreduce() type of communication.

Figure 7-5 MPI_Allreduce () performance on 512 nodes

MPI routine Condition Network Performance

MPI_Barrier MPI_COMM_WORLD Barrier (global
interrupt) network

1.2 μs

MPI_Barrier Any communicator Torus network 30 μs

MPI_Broadcast MPI_COMM_WORLD Collective network 817 MBps

MPI_Broadcast Rectangular
communicator

Torus network 934 MBps

MPI_Allreduce MPI_COMM_WORLD
fixed-point

collective network 778 MBps

MPI_Allreduce MPI_COMM_WORLD
floating point

Collective network 98 MBps

MPI_Alltoall[v] Any communicator Torus network 84-97% peak

MPI_Allgatherv N/A Torus network same as broadcast

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

4 8 64 51
2

40
96

32
76

8

26
21

44

20
97

15
2

Message size in Bytes

Ti
m

e
in

s

Allreduce on BG/L
Allreduce on BG/P
82 IBM System Blue Gene Solution: Blue Gene/P Application Development

7.7 OpenMP

The OpenMP API is supported on the Blue Gene/P system for shared-memory parallel
programming in C/C++ and Fortran. This API has been jointly defined by a group of hardware
and software vendors and has evolved as a standard for shared-memory parallel
programming.

OpenMP consists of a collection of compiler directives and a library of functions that can be
invoked within an OpenMP program. This combination provides a simple interface for
developing parallel programs on shared-memory architectures. In the case of the Blue
Gene/P system, it allows the user to exploit the SMP mode on each Compute Node.
Multi-threading is now enabled on the Blue Gene/P system. Using OpenMP, the user can
have access to data parallelism as well as functional parallelism.

For additional information, refer to the official OpenMP Web site at:

http://www.openmp.org/

7.7.1 OpenMP implementation for Blue Gene/P

The Blue Gene/P system supports shared-memory parallelism on single nodes. The XL
compilers support the following constructs:

� Full support for OpenMP 2.5 standard

� Support for the use of the same infrastructure as the OpenMP on AIX® and Linux

� Interoperability with MPI

– MPI at outer level, across the Compute Nodes
– OpenMP at the inner level, within a Compute Node

� Autoparallelization based on the same parallel execution framework

– Enables autoparallelization as one of the loop optimizations

� Thread-safe version for each compiler

– bgxlf_r
– bgxlc_r
– bgcc_r

� Use of the thread-safe compiler version with any threaded, OpenMP, or SMP application

– -qsmp must be used on OpenMP or SMP applications.
– -qsmp by itself automatically parallelizes loops.
– -qsmp=omp parallelizes based on OpenMP directives in the code.
– Shared-memory model is on the Blue Gene/P system.

7.7.2 Selected OpenMP compiler directives

The latest set of OpenMP compiler directives is documented in the OpenMP ARB release
Version 2.5 specification. Version 2.5 combines Fortran and C/C++ specifications into a single
specification. It also fixes inconsistencies. We summarize some of the directives as follows:

parallel Directs the compiler for that section of the code to be executed in
parallel by multiple threads

for Directs the compiler to execute a for loop with independent iterations;
iterations can be executed by different threads in parallel

parallel for The syntax for parallel loops
Chapter 7. Parallel paradigms 83

http://www.openmp.org/

sections Directs the compiler of blocks of non-iterative code that can be
executed in parallel

parallel sections Syntax for parallel sections

critical Restricts the following section of the code to be executed by a single
thread at a time

single Directs the compiler to execute a section of the code by a single thread

Parallel operations are often expressed in C/C++ and Fortran95 programs as for loops as
shown in Example 7-21.

Example 7-21 for loops in Fortran and C

for (i = start; i < num; i += end)
{ array[i] = 1; m[i] = c;}

or

 integer i, n, sum
 sum = 0
 do 5 i = 1, n
 sum = sum + i
5 continue

The compiler can automatically locate and, where possible, parallelize all countable loops in
your program code in the following situations:

� There is no branching into or out of the loop.
� An increment expression is not within a critical section.
� A countable loop is automatically parallelized only if all of the following conditions are met:

– The order in which loop iterations start or end does not affect the results of the
program.

– The loop does not contain I/O operations.

– Floating point reductions inside the loop are not affected by round-off error, unless the
-qnostrict option is in effect.

– The -qnostrict_induction compiler option is in effect.

– The -qsmp=auto compiler option is in effect.

– The compiler is invoked with a thread-safe compiler mode.

In the case of C/C++ programs, OpenMP is invoked via pragmas as shown in Example 7-22.

Example 7-22 pragma usage

#pragma omp parallel for
 for (i = start; i < num;i += end)
{ array[i] = 1; m[i] = c;}

Pragma: The word “pragma” is short for pragmatic information.27 Pragma is a way to
communicate information to the compiler:

#pragma omp <rest of pragma>
84 IBM System Blue Gene Solution: Blue Gene/P Application Development

The for loop must not contain statements, such as the following examples, that allow the loop
to be exited prematurely:

� break
� return
� exit
� go to labels outside the loop

In a for loop, the master thread creates additional threads. The loop is executed by all
threads, where every thread has its own address space that contains all of the variables that
the thread can access. Such variables might be:

� Static variables.
� Dynamically allocated data structures in the heap.
� Variables on the run-time stack.

In addition, variables must be defined according to the type. Shared variables have the same
address in the execution context of every thread. It is important to understand that all threads
have access to shared variables. Alternatively, private variables have a different address in
the execution memory of every thread. A thread can access its own private variables, but it
cannot access the private variable of another thread.

Example 7-23 shows a simple Fortran95 example that illustrates the difference between
private and shared variables.

Example 7-23 Fortran example using the parallel do directive

program testmem
 integer n
 parameter (n=2)
 parameter (m=1)
 integer a(n), b(m)
!$OMP parallel do
 do i = 1, n
 a(i) = i
 enddo
 write(6,*)'Done: testmem'
 end

Pragma parallel: In the case of the parallel for pragma, variables are shared by default,
with exception of the loop index.
Chapter 7. Parallel paradigms 85

In Example 7-23, no variables are explicitly defined as neither private nor shared. In this case,
by default, the compiler assigns the variable that is used for the do-loop index as private. The
rest of the variables are shared. Figure 7-6 illustrates both private and shared variables as
shown in Parallel Programming in C with MPI and OpenMP.28 In this figure, the blue and
yellow arrows indicate which variables are accessible by all the threads.

Figure 7-6 Memory layout for private and shared variables

7.7.3 Selected OpenMP compiler functions

The following functions are selected for the OpenMP compiler:

omp_get_num_procs Returns the number of processors

omp_get_num_threads Returns the number of threads in a particular parallel region

omp_get_thread_num Returns the thread identification number

omp_set_num_threads Allocates numbers of threads for a particular parallel region

7.7.4 Performance

To illustrate the effect of selected OpenMP compiler directives and the implications in terms of
performance of a particular do loop, we chose the π programs presented in Parallel
Programming in C with MPI and OpenMP29 and apply them to the Blue Gene/P system. These
simple examples illustrate how to use these directives and some of the implications in selecting
a particular directive over another directive. Example 7-24 shows a simple program to compute
π.

Example 7-24 Sequential version of the pi.c program

int main(argc, argv)
int argc;
char *argv[];
{
 long n, i;
 double area, pi, x;
 n = 1000000000;
 area = 0.0;
86 IBM System Blue Gene Solution: Blue Gene/P Application Development

 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0 / (1.0 + x*x);
 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
}

The first way to parallelize this code is to include an OpenMP directive to parallelize the for
loop as shown in Example 7-25.

Example 7-25 Simple use of parallel for

#include <omp.h>

long long timebase(void);

int main(argc, argv)
int argc;
char *argv[];
{
 int num_threads;
 long n, i;
 double area, pi, x;
 long long time0, time1;
 double cycles, sec_per_cycle, factor;
 n = 1000000000;
 area = 0.0;
 time0 = timebase();
#pragma omp parallel for private(x)
 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0 / (1.0 + x*x);
 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
 time1 = timebase();
 cycles = time1 - time0;
 factor = 1.0/850000000.0;
 sec_per_cycle = cycles * factor;
 printf("Total time %lf \n",sec_per_cycle, "Seconds \n");
}

Unfortunately this simple approach creates a race condition when computing the area. While
different threads compute and update the value of the area, other threads might be computing
and updating area as well, therefore producing the wrong results. There are two ways to solve
this particular race condition. One way is to use a critical pragma to ensure mutual exclusion
among the threads, and the other way is to use the reduction clause.
Chapter 7. Parallel paradigms 87

Example 7-26 illustrates use of the critical pragma.

Example 7-26 Usage of critical pragma

#include <omp.h>

long long timebase(void);

int main(argc, argv)
int argc;
char *argv[];
{
 int num_threads;
 long n, i;
 double area, pi, x;
 long long time0, time1;
 double cycles, sec_per_cycle, factor;
 n = 1000000000;
 area = 0.0;
 time0 = timebase();
#pragma omp parallel for private(x)
 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
#pragma omp critical
 area += 4.0 / (1.0 + x*x);
 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
 time1 = timebase();
 cycles = time1 - time0;
 factor = 1.0/850000000.0;
 sec_per_cycle = cycles * factor;
 printf("Total time %lf \n",sec_per_cycle, "Seconds \n");
}

Example 7-27 corresponds to the reduction clause.

Example 7-27 Usage of the reduction clause

#include <omp.h>

long long timebase(void);

int main(argc, argv)
int argc;
char *argv[];
{
 int num_threads;
 long n, i;
 double area, pi, x;
 long long time0, time1;
 double cycles, sec_per_cycle, factor;
 n = 1000000000;
 area = 0.0;
 time0 = timebase();
#pragma omp parallel for private(x) reduction(+: area)
88 IBM System Blue Gene Solution: Blue Gene/P Application Development

 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0 / (1.0 + x*x);
 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
 time1 = timebase();
 cycles = time1 - time0;
 factor = 1.0/850000000.0;
 sec_per_cycle = cycles * factor;
 printf("Total time %lf \n",sec_per_cycle, "Seconds \n");
}

To compile these two programs on the Blue Gene/P system, the makefile for pi_critical.c
shown in Example 7-28 can be used. A similar makefile can be used for the program
illustrated in Example 7-27.

Example 7-28 Makefile for the pi_critical.c program

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include -I$(BGP_FLOOR)/comm/include
BGP_LIBS = -L$(BGP_FLOOR)/comm/lib -L$(BGP_FLOOR)/runtime/SPI -lmpich.cnk
-ldcmfcoll.cnk -ldcmf.cnk -lrt -lSPI.cna -lpthread

XL = /opt/ibmcmp/vac/bg/9.0/bin/bgxlc_r

EXE = pi_critical_bgp
OBJ = pi_critical.o
SRC = pi_critical.c
FLAGS = -O3 -qsmp=omp:noauto -qthreaded -qarch=450 -qtune=450
-I$(BGP_FLOOR)/comm/include
FLD = -O3 -qarch=450 -qtune=450

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $(EXE) $(OBJ) timebase.o $(BGP_LIBS)
$(OBJ): $(SRC)
 ${XL} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm pi_critical.o pi_critical_bgp

Table 7-2 illustrates the performance improvement by using the reduction clause.

Table 7-2 Parallel performance using critical pragma versus reduction clause

Execution time in (seconds)

Threads Using critical pragma Using reduction clause

1

POWER4 1.0 GHz 586.37 20.12

POWER5 1.9 GHz 145.03 5.22

POWER6™ 4.7 GHz 180.80 4.78

Blue Gene/P 560.08 12.80
Chapter 7. Parallel paradigms 89

For a more in-depth information with additional examples, we recommend that you read the
Parallel Programming in C with MPI and OpenMP.30 In this section, we selected to illustrate
only the π program.

2

POWER4 1.0 GHz 458.84 10.08

POWER5 1.9 GHz 374.10 2.70

POWER6 4.7 GHz 324.71 2.41

Blue Gene/P 602.62 6.42

4

POWER4 1.0 GHz 552.54 5.09

POWER5 1.9 GHz 428.42 1.40

POWER6 4.7 GHz 374.51 1.28

Blue Gene/P 582.95 3.24

Execution time in (seconds)

Threads Using critical pragma Using reduction clause
90 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 8. Developing applications with
IBM XL compilers

With the IBM XL family of optimizing compilers, you can develop C, C++, and Fortran
applications for the Blue Gene/P system. This family comprises the following products, which
we refer to in this chapter as Blue Gene XL compilers:

� XL C/C++ Advanced Edition V9.0 for Blue Gene
� XL Fortran Advanced Edition V11.1 for Blue Gene

The information that we present in this chapter is specific to the Blue Gene/P supercomputer.
It does not include general XL compiler information. For complete documentation about these
compilers, refer to the libraries at the following Web addresses:

� XL C/C++

http://www.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

In this chapter, we discuss specific considerations for developing, compiling, and optimizing
C/C++ and Fortran applications for the Blue Gene/P PowerPC 450 processor and a Single
Instruction Multiple Data (SIMD), double precision floating point multiply add unit (double
floating point multiply addd (FMA)).

Several documents cover part of the material presented in this chapter. In addition to the XL
family of compilers manuals that we reference throughout this chapter, we recommend that
you read the following documents:

� Unfolding the IBM eServer Blue Gene Solution, SG24-6686
� IBM System Blue Gene Solution: Application Development, SG24-7179

We also recommend that you read the article by Mark Mendell, “Exploiting the Dual Floating
Point Units in Blue Gene/L,” which provides detailed information about the SIMD functionality
in the XL family of compilers. You can find this article on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007511

8

© Copyright IBM Corp. 2007. All rights reserved. 91

http://www.ibm.com/software/awdtools/xlcpp/library/
http://www.ibm.com/software/awdtools/fortran/xlfortran/library/
http://www-1.ibm.com/support/docview.wss?uid=swg27007511

8.1 What is new

The Blue Gene/P system uses the same XL family of compilers as the Blue Gene/L system.
The Blue Gene/P system supports cross-compilation, and the compilers run on the Front End
Node. The compilers for the Blue Gene/P system have specific optimizations for its
architecture. In particular, the XL family of compilers generate code appropriate for the double
floating-point unit (FPU) of the Blue Gene/P system.

The Blue Gene/P system has compilers for the C, C++, and Fortran programming languages.
The compilers on the Blue Gene/P system take advantage of the double FPU available on the
Blue Gene/P system. They also incorporate code optimizations specific to the Blue Gene/P
instruction scheduling and memory hierarchy characteristics.

In addition to the XL family of compilers, the Blue Gene/P system supports a version of the
GNU compilers for C, C++, and Fortran. These compilers do not generate highly optimized
code for the Blue Gene/P system. In particular, they do not automatically generate code for
the double FPUs, and they do not support OpenMP.

Tools that are commonly associated with the GNU compilers (known as “binutils”) are
supported in the Blue Gene/P system. The same set of compilers and tools is used for both
Linux and the Blue Gene/P proprietary operating system. The Blue Gene/P system supports
the execution of Python-based user applications.

The GNU compiler toolchain also provides the dynamic linker, which is used both by Linux
and the Blue Gene/P proprietary operating system to support dynamic objects. The toolchain
is tuned to support both environment. The GNU “aux vector” technique is employed to pass
kernel specific information to the C library when tuning must be specific to one of the kernels.

8.2 Compiling and linking applications on Blue Gene/P
In this section, we provide information about compiling and linking applications that will run on
the Blue Gene/P system. For complete information about compiler and linker options, see the
following documents that are available on the Web:

� XL C/C++ Compiler Reference

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran User Guide

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

You can also find these documents in the following directories:

� /opt/ibmcmp/vacpp/bg/9.0/doc (C and C++)
� /opt/ibmcmp/xlf/bg/11.1/doc (Fortran)

The compilers can be found in the following directories:

� /opt/ibmcmp/vac/bg/9.0/bin
� /opt/ibmcmp/vacpp/bg/9.0/bin
� /opt/ibmcmp/xlf/bg/11.1/bin
92 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
http://www-306.ibm.com/software/awdtools/xlcpp/library/

In the Blue Gene/P release, you will notice the following differences for compiling and linking
applications:

� Blue Gene/P compiler wrapper names have changed:

– blrts_ is replaced by bg.
– xlf 11.1, vacpp 9.0, and vac 9.0 on the Blue Gene/L system support both blrts_ and

bg.

� -qarch=450d/450 is for the Blue Gene/P system, and 440d/440 is for the Blue Gene/L
system.

8.3 Default compiler options
Compilations most commonly occur on the Front End Node. The resulting program can run
on the Blue Gene/P system without manually copying the executable to the Service Node.
See Chapter 9, “Running and debugging applications” on page 129, and Chapter 13,
“mpirun” on page 217, to learn how to run programs on the Blue Gene/P system.

The script or makefile that you use to invoke the compilers should have certain compiler
options. Specifically the architecture-specific options, which optimize processing for the Blue
Gene/P 450d processor architecture, should be set to the following defaults:

� -qarch=450d

Generates parallel instructions for the PowerPC 450 processor and a SIMD, double
precision floating point multiply add unit (double FMA). If you encounter problems with
code generation, you can reset this option to -qarch=450. This option generates code for a
single FPU only, but it can give correct results if invalid code is generated by -qarch=450d.

� -qtune=450

Optimizes object code for the 450 family of processors. Single FPU only.

� -qcache=level=1:type=i:size=32:line=32:assoc=64:cost=8

Specifies the L1 instruction cache configuration for the Blue Gene/P architecture to allow
greater optimization with options -O4 and -O5.

� -qcache=level=1:type=d:size=32:line=32:assoc=64:cost=8

Specifies the L1 data cache configuration for the Blue Gene/P architecture to allow greater
optimization with options -O4 and -O5.

� -qcache=level=2:type=c:size=4096:line=128:assoc=8:cost=40

Specifies the L2 (combined data and instruction) cache configuration for the Blue Gene/P
architecture to allow greater optimization with options -O4 and -O5.

� -qnoautoconfig

Allows code to be cross-compiled on other machines at optimization levels -O4 or -O5, by
preserving the Blue Gene/P architecture-specific options.

Scripts are already available that do much of this for you. They reside in the same bin
directory as the compiler binary (/opt/ibmcmp/xlf/bg/11.1/bin or /opt/ibmcmp/vacpp/bg/9.0/bin
or /opt/ibmcmp/vac/bg/9.0/bin). Table 8-1 on page 94 lists the names.
Chapter 8. Developing applications with IBM XL compilers 93

Table 8-1 Scripts available in the bin directory for compiling and linking

8.4 Unsupported options
The following compiler options, although available for other IBM systems, are not supported
by the Blue Gene/P hardware. Therefore, do not use them:

� -q64: The Blue Gene/P system uses a 32-bit architecture; you cannot compile in 64-bit
mode.

� -qaltivec: The 450 processor does not support VMX instructions or vector data types.

8.5 Support for threads, OpenMP, and SMP

The Blue Gene/P system supports shared-memory parallelism on single nodes. The XL
compilers support the following constructs:

� Full support for the OpenMP 2.5 standard31

� Use of the same infrastructure as the OpenMP that is supported on AIX and Linux

� Interoperability with MPI

– MPI at outer level, across the Compute Nodes
– OpenMP at the inner level, within a Compute Node

� Autoparallelization based on the same parallel execution framework

– Enablement of autoparallelization as one of the loop optimizations

� Thread-safe version for each compiler

– bgxlf_r
– bgxlc_r
– bgxlC_r
– bgcc_r

The thread-safe compiler version should be used with any threaded, OpenMP, or SMP
application.

Language Script name or names

C bgc89, bgc99, bgcc, bgxlc bgc89_r, bgc99_r bgcc_r, bgxlc_r

C++ bgxlc++, bgxlc++_r, bgxlC, bgxlC_r

Fortran bgf2003, bgf95, bgxlf2003, bgxlf90_r, bgxlf_r, bgf77, bgfort77, bgxlf2003_r, bgxlf95,
bgf90, bgxlf, bgxlf90, bgxlf95_r

Important: The double FPU does not generate exceptions. Therefore, the -qflttrap
option is invalid with the 450d processor. Instead the user should reset the 450d processor
to -qarch=450.

Thread-safe libraries: Thread-safe libraries ensure that data access and updates are
synchronized between threads.
94 IBM System Blue Gene Solution: Blue Gene/P Application Development

� Usage of -qsmp and -qthreaded OpenMP and SMP applications

– -qsmp by itself automatically parallelizes loops.

– -qsmp=omp automatically parallelizes based on OpenMP directives in the code.

– -qsmp=omp:noauto -qthreaded should be used when parallelizing codes manually. It
prevents the compiler from trying to automatically parallelize loops.

8.6 XL runtime libraries

The libraries listed in Table 8-2 are linked into your application automatically by the XL linker
when you create your application.

Table 8-2 XL static and dynamic libraries

Note: See the language reference for more details about the -qsmp suboptions at:

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp

MASS libraries: The exception to this statement is for the libmassv.a file (the
Mathematical Acceleration Subsystem (MASS) libraries). This file must be explicitly
specified on the linker command. See 8.7, “Mathematical Acceleration Subsystem
libraries” on page 96, for information about the MASS libraries.

File name Description

libibmc++.a IBM C++ library

libxlf90.a,
libxlf90.so

IBM XLF runtime library

libxlfmath.a,
libxlfmath.so

IBM XLF stubs for math routines in system library libm, for example, _sin() for
sin(), _cos() for cos(), and so on

libxlfpmt4.a,
libxlfpmt4.so

IBM XLF to be used with -qautobdl=dbl4 (promote floating-point objects that are
single precision)

libxlfpad.a,
libxlfpad.so

IBM XLF runtime routines to be used with -qautobdl=dblpad (promote
floating-point objects and pad other types if they can share storage with
promoted objects)

libxlfpmt8.a,
libxlfpmt8.so

IBM XLF runtime routines to be used with -qautobdl=dbl8 (promote
floating-point objects that are double precision)

libxl.a IBM low-level runtime library

libxlopt.a IBM XL optimized intrinsic library
� Vector intrinsic functions
� BLASS routines

libmass.a IBM XL MASS library: Scalar intrinsic functions

libmassv.a IBM XL MASSV library: Vector intrinsic functions

ibxlomp_ser.a IBM XL Open MP compatibility library
Chapter 8. Developing applications with IBM XL compilers 95

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp

8.7 Mathematical Acceleration Subsystem libraries

The MASS consists of libraries of tuned mathematical intrinsic functions that are available in
versions for the AIX and Linux machines, including the Blue Gene/P system. The MASS
libraries provide improved performance over the standard mathematical library routines, are
thread-safe, and support compilations in C, C++, and Fortran applications. For more
information about MASS, refer to the Mathematical Acceleration Subsystem Web page at:

http://www-306.ibm.com/software/awdtools/mass/index.html

8.8 Engineering and Scientific Subroutine Library libraries

The Engineering and Scientific Subroutine Library (ESSL) for Linux on POWER supports the
Blue Gene/P system. ESSL provides over 150 math subroutines that have been specifically
tuned for performance on the Blue Gene/P system. For more information about ESSL, refer to
the Engineering Scientific Subroutine Library and Parallel ESSL Web page at:

http://www-03.ibm.com/systems/p/software/essl.html

8.9 Tuning your code for Blue Gene/P

In the sections that follow, we describe strategies that you can use to best exploit the SIMD
capabilities of the Blue Gene/P 450 processor and the XL compilers’ advanced instruction
scheduling, as well as to register the allocation algorithms.

8.9.1 Using the compiler optimization options

The -O3 compiler option provides a high level of optimization and automatically sets other
options that are especially useful on the Blue Gene/P system. The -qhot=simd option enables
SIMD vectorization of loops. It is enabled by default if you use -O4, -O5, or -qhot.

For more information about optimization options, see the following references:

� “Optimizing your applications” in the XL C/C++ Programming Guide, under Product
Documentation on the following Web page

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� “Optimizing XL Fortran programs” in the XL Fortran User Guide, under Product
Documentation on the following Web page

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

Important: When using IBM XL Fortran V11.1 for IBM System Blue Gene, customers must
use ESSL 4.3.1. If an attempt is made to install a wrong mix of ESSL and XLF, the rpm
installation fails with a dependency error message.
96 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www-03.ibm.com/systems/p/software/essl.html
http://www-306.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
http://www-306.ibm.com/software/awdtools/mass/index.html

8.9.2 PowerPC 450 processor parallel double-precision floating point multiply
add unit

Similar to the Blue Gene/L system, floating point instructions can operate simultaneously on
the primary and secondary registers. Figure 8-1 illustrates these registers.

Figure 8-1 Blue Gene/P dual floating point unit

The registers allow the PowerPC 450 processor to operate certain identical operations in
parallel. Load/store instructions can also be issued with a single instruction. For more detailed
information, see the white paper Exploiting the Dual Floating Point Units in Blue Gene/L on
the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007511

The IBM XL compilers leverage this functionality under the following conditions:

� Parallel instructions are issued for load/store instructions if the alignment and size are
aligned with natural alignment. This is 16 bytes for a pair of doubles, but only 8 bytes for a
pair of floats.

� The compiler can issue parallel instructions when the application vectors have stride-one
memory accesses. However, the compiler via IPA issues parallel instructions with
non-stride-one data in certain loops, if it can be shown to improve performance.

� -qhot=simd is the default with -qarch=450d.
Chapter 8. Developing applications with IBM XL compilers 97

http://www-1.ibm.com/support/docview.wss?uid=swg27007511

� -O4 provides analysis at compile time with limited scope analysis and issuing parallel
instructions (SIMD).

� -O5 provides analysis for the entire program at link time to propagate alignment
information. You must compile and link with -O5 to obtain the full benefit.

8.9.3 Using Single Instruction Multiple Data instructions in applications

On the Blue Gene/P system, normal PowerPC assembler instructions use the primary floating
point pipe. To enable instructions in parallel, special assembly instructions must be generated
using the following compiler options:

-qarch=450d This flag in the compiler enables parallel instructions to use the
primary and secondary registers (SIMD instructions). See Table 8-1.

-qtune=450 This flag optimizes code for the IBM 450 microprocessors, as
previously mentioned.

-O2 and up This option in the compiler enables parallel instructions.

The XL compiler optimizer consists of two major parts:

� Toronto Portable Optimizer (TPO) for high-level inter-procedural optimization
� Toronto Optimizing Back End with Yorktown (TOBEY) for low-level back-end optimization

SIMD instructions occur in both optimizers. SIMD instruction generation in TOBEY is
activated by default for -O2 and up. SIMD generation in TPO is added when using -qhot, -O4,
or -O5. Specifically, the -qhot option adds SIMD generation, but options -O4 and -O5
automatically call -qhot. For more details, see the C, C++, and Fortran manuals on the Web
at the following addresses:

� XL C/C++

http://www.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

For some applications, the compiler generates more efficient code without the TPO SIMD
level. If you have statically allocated array, and a loop in the same routine, call TOBEY with
-qhot or -O4. Nevertheless, on top of SIMD generation from TOBEY, with -qhot, optimizations
are enabled that can alter the semantic of the code and on rare occasions can generate less
efficient code. Also, with -qhot=nosimd, you can suppress some of these optimizations.

To use the SIMD capabilities of the XL compilers:

1. Start to compile:

-O3 -qarch=450d -qtune=450

We recommend that you use -qarch=450d -qtune=450, in this order. The compiler only
generates SIMD instructions from -O2 and up.

2. Increase the optimization level, and call the high level inter-procedural optimizer:

– -O5 (link time, whole-program analysis, and SIMD instruction)
– -O4 (compile time, limited scope analysis, and SIMD instructions)
– -O3 -qhot=simd (compile time, less optimization, and SIMD instructions)

3. Tune your program:

a. Check the SIMD instruction generation in the object code listing (-qsource -qlist).
b. Use compiler feedback (-qreport -qhot) to guide you.
c. Help the compiler with extra information (directives and pragmas).
98 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www.ibm.com/software/awdtools/xlcpp/library/
http://www.ibm.com/software/awdtools/fortran/xlfortran/library/

• Enter the alignment information with directives and pragmas. In C, enter:

__alignx

In Fortran, enter:

ALIGNX

• Tell the compiler that data accessed through pointers is disjoint. In C, enter:

#pragma disjoint

• Use constant loop bound, #define, when possible.

• Use data flow instead of control flow.

• Use select instead of if/then/else. Use macros instead of calls.

• Tell the compiler not to generate SIMD instructions if it is not profitable (trip count
low). In C, enter:

#pragma nosimd

In Fortran, enter the following line just before the loop:

!IBM* NOSIMD

– Many applications can require modifying algorithms. The previous bullet, which
explains how not to generate SIMD instructions, gives constructs that might help to
modify the code. Here are hints to use when modifying your code:

• Loops must be stride one accesses.

• For function calls in loop:

– Try to inline the calls.
– Loop with if statement.
– Use pointer and aliasing.
– Use integer operations.

• Assumed shape arrays in Fortran 90 can hurt enabling SIMD instructions.

– Generate compiler diagnostics to help you modify and understand how the compiler is
optimizing sections of your applications:

The -qreport compiler option generates a diagnostic report about SIMD instruction
generation. To analyze the generated code and the use of quadword loads and stores,
you must look at the pseudo assembler code within the object file listing. The
diagnostic report provides two types of information about SIMD generation:

• Information on success

(simdizable) [feature][version]

[feature] further characterizes the simdizable loop:

misalign (compile time store)
Refers to a simdizable loop with misaligned accesses.

shift (4 compile time)
Refers to a simdizable loop with 4 stream shift inserted. shift
refers to the number of misaligned data references that were
found. It has a performance impact since these loops must be
loaded across, and then an extra select instruction must be
inserted.

priv Indicates that the compiler has generated a private variable.
priv means a private variable was found. In general, it should
have no performance impact, but in practice it sometimes does.
Chapter 8. Developing applications with IBM XL compilers 99

reduct Indicates that a simdizable loop has a reduction construct.
reduct means that a reduction was found. It is simdized using
partial sums, which must be added at the end of the loop.

[version] further characterizes if and why versioned loops were created:

relative align Indicates the version for relative alignment. The compiler has
generated a test and two versions.

trip count Versioned for a short runtime trip count.

• Information on failure

– In case of misalignment: misalign(...)

* Non-natural: Non-naturally aligned accesses
* Run time: Runtime alignment

– About the structure of the loop

* Irregular loop structure (while-loop)
* Contains control flow: if/then/else
* Contains function call: Function call bans SIMD instructions
* Trip count too small

– About dependences: dependence due to aliasing

– About array references

* Access not stride one
* Memory accesses with unsupported alignment
* Contains runtime shift

– About pointer references: Non-normalized pointer accesses

8.10 Tips for optimizing constructs
The following sections are an excerpt from the IBM System Blue Gene Solution: Application
Development, SG24-7179, but tailored to the Blue Gene/P system since they apply here as
well. They provide useful tips on how to optimize certain constructs in your code.

8.10.1 Structuring data in adjacent pairs

The Blue Gene/P 450d processor’s dual FPU includes special instructions for parallel
computations. The compiler tries to pair adjacent single-precision or double-precision floating
point values to operate on them in parallel. Therefore, you can accelerate computations by
defining data objects that occupy adjacent memory blocks and are naturally aligned. These
include arrays or structures of floating-point values and complex data types.

Whether you use an array, a structure, or a complex scalar, the compiler searches for
sequential pairs of data for which it can generate parallel instructions. For example, using the
C code in Example 8-1, each pair of elements in a structure can be operated on in parallel.

Example 8-1 Adjacent paired data

struct quad {
double a, b, c, d;

};

struct quad x, y, z;

void foo()
100 IBM System Blue Gene Solution: Blue Gene/P Application Development

{
z.a = x.a + y.a;
z.b = x.b + y.b;/* can load parallel (x.a,x.b), and (y.a, y.b), do parallel add, and

store parallel (z.a, z.b) */

z.c = x.c + y.c;
z.d = x.d + y.d;/* can load parallel (x.c,x.d), and (y.c, y.d), do parallel add, and

store parallel (z.c, z.d) */
}

The advantage of using complex types in arithmetic operations is that the compiler
automatically uses parallel add, subtract, and multiply instructions when complex types
appear as operands to addition, subtraction, and multiplication operators. Furthermore, the
data that you provide does not need to represent complex numbers. In fact, both elements are
represented internally as two real values. See 8.10.8, “Complex type manipulation functions”
on page 109, for a description of the set of built-in functions that are available for the Blue
Gene/P system. These functions are especially designed to efficiently manipulate
complex-type data and include a function to convert non-complex data to complex types.

8.10.2 Using vectorizable basic blocks

The compiler schedules instructions most efficiently within extended basic blocks. Extended
basic blocks are code sequences that can contain conditional branches but have no entry
points other than the first instruction. Specifically, minimize the use of branching instructions
for:

� Handling special cases, such as the generation of not-a-number (NaN) values.

� C/C++ error handling that sets a value for errno.

To explicitly inform the compiler that none of your code will set errno, you can compile with
the -qignerrno compiler option (automatically set with -O3).

� C++ exception handlers.

To explicitly inform the compiler that none of your code will throw any exceptions, and
therefore, that no exception-handling code must be generated, you can compile with the
-qnoeh compiler option.

In addition, the optimal basic blocks remove dependencies between computations, so that the
compiler views each statement as entirely independent. You can construct a basic block as a
series of independent statements or as a loop that repeatedly computes the same basic block
with different arguments.

If you specify the -qhot=simd compilation option, along with a minimum optimization level of
-O2, the compiler can then vectorize these loops by applying various transformations, such as
unrolling and software pipelining. See 8.10.4, “Removing possibilities for aliasing (C/C++)” on
page 102, for additional strategies for removing data dependencies.

8.10.3 Using inline functions

An inline function is expanded in any context in which it is called. This expansion avoids the
normal performance overhead associated with the branching for a function call, and it allows
functions to be included in basic blocks. The XL C/C++ and Fortran compilers provide several
options for inlining.
Chapter 8. Developing applications with IBM XL compilers 101

The following options instruct the compiler to automatically inline all functions it deems
appropriate:

� XL C/C++

– -O through -O5
– -qipa

� XL Fortran

– -O4 or -O5
– -qipa

With the following options, you can select or name functions to be inlined:

� XL C/C++

– -qinline
– -Q

� XL Fortran

– -Q

In C/C++, you can also use the standard inline function specifier or the
__attribute__(always_inline) extension in your code to mark a function for inlining.

For more information about the various compiler options for controlling function inlining, see
the following publications:

� XL C/C++ Compiler Reference

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran User Guide

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

Also available from this Web address, refer to the XL C/C++ Language Reference for
information about the different variations of the inline keyword supported by XL C and
C++, as well as the inlining function attribute extensions.

8.10.4 Removing possibilities for aliasing (C/C++)

When you use pointers to access array data in C/C++, the compiler cannot assume that the
memory accessed by pointers will not be altered by other pointers that refer to the same
address. For example, if two pointer input parameters share memory, the instruction to store
the second parameter can overwrite the memory read from the first load instruction. This
means that, after a store for a pointer variable, any load from a pointer must be reloaded.
Consider the code in Example 8-2.

Example 8-2 Sample code

int i = *p;
*q = 0;
j = *p;

If *q aliases *p, then the value must be reloaded from memory. If *q does not alias *p, the old
value that is already loaded into i can be used.

Usage of inlining: Do not overuse inlining, because there are limits on how much inlining
will be done. Mark the most important functions.
102 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www-306.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

To avoid the overhead of reloading values from memory every time they are referenced in the
code, and to allow the compiler to simply manipulate values that are already resident in
registers, there are several strategies you can use. One approach is to assign input array
element values to local variables and perform computations only on the local variables, as
shown in Example 8-3.

Example 8-3 Array parameters assigned to local variables

#include <math.h>
void reciprocal_roots (const double* x, double* f)
{

double x0 = x[0] ;
double x1 = x[1] ;
double r0 = 1.0/sqrt(x0) ;
double r1 = 1.0/sqrt(x1) ;
f[0] = r0 ;
f[1] = r1 ;

}

If you are certain that two references do not share the same memory address, another
approach is to use the #pragma disjoint directive. This directive asserts that two identifiers
do not share the same storage, within the scope of their use. Specifically, you can use
pragma to inform the compiler that two pointer variables do not point to the same memory
address. The directive in Example 8-4 indicates to the compiler that the pointers-to-arrays of
double x and f do not share memory.

Example 8-4 The #pragma disjoint directive

__inline void ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)
int i;
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

8.10.5 Structure computations in batches

Floating-point operations are pipelined in the 450 processor, so that one floating-point
calculation is performed per cycle, with a latency of approximately five cycles. Therefore, to
keep the 450 processor’s floating-point units busy, organize floating-point computations to
perform step-wise operations in batches, for example, arrays of five elements and loops of
five iterations. For the 450d, which has two FPUs, use batches of ten.

For example, with the 450d, at high optimization, the function in Example 8-5 on page 104
should perform ten parallel reciprocal roots in about five cycles more than a single reciprocal
root. This is because the compiler will perform two reciprocal roots in parallel and then use
the “empty” cycles to run four more parallel reciprocal roots.

Important: The correct functioning of this directive requires that the two pointers be
disjoint. If they are not, the compiled program will not run correctly.
Chapter 8. Developing applications with IBM XL compilers 103

Example 8-5 Function to calculate reciprocal roots for arrays of ten elements

__inline void ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)

 int i;
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

The definition in Example 8-6 shows “wrapping” the inlined, optimized ten_reciprocal_roots
function, in Example 8-5, inside a function that allows you to pass in arrays of any number of
elements. This function then passes the values in batches of ten to the ten_reciprocal_roots
function and calculates the remaining operations individually.

Example 8-6 Function to pass values in batches of ten

static void unaligned_reciprocal_roots (double* x, double* f, int n)
{
#pragma disjoint (*x, *f)
 while (n >= 10) {

ten_reciprocal_roots (x, f);
x += 10;
f += 10;

 }
 /* remainder */
 while (n > 0) {

*f = 1.0 / sqrt (*x);
f++, x++;

 }
}

8.10.6 Checking for data alignment

The Blue Gene/P architecture allows for two double-precision values to be loaded in parallel
in a single cycle, provided that the load address is aligned so that the values that are loaded
do not cross a cache-line boundary. If they cross this boundary, the hardware generates an
alignment trap. This trap can cause the program to crash or result in a severe performance
penalty if fixed at run-time by the kernel.

The compiler does not generate these parallel load and store instructions unless it is sure that
is safe to do so. For non-pointer local and global variables, the compiler knows when this is
safe. To allow the compiler to generate these parallel loads and stores for accesses through
pointers, include code that tests for correct alignment and that gives the compiler hints.

To test for alignment, first create one version of a function which asserts the alignment of an
input variable at that point in the program flow. You can use the C/C++ __alignx built-in
function or the Fortran ALIGNX function to inform the compiler that the incoming data is
correctly aligned according to a specific byte boundary, so it can efficiently generate loads
and stores.

The function takes two arguments. The first argument is an integer constant expressing the
number of alignment bytes (must be a positive power of two). The second argument is the
variable name, typically a pointer to a memory address.
104 IBM System Blue Gene Solution: Blue Gene/P Application Development

Example 8-7 shows the C/C++ prototype for the function.

Example 8-7 C/C++ prototype

extern
#ifdef __cplusplus
"builtin"
#endif
void __alignx (int n, const void *addr)

Here n is the number of bytes. For example, __align(16, y) specifies that the address y is
16-byte aligned.

In Fortran95, the built-in subroutine is ALIGNX(K,M), where K is of type INTEGER(4), and M
is a variable of any type. When M is an integer pointer, the argument refers to the address of
the pointee.

Example 8-8 asserts that the variables x and f are aligned along 16-byte boundaries.

Example 8-8 Using the __alignx built-in function

#include <math.h>
#include <builtins.h>
__inline void aligned_ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)
int i;
 __alignx (16, x);
 __alignx (16, f);
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

After you create a function to handle input variables that are correctly aligned, you can then
create a function that tests for alignment and then calls the appropriate function to perform
the calculations. The function in Example 8-9 checks to see whether the incoming values are
correctly aligned. Then it calls the “aligned” (Example 8-8) or “unaligned” (Example 8-5)
version of the function according to the result.

Example 8-9 Function to test for alignment

void reciprocal_roots (double *x, double *f, int n)
{
 /* are both x & f 16 byte aligned? */
 if (((((int) x) | ((int) f)) & 0xf) == 0) /* This could also be done as:

if (((int) x % 16 == 0) && ((int) f % 16) == 0) */
aligned_ten_reciprocal_roots (x, f, n);
else
ten_reciprocal_roots (x, f, n);

}

The alignment test in Example 8-9 provides an optimized method of testing for 16-byte
alignment by performing a bit-wise OR on the two incoming addresses and testing whether
the lowest four bits are 0 (that is, 16-byte aligned).

The __alignx function: The __alignx function does not perform any alignment. It merely
informs the compiler that the variables are aligned as specified. If the variables are not
aligned correctly, the program does not run properly.
Chapter 8. Developing applications with IBM XL compilers 105

8.10.7 Using XL built-in floating-point functions for Blue Gene/P

The XL C/C++ and Fortran95 compilers include a large set of built-in functions that are
optimized for the PowerPC architecture. For a full description of them, refer to the following
documents:

� Appendix B: “Built-In Functions” in XL C/C++ Compiler Reference

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� “Intrinsic Procedures” in XL Fortran Language Reference

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

In addition, on the Blue Gene/P system, the XL compilers provide a set of built-in functions
that are specifically optimized for the PowerPC 450d dual FPU. These built-in functions
provide an almost one-to-one correspondence with the dual floating-point instruction set.

All of the C/C++ and Fortran built-in functions operate on complex data types, which have an
underlying representation of a two-element array, in which the real part represents the
primary element and the imaginary part represents the second element. The input data that
you provide does not need to represent complex numbers. In fact, both elements are
represented internally as two real values. None of the built-in functions performs complex
arithmetic. A set of built-in functions designed to efficiently manipulate complex-type variables
is also available.

The Blue Gene/P built-in functions perform several types of operations as explained in the
following paragraphs.

Parallel operations perform SIMD computations on the primary and secondary elements of
one or more input operands. They store the results in the corresponding elements of the
output. As an example, Figure 8-2 illustrates how a parallel-multiply operation is performed.

Figure 8-2 Parallel operations

Primary element Secondary element

Primary element Secondary element

Input
operand a

Input
operand b

Output Primary element Secondary element
106 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www-306.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

Cross operations perform SIMD computations on the opposite primary and secondary
elements of one or more input operands. They store the results in the corresponding
elements in the output. As an example, Figure 8-3 illustrates how a cross-multiply operation is
performed.

Figure 8-3 Cross-multiply operations

Copy-primary operations perform SIMD computation between the corresponding primary
and secondary elements of two input operands, where the primary element of the first
operand is replicated to the secondary element. As an example, Figure 8-4 illustrates how a
cross-primary-multiply operation is performed.

Figure 8-4 Copy-primary multiply operations

Primary element Secondary element

Secondary element Primary element

Input
operand b

Output

Primary element Secondary element
Input
operand a

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element Secondary element
Input
operand a
Chapter 8. Developing applications with IBM XL compilers 107

Copy-secondary operations perform SIMD computation between the corresponding primary
and secondary elements of two input operands, where the secondary element of the first
operand is replicated to the primary element. As an example, Figure 8-5 illustrates how a
cross-secondary multiply operation is performed.

Figure 8-5 Copy-secondary multiply operations

In cross-copy operations, the compiler crosses either the primary or secondary element of the
first operand, so that copy-primary and copy-secondary operations can be used
interchangeably to achieve the same result. The operation is performed on the total value of
the first operand. As an example, Figure 8-6 illustrates the result of a cross-copy multiply
operation.

Figure 8-6 Cross-copy multiply operations

In the following paragraphs, we describe the available built-in functions by category. For each
function, the C/C++ prototype is provided. In C, you do not need to include a header file to
obtain the prototypes. The compiler includes them automatically. In C++, you must include the
header file builtins.h.

Fortran does not use prototypes for built-in functions. Therefore, the interfaces for the
Fortran95 functions are provided in textual form. The function names omit the double
underscore (__) in Fortran95.

All of the built-in functions, with the exception of the complex type manipulation functions,
require compilation under -qarch=450d. This is the default setting on the Blue Gene/P system.

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element Secondary element
Input
operand a

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element + Secondary element
Input
operand a
108 IBM System Blue Gene Solution: Blue Gene/P Application Development

To help clarify the English description of each function, the following notation is used:

element(variable)

Here element represents one of primary or secondary, and variable represents input variable
a, b, or c, and the output variable result. For example, consider the following formula:

primary(result) = primary(a) + primary(b)

This formula indicates that the primary element of input variable a is added to the primary
element of input variable b and stored in the primary element of the result.

To optimize your calls to the Blue Gene/P built-in functions, follow the guidelines provided in
8.9, “Tuning your code for Blue Gene/P” on page 96. Using the alignx built-in function
(described in 8.10.6, “Checking for data alignment” on page 104), and specifying the
disjoint pragma (described in 8.10.4, “Removing possibilities for aliasing (C/C++)” on
page 102), are recommended for code that calls any of the built-in functions.

8.10.8 Complex type manipulation functions

Complex type manipulation functions, listed in Table 8-3, are useful for efficiently manipulating
complex data types. Using these functions, you can automatically convert real floating-point
data to complex types and extract the real (primary) and imaginary (secondary) parts of
complex values.

Table 8-3 Complex type manipulation functions

Function Convert dual reals to complex (single-precision): __cmplxf

Purpose Converts two single-precision real values to a single complex value. The real a is
converted to the primary element of the return value, and the real b is converted to
the secondary element of the return value.

Formula primary(result) =a
secondary(result) = b

C/C++
prototype

float _Complex __cmplxf (float a, float b);

Fortran
descriptions

CMPLXF(A,B)
where A is of type REAL(4)
where B is of type REAL(4)
result is of type COMPLEX(4)

Function Convert dual reals to complex (double-precision): __cmplx

Purpose Converts two double-precision real values to a single complex value. The real a is
converted to the primary element of the return value, and the real b is converted to
the secondary element of the return value.

Formula primary(result) =a
secondary(result) = b

C/C++
prototype

double _Complex __cmplx (double a, double b);
long double _Complex __cmplxl (long double a, long double b);a

Fortran
descriptions

CMPLX(A,B)
where A is of type REAL(8)
where B is of type REAL(8)
result is of type COMPLEX(8)
Chapter 8. Developing applications with IBM XL compilers 109

Function Extract real part of complex (single-precision): __crealf

Purpose Extracts the primary part of a single-precision complex value a, and returns the result
as a single real value.

Formula result =primary(a)

C/C++
prototype

float __crealf (float _Complex a);

Fortran
descriptions

CREALF(A)
where A is of type COMPLEX(4)
result is of type REAL(4)

Function Extract real part of complex (double-precision): __creal, __creall

Purpose Extracts the primary part of a double-precision complex value a, and returns the
result as a single real value.

Formula result =primary(a)

C/C++
prototype

double __creal (double _Complex a);
long double __creall (long double _Complex a);a

Fortran
descriptions

CREAL(A)
where A is of type COMPLEX(8)
result is of type REAL(8)
CREALL(A)
where A is of type COMPLEX(16)
result is of type REAL(16)

Function Extract imaginary part of complex (single-precision): __cimagf

Purpose Extracts the secondary part of a single-precision complex value a, and returns the
result as a single real value.

Formula result =secondary(a)

C/C++
prototype

float __cimagf (float _Complex a);

Fortran
descriptions

CIMAGF(A)
where A is of type COMPLEX(4)
result is of type REAL(4)

Function Extract imaginary part of complex (double-precision): __cimag, __cimagl

Purpose Extracts the imaginary part of a double-precision complex value a, and returns the
result as a single real value.

Formula result =secondary(a)

C/C++
prototype

double __cimag (double _Complex a);
long double __cimagl (long double _Complex a);a

Fortran
descriptions

CIMAG(A)
where A is of type COMPLEX(8)
result is of type REAL(8)
CIMAGL(A)
where A is of type COMPLEX(16)
result is of type REAL(16)

a. 128-bit C/C++ long double types are not supported on Blue Gene/L. Long doubles are treated
as regular double-precision longs.
110 IBM System Blue Gene Solution: Blue Gene/P Application Development

8.10.9 Load and store functions

Table 8-4 lists and explains the various parallel load and store functions that are available.

Table 8-4 Load and store functions

Function Parallel load (single-precision): __lfps

Purpose Loads parallel single-precision values from the address of a, and converts the results
to double-precision. The first word in address(a) is loaded into the primary element of
the return value. The next word, at location address(a)+4, is loaded into the secondary
element of the return value.

Formula primary(result) = a[0]
secondary(result) = a[1]

C/C++
prototype

double _Complex __lfps (float * a);

Fortran
description

LOADFP(A)
where A is of type REAL(4)
result is of type COMPLEX(8)

Function Cross load (single-precision): __lfxs

Purpose Loads single-precision values that have been converted to double-precision, from the
address of a. The first word in address(a) is loaded into the secondary element of the
return value. The next word, at location address(a)+4, is loaded into the primary
element of the return value.

Formula primary(result) = a[1]
secondary(result) = a[0]

C/C++
prototype

double _Complex __lfxs (float * a);

Fortran
description

LOADFX(A)
where A is of type REAL(4)
result is of type COMPLEX(8)

Function Parallel load: __lfpd

Purpose Loads parallel values from the address of a. The first word in address(a) is loaded into
the primary element of the return value. The next word, at location address(a)+8, is
loaded into the secondary element of the return value.

Formula primary(result) = a[0]
secondary(result) = a[1]

C/C++
prototype

double _Complex __lfpd(double* a);

Fortran
description

LOADFP(A)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross load: __lfxd

Purpose Loads values from the address of a. The first word in address(a) is loaded into the
secondary element of the return value. The next word, at location address(a)+8, is
loaded into the primary element of the return value.

Formula primary(result) = a[1]
secondary(result) = a[0]
Chapter 8. Developing applications with IBM XL compilers 111

C/C++
prototype

double _Complex __lfxd (double * a);

Fortran
description

LOADFX(A)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Parallel store (single-precision): __stfps

Purpose Stores in parallel double-precision values that have been converted to
single-precision, into address(b). The primary element of a is converted to
single-precision and stored as the first word in address(b). The secondary element of
a is converted to single-precision and stored as the next word at location
address(b)+4.

Formula b[0] = primary(a)
b[1]= secondary(a)

C/C++
prototype

void __stfps (float * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type REAL(4)
A is of type COMPLEX(8)
result is none

Function Cross store (single-precision): __stfxs

Purpose Stores double-precision values that have been converted to single-precision, into
address(b). The secondary element of a is converted to single-precision and stored as
the first word in address(b). The primary element of a is converted to single-precision
and stored as the next word at location address(b)+4.

Formula b[0] = secondary(a)
b[1] = primary(a)

C/C++
prototype

void __stfxs (float * b, double _Complex a);

Fortran
description

STOREFX(B, A)
where B is of type REAL(4)
A is of type COMPLEX(8)
result is none

Function Parallel store: __stfpd

Purpose Stores in parallel values into address(b). The primary element of a is stored as the first
double word in address(b). The secondary element of a is stored as the next double
word at location address(b)+8.

Formula b[0] = primary(a)
b[1] = secondary(a)

C/C++
prototype

void __stfpd (double * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type REAL(8)
A is of type COMPLEX(8)
result is none
112 IBM System Blue Gene Solution: Blue Gene/P Application Development

8.10.10 Move functions

Table 8-5 lists and explains the parallel move functions that are available.

Table 8-5 Move functions

Function Cross store: __stfxd

Purpose Stores values into address(b). The secondary element of a is stored as the first double
word in address(b). The primary element of a is stored as the next double word at
location address(b)+8.

Formula b[0] = secondary(a)
b[1] = primary(a)

C/C++
prototype

void __stfxd (double * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type REAL(8)
A is of type COMPLEX(8)
result is none

Function Parallel store as integer: __stfpiw

Purpose Stores in parallel floating-point double-precision values into b as integer words. The
lower-order 32 bits of the primary element of a are stored as the first integer word in
address(b). The lower-order 32 bits of the secondary element of a are stored as the
next integer word at location address(b)+4. This function is typically preceded by a call
to the __fpctiw or __fpctiwz built-in functions, described in , “Unary functions” on
page 114, which perform parallel conversion of dual floating-point values to integers.

Formula b[0] = primary(a)
b[1] = secondary(a)

C/C++
prototype

void __stfpiw (int * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type INTEGER(4)
A is of type COMPLEX(8)
result is none

Function Cross move: __fxmr

Purpose Swaps the values of the primary and secondary elements of operand a.

Formula primary(result) = secondary(a)
secondary(result) = primary(a)

C/C++
prototype

double _Complex __fxmr (double _Complex a);

Fortran
description

FXMR(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
Chapter 8. Developing applications with IBM XL compilers 113

8.10.11 Arithmetic functions

In the following sections, we describe all the arithmetic built-in functions, categorized by their
number of operands.

Unary functions
Unary functions operate on a single input operand. These functions are listed in Table 8-6.

Table 8-6 Unary functions

Function Parallel convert to integer: __fpctiw

Purpose Converts in parallel the primary and secondary elements of operand a to 32-bit
integers using the current rounding mode.
After a call to this function, use the __stfpiw function to store the converted integers in
parallel, as explained in 8.10.9, “Load and store functions” on page 111.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpctiw (double _Complex a);

Fortran
purpose

FPCTIW(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel convert to integer and round to zero: __fpctiwz

Purpose Converts in parallel the primary and secondary elements of operand a to 32 bit integers
and rounds the results to zero.
After a call to this function, use the __stfpiw function to store the converted integers in
parallel, as explained in 8.10.9, “Load and store functions” on page 111.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpctiwz(double _Complex a);

Fortran
description

FPCTIWZ(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel round double-precision to single-precision: __fprsp

Purpose Rounds in parallel the primary and secondary elements of double-precision operand a
to single precision.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fprsp (double _Complex a);

Fortran
description

FPRSP(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
114 IBM System Blue Gene Solution: Blue Gene/P Application Development

Function Parallel reciprocal estimate: __fpre

Purpose Calculates in parallel double-precision estimates of the reciprocal of the primary and
secondary elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpre(double _Complex a);

Fortran
description

FPRE(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel reciprocal square root: __fprsqrte

Purpose Calculates in parallel double-precision estimates of the reciprocals of the square roots
of the primary and secondary elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fprsqrte (double _Complex a);

Fortran
description

FPRSQRTE(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negate: __fpneg

Purpose Calculates in parallel the negative values of the primary and secondary elements of
operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpneg (double _Complex a);

Fortran
description

FPNEG(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel absolute: __fpabs

Purpose Calculates in parallel the absolute values of the primary and secondary elements of
operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpabs (double _Complex a);

Fortran
description

FPABS(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
Chapter 8. Developing applications with IBM XL compilers 115

Binary functions
Binary functions operate on two input operands. The functions are listed in Table 8-7.

Table 8-7 Binary functions

Function Parallel negate absolute: __fpnabs

Purpose Calculates in parallel the negative absolute values of the primary and secondary
elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpnabs (double _Complex a);

Fortran
description

FPNABS(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel add: __fpadd

Purpose Adds in parallel the primary and secondary elements of operands a and b.

Formula primary(result) = primary(a) + primary(b)
secondary(result) = secondary(a) + secondary(b)

C/C++
prototype

double _Complex __fpadd (double _Complex a, double _Complex b);

Fortran
description

FPADD(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel subtract: __fpsub

Purpose Subtracts in parallel the primary and secondary elements of operand b from the
corresponding primary and secondary elements of operand a.

Formula primary(result) = primary(a) - primary(b)
secondary(result) = secondary(a) - secondary(b)

C/C++
prototype

double _Complex __fpsub (double _Complex a, double _Complex b);

Fortran
description

FPSUB(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply: __fpmul

Purpose Multiples in parallel the values of primary and secondary elements of operands a and b.

Formula primary(result) = primary(a) × primary(b)
secondary(result) = secondary(a) × secondary(b)

C/C++
prototype

double _Complex __fpmul (double _Complex a, double _Complex b);
116 IBM System Blue Gene Solution: Blue Gene/P Application Development

Multiply-add functions
Multiply-add functions take three input operands, multiply the first two, and add or subtract the
third. Table 8-8 lists these functions.

Table 8-8 Multiply-add functions

Fortran
description

FPMUL(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross multiply: __fxmul

Purpose The product of the secondary element of a and the primary element of b is stored as
the primary element of the return value. The product of the primary element of a and
the secondary element of b is stored as the secondary element of the return value.

Formula primary(result) = secondary(a) x primary(b)
secondary(result) = primary(a) × secondary(b)

C/C++
prototype

double _Complex __fxmul (double _Complex a, double _Complex b);

Fortran
description

FXMUL(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross copy multiply: _fxpmul, __fxsmul

Purpose Both of these functions can be used to achieve the same result. The product of a and
the primary element of b is stored as the primary element of the return value. The
product of a and the secondary element of b is stored as the secondary element of the
return value.

Formula primary(result) = a x primary(b)
secondary(result) = a x secondary(b)

C/C++
prototype

double _Complex __fxpmul (double _Complex b, double a);
double _Complex __fxsmul (double _Complex b, double a);

Fortran
description

FXPMUL(B,A) or FXSMUL(B,A)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply-add: __fpmadd

Purpose The sum of the product of the primary elements of a and b, added to the primary
element of c, is stored as the primary element of the return value. The sum of the
product of the secondary elements of a and b, added to the secondary element of c,
is stored as the secondary element of the return value.

Formula primary(result) = primary(a) × primary(b) + primary(c)
secondary(result) = secondary(a) × secondary(b) + secondary(c)

C/C++
prototype

double _Complex __fpmadd (double _Complex c, double _Complex b, double
_Complex a);
Chapter 8. Developing applications with IBM XL compilers 117

Fortran
description

FPMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negative multiply-add: __fpnmadd

Purpose The sum of the product of the primary elements of a and b, added to the primary
element of c, is negated and stored as the primary element of the return value. The
sum of the product of the secondary elements of a and b, added to the secondary
element of c, is negated and stored as the secondary element of the return value.

Formula primary(result) = -(primary(a) × primary(b) + primary(c))
secondary(result) = -(secondary(a) × secondary(b) + secondary(c))

C/C++
prototype

double _Complex __fpnmadd (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FPNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply-subtract: __fpmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
elements of a and b, is stored as the primary element of the return value. The
difference of the secondary element of c, subtracted from the product of the secondary
elements of a and b, is stored as the secondary element of the return value.

Formula primary(result) = primary(a) × primary(b) - primary(c)
secondary(result) = secondary(a) × secondary(b) - secondary(c)

C/C++
prototype

double _Complex __fpmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FPMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negative multiply-subtract: __fpnmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
elements of a and b, is negated and stored as the primary element of the return value.
The difference of the secondary element of c, subtracted from the product of the
secondary elements of a and b, is negated and stored as the secondary element of
the return value.

Formula primary(result) = -(primary(a) × primary(b) - primary(c))
secondary(result) = -(secondary(a) × secondary(b) - secondary(c))

C/C++
prototype

double _Complex __fpnmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FPNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
118 IBM System Blue Gene Solution: Blue Gene/P Application Development

Function Cross multiply-add: __fxmadd

Purpose The sum of the product of the primary element of a and the secondary element of b,
added to the primary element of c, is stored as the primary element of the return value.
The sum of the product of the secondary element of a and the primary b, added to the
secondary element of c, is stored as the secondary element of the return value.

Formula primary(result) = primary(a) × secondary(b) + primary(c)
secondary(result) = secondary(a) × primary(b) + secondary(c)

C/C++
prototype

double _Complex __fxmadd (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross negative multiply-add: __fxnmadd

Purpose The sum of the product of the primary element of a and the secondary element of b,
added to the primary element of c, is negated and stored as the primary element of the
return value. The sum of the product of the secondary element of a and the primary
element of b, added to the secondary element of c, is negated and stored as the
secondary element of the return value.

Formula primary(result) = -(primary(a) × secondary(b) + primary(c))
secondary(result) = -(secondary(a) × primary(b) + secondary(c))

C/C++
prototype

double _Complex __fxnmadd (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross multiply-subtract: __fxmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
element of a and the secondary element of b, is stored as the primary element of the
return secondary element of a and the primary element of b is stored as the secondary
element of the return value.

Formula primary(result) = primary(a) × secondary(b) - primary(c)
secondary(result) = secondary(a) × primary(b) - secondary(c)

C/C++
prototype

double _Complex __fxmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
Chapter 8. Developing applications with IBM XL compilers 119

Function Cross negative multiply-subtract: __fxnmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
element of a and the secondary element of b, is negated and stored as the primary
element of the return value. The difference of the secondary element of c, subtracted
from the product of the secondary element of a and the primary element of b, is
negated and stored as the secondary element of the return value.

Formula primary(result) = -(primary(a) × secondary(b) - primary(c))
secondary(result) = -(secondary(a) × primary(b) - secondary(c))

C/C++
prototype

double _Complex __fxnmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross copy multiply-add: __fxcpmadd, __fxcsmadd

Purpose Both of these functions can be used to achieve the same result. The sum of the
product of a and the primary element of b, added to the primary element of c, is stored
as the primary element of the return value. The sum of the product of a and the
secondary element of b, added to the secondary element of c, is stored as the
secondary element of the return value.

Formula primary(result) = a x primary(b) + primary(c)
secondary(result) = a x secondary(b) + secondary(c)

C/C++
prototype

double _Complex __fxcpmadd (double _Complex c, double _Complex b, double a);
double _Complex __fxcsmadd (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPMADD(C,B,A) or FXCSMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy negative multiply-add: __fxcpnmadd, __fxcsnmadd

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is negated and stored as the primary element of the return value. The difference of the
secondary element of c, subtracted from the product of a and the secondary element
of b, is negated and stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) + primary(c))
secondary(result) = -(a x secondary(b) + secondary(c))

C/C++
prototype

double _Complex __fxcpnmadd (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnmadd (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNMADD(C,B,A) or FXCSNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)
120 IBM System Blue Gene Solution: Blue Gene/P Application Development

Function Cross copy multiply-subtract: __fxcpmsub, __fxcsmsub

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is stored as the primary element of the return value. The difference of the secondary
element of c, subtracted from the product of a and the secondary element of b, is
stored as the secondary element of the return value.

Formula primary(result) = a x primary(b) - primary(c)
secondary(result) = a x secondary(b) - secondary(c)

C/C++
prototype

double _Complex __fxcpmsub (double _Complex c, double _Complex b, double a);
double _Complex __fxcsmsub (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPMSUB(C,B,A) or FXCSMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy negative multiply-subtract: __fxcpnmsub, __fxcsnmsub

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is negated and stored as the primary element of the return value. The difference of the
secondary element of c, subtracted from the product of a and the secondary element
of b, is negated and stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))
secondary(result) = -(a x secondary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcpnmsub (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnmsub (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNMSUB(C,B,A) or FXCSNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy sub-primary multiply-add: __fxcpnpma, __fxcsnpma

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is negated and stored as the primary element of the return value. The sum of the
product of a and the secondary element of b, added to the secondary element of c, is
stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))
secondary(result) = a x secondary(b) + secondary(c)

C/C++
prototype

double _Complex __fxcpnpma (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnpma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNPMA(C,B,A) or FXCSNPMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)
Chapter 8. Developing applications with IBM XL compilers 121

Function Cross copy sub-secondary multiply-add: __fxcpnsma, __fxcsnsma

Purpose Both of these functions can be used to achieve the same result. The sum of the
product of a and the primary element of b, added to the primary element of c, is stored
as the primary element of the return value. The difference of the secondary element
of c, subtracted from the product of a and the secondary element of b, is negated and
stored as the secondary element of the return value.

Formula primary(result) = a x primary(b) + primary(c))
secondary(result) = -(a x secondary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcpnsma (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnsma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNSMA(C,B,A) or FXCSNSMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed multiply-add: __fxcxma

Purpose The sum of the product of a and the secondary element of b, added to the primary
element of c, is stored as the primary element of the return value. The sum of the
product of a and the primary element of b, added to the secondary element of c, is
stored as the secondary element of the return value.

Formula primary(result) = a x secondary(b) + primary(c)
secondary(result) = a x primary(b) +secondary(c)

C/C++
prototype

double _Complex __fxcxma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed negative multiply-subtract: __fxcxnms

Purpose The difference of the primary element of c, subtracted from the product of a and the
secondary element of b, is negated and stored as the primary element of the return
value. The difference of the secondary element of c, subtracted from the product of a
and the primary element of b, is negated and stored as the primary secondary of the
return value.

Formula primary(result) = -(a × secondary(b) - primary(c))
secondary(result) = -(a × primary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcxnms (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXNMS(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)
122 IBM System Blue Gene Solution: Blue Gene/P Application Development

8.10.12 Select functions

Table 8-9 lists and explains the parallel select functions that are available.

Table 8-9 Select functions

Function Cross mixed sub-primary multiply-add: __fxcxnpma

Purpose The difference of the primary element of c, subtracted from the product of a and the
secondary element of b, is stored as the primary element of the return value. The sum
of the product of a and the primary element of b, added to the secondary element of
c, is stored as the secondary element of the return value.

Formula primary(result) = -(a × secondary(b) - primary(c))
secondary(result) = a × primary(b) + secondary(c)

C/C++
prototype

double _Complex __fxcxnpma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXNPMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed sub-secondary multiply-add: __fxcxnsma

Purpose The sum of the product of a and the secondary element of b, added to the primary
element of c, is stored as the primary element of the return value. The difference of the
secondary element of c, subtracted from the product of a and the primary element of
b, is stored as the secondary element of the return value.

Formula primary(result) = a x secondary(b) + primary(c))
secondary(result) = -(a x primary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcxnsma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXNSMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Parallel select: __fpsel

Purpose The value of the primary element of a is compared to zero. If its value is equal to or
greater than zero, the primary element of c is stored in the primary element of the
return value. Otherwise the primary element of b is stored in the primary element of
the return value. The value of the secondary element of a is compared to zero. If its
value is equal to or greater than zero, the secondary element of c is stored in the
secondary element of the return value. Otherwise, the secondary element of b is
stored in the secondary element of the return value.

Formula primary(result) = if primary(a) then primary(c); else primary(b)
secondary(result) = if secondary(a) then primary(c); else secondary(b)

C/C++
prototype

double _Complex __fpsel (double _Complex a, double _Complex b, double _Complex
c);

0≥
0≥
Chapter 8. Developing applications with IBM XL compilers 123

8.10.13 Examples of built-in functions usage

Using the following definitions, you can create a custom parallel add function that uses the
parallel load and add built-in functions to add two double floating-point values in parallel and
return the result as a complex number. See Example 8-10 for C/C++ and Example 8-11 for
Fortran.

Example 8-10 Using built-in functions in C/C++

double _Complex padd(double *x, double *y)
{
double _Complex a,b,c;
/* note possibility of alignment trap if (((unsigned int) x) % 32) >= 17) */

a = __lfpd(x); //load x[0] to the primary part of a, x[1] to the secondary part of a
b = __lfpd(y); //load y[0] to primary part of b, y[1] to the secondary part of b
c = __fpadd(a,b); // the primary part of c = x[0] + y[0]

 /* the secondary part of c = x[1] + y[1] */
return c;

/* alternately: */
return __fpadd(__lfpd(x), __lfpd(y)); /* same code generated with optimization

enabled */
}

Example 8-11 Using built-in functions in Fortran

FUNCTION PADD (X, Y)
 COMPLEX(8) PADD
 REAL(8) X, Y
 COMPLEX(8) A, B, C

 A = LOADFP(X)
 B = LOADFP(Y)
 PADD = FPADD(A,B)

 RETURN
 END

Fortran
description

FPSEL(A,B,C)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
where C is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel select: __fpsel
124 IBM System Blue Gene Solution: Blue Gene/P Application Development

Example 8-12 Double precision square matrix multiply example

subroutine dsqmm(a, b, c, n)
!
!# (C) Copyright IBM Corp. 2006 All Rights Reserved.
!# Rochester, MN
!
 implicit none
 integer i, j, k, n
 integer ii, jj, kk
 integer istop, jstop, kstop
 integer, parameter :: nb = 36 ! blocking factor
 complex(8) zero
 complex(8) a00, a01
 complex(8) a20, a21
 complex(8) b0, b1, b2, b3, b4, b5
 complex(8) c00, c01, c02, c03, c04, c05
 complex(8) c20, c21, c22, c23, c24, c25
 real(8) a(n,n), b(n,n), c(n,n)

 zero = (0.0d0, 0.0d0)

 !--
 ! Double-precision square matrix-matrix multiplication.
 !--
 ! This version uses 6x4 outer loop unrolling.
 ! The cleanup loops have been left out, so the results
 ! are correct for dimensions that are multiples of the
 ! two unrolling factors: 6 and 4.
 !--

 do jj = 1, n, nb

 if ((jj + nb - 1) .lt. n) then
 jstop = (jj + nb - 1)
 else
 jstop = n
 endif

 do ii = 1, n, nb

 if ((ii + nb - 1) .lt. n) then
 istop = (ii + nb - 1)
 else
 istop = n
 endif

 !---------------------------------
 ! initialize a block of c to zero
 !---------------------------------
 do j = jj, jstop - 5, 6
 do i = ii, istop - 1, 2
 call storefp(c(i,j) , zero)
 call storefp(c(i,j+1), zero)
 call storefp(c(i,j+2), zero)
 call storefp(c(i,j+3), zero)
 call storefp(c(i,j+4), zero)
 call storefp(c(i,j+5), zero)
 end do
 end do
Chapter 8. Developing applications with IBM XL compilers 125

 !--
 ! multiply block by block with 6x4 outer loop un-rolling
 !--
 do kk = 1, n, nb
 if ((kk + nb - 1) .lt. n) then
 kstop = (kk + nb - 1)
 else
 kstop = n
 endif

 do j = jj, jstop - 5, 6
 do i = ii, istop - 3, 4

 c00 = loadfp(c(i,j))
 c01 = loadfp(c(i,j+1))
 c02 = loadfp(c(i,j+2))
 c03 = loadfp(c(i,j+3))
 c04 = loadfp(c(i,j+4))
 c05 = loadfp(c(i,j+5))

 c20 = loadfp(c(i+2,j))
 c21 = loadfp(c(i+2,j+1))
 c22 = loadfp(c(i+2,j+2))
 c23 = loadfp(c(i+2,j+3))
 c24 = loadfp(c(i+2,j+4))
 c25 = loadfp(c(i+2,j+5))

 a00 = loadfp(a(i,kk))
 a20 = loadfp(a(i+2,kk))
 a01 = loadfp(a(i,kk+1))
 a21 = loadfp(a(i+2,kk+1))

 do k = kk, kstop - 1, 2
 b0 = loadfp(b(k,j))
 b1 = loadfp(b(k,j+1))
 b2 = loadfp(b(k,j+2))
 b3 = loadfp(b(k,j+3))
 b4 = loadfp(b(k,j+4))
 b5 = loadfp(b(k,j+5))
 c00 = fxcpmadd(c00, a00, real(b0))
 c01 = fxcpmadd(c01, a00, real(b1))
 c02 = fxcpmadd(c02, a00, real(b2))
 c03 = fxcpmadd(c03, a00, real(b3))
 c04 = fxcpmadd(c04, a00, real(b4))
 c05 = fxcpmadd(c05, a00, real(b5))
 c20 = fxcpmadd(c20, a20, real(b0))
 c21 = fxcpmadd(c21, a20, real(b1))
 c22 = fxcpmadd(c22, a20, real(b2))
 c23 = fxcpmadd(c23, a20, real(b3))
 c24 = fxcpmadd(c24, a20, real(b4))
 c25 = fxcpmadd(c25, a20, real(b5))
 a00 = loadfp(a(i,k+2))
 a20 = loadfp(a(i+2,k+2))
 c00 = fxcpmadd(c00, a01, imag(b0))
 c01 = fxcpmadd(c01, a01, imag(b1))
 c02 = fxcpmadd(c02, a01, imag(b2))
 c03 = fxcpmadd(c03, a01, imag(b3))
 c04 = fxcpmadd(c04, a01, imag(b4))
 c05 = fxcpmadd(c05, a01, imag(b5))
 c20 = fxcpmadd(c20, a21, imag(b0))
126 IBM System Blue Gene Solution: Blue Gene/P Application Development

 c21 = fxcpmadd(c21, a21, imag(b1))
 c22 = fxcpmadd(c22, a21, imag(b2))
 c23 = fxcpmadd(c23, a21, imag(b3))
 c24 = fxcpmadd(c24, a21, imag(b4))
 c25 = fxcpmadd(c25, a21, imag(b5))
 a01 = loadfp(a(i,k+3))
 a21 = loadfp(a(i+2,k+3))
 end do

 call storefp(c(i ,j), c00)
 call storefp(c(i ,j+1), c01)
 call storefp(c(i ,j+2), c02)
 call storefp(c(i ,j+3), c03)
 call storefp(c(i ,j+4), c04)
 call storefp(c(i ,j+5), c05)

 call storefp(c(i+2,j), c20)
 call storefp(c(i+2,j+1), c21)
 call storefp(c(i+2,j+2), c22)
 call storefp(c(i+2,j+3), c23)
 call storefp(c(i+2,j+4), c24)
 call storefp(c(i+2,j+5), c25)

 end do
 end do

 end do !kk

 end do !ii

 end do !jj

end
Chapter 8. Developing applications with IBM XL compilers 127

128 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 9. Running and debugging
applications

In this chapter, we explain how to run and debug applications on the Blue Gene/P system.
These types of tools are essential for applications developers. Although, we do not cover all of
the existing tools, we provide an overview of some of the currently available tools.

We cover the following topics:

� “Running applications” on page 130
� “Debugging applications” on page 132

9

© Copyright IBM Corp. 2007. All rights reserved. 129

9.1 Running applications
There are several ways to run Blue Gene/P applications. We briefly discuss each method and
provide references for more detailed documentation.

9.1.1 MMCS console
It is possible to run applications directly from the MMCS console. The main drawback to using
this approach is that it requires users to have direct access to the Service Node, which is
undesirable from a security perspective.

When using the MMCS console, it is necessary to first manually select and allocate a block. A
block in this case refers to a partition or set of nodes to run the job. (See Appendix A, “Blue
Gene/P hardware naming convention” on page 265, for more information.) At this point, it is
possible to run Blue Gene/P applications. The set of commands in Example 9-1 from the
MMCS console window show how to accomplish this. The names can be site specific, but it
illustrates the procedure.

To start the console session, use the sequence of commands shown in Example 9-1 on the
Service Node.

Example 9-1 Starting the console session

cd /bgsys/drivers/ppcfloor/bin
source ~bgpsysdb/sqllib/db2profile
mmcs_db_console --bgpadmingroup p/bluegene/bgpall
connecting to mmcs_server
connected to mmcs_server
connected to DB2
mmcs$list_blocks
OK
N00_64_1 B manojd (1) connected
N02_32_1 I walkup (0) connected
N04_32_1 B manojd (1) connected
N05_32_1 B manojd (1) connected
N06_32_1 I sameer77(1) connected
N07_32_1 I gdozsa (1) connected
N08_64_1 I vezolle (1) connected
N12_32_1 I vezolle (0) connected
mmcs$ allocate N14_32_1
OK
mmcs$ list_blocks
OK
N00_64_1 B manojd (1) connected
N02_32_1 I walkup (0) connected
N04_32_1 B manojd (1) connected
N05_32_1 B manojd (1) connected
N06_32_1 I sameer77(1) connected
N07_32_1 I gdozsa (1) connected
N08_64_1 I vezolle (1) connected
N12_32_1 I vezolle (0) connected
N14_32_1 I cpsosa (1) connected
mmcs$ submitjob N14_32_1 /bgusr/cpsosa/hello/c/omp_hello_bgp /bgusr/cpsosa/hello/c
OK
jobId=14008
mmcs$ free N14_32_1
130 IBM System Blue Gene Solution: Blue Gene/P Application Development

OK
mmcs$ quit
OK
mmcs_db_console is terminating, please wait...
mmcs_db_console: closing database connection
mmcs_db_console: closed database connection
mmcs_db_console: closing console port
mmcs_db_console: closed console port

For more information about using the MMCS console, see IBM System Blue Gene Solution:
Blue Gene/P System Administration, SG24-7417.

9.1.2 mpirun
In the absence of a scheduling application, we recommend that you use mpirun to run
Blue Gene/P applications. Users can access this application from the Front End Node, which
provides better security protection than using the MMCS console. For more complete
information about using mpirun, see Chapter 13, “mpirun” on page 217.

With mpirun, you can select and allocate a block and run a Message Passing Interface (MPI)
application, all in one step as shown in Example 9-2.

Example 9-2 Using mpirun

cpsosa@descartes:/bgusr/cpsosa/red/pi/c> csh
descartes pi/c> set MPIRUN="/bgsys/drivers/ppcfloor/bin/mpirun"
descartes pi/c> set MPIOPT="-np 1"
descartes pi/c> set MODE="-mode SMP"
descartes pi/c> set PARTITION="-partition N14_32_1"
descartes pi/c> set WDIR="-cwd /bgusr/cpsosa/red/pi/c"
descartes pi/c> set EXE="-exe /bgusr/cpsosa/red/pi/c/pi_critical_bgp"
descartes pi/c> $MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE -env "OMP_NUM_THREADS=1"
Estimate of pi: 3.14159
Total time 560.055988

All output in this example is sent to the screen. In order for this information to be sent to a file,
you must add the following line, for example, to the end of the mpirun command:

>/bgusr/cpsosa/red/pi/c/pi_critical.stdout 2>/bgusr/cpsosa/red/pi/c/pi_critical.stderr

This line sends standard output to a file called pi_critical.stdout and standard error to a file
called pi_critical.stderr. Both files are in the /bgusr/cpsosa/red/pi/c directory.

9.1.3 LoadLeveler
At present, LoadLeveler support for the Blue Gene/P system is provided via a PRPQ. The
IBM Tivoli® Workload Scheduler LoadLeveler product is intended to manage both serial and
parallel jobs over a cluster of servers. This distributed environment consists of a pool of
machines or servers, often referred to as a LoadLeveler cluster. Machines in the pool can be
of several types: desktop workstations available for batch jobs (usually when not in use by
their owner), dedicated servers, and parallel machines.

LoadLeveler allocates machine resources in the cluster to run jobs. The scheduling of jobs
depends on the availability of resources within the cluster and various rules, which can be
defined by the LoadLeveler administrator. A user submits a job using a job command file. The
LoadLeveler scheduler attempts to find resources within the cluster to satisfy the
requirements of the job. LoadLeveler maximizes the efficiency of the cluster by maximizing
Chapter 9. Running and debugging applications 131

the utilization of resources, while at the same time minimizing the job turnaround time
experienced by users.

LoadLeveler provides a rich set of functions for job scheduling and cluster resource
management. Some of the tasks that LoadLeveler can perform include:

� Choosing the next job to run.

� Examining the job requirements.

� Collecting available resources in the cluster.

� Choosing the “best” machines for the job.

� Dispatching the job to the selected machine.

� Controlling running jobs.

� Creating reservations and scheduling jobs to run in the reservations.

� Job preemption to enable high priority jobs to run immediately.

� Fair share scheduling to automatically balance resources among users or groups of users.

� Co-scheduling to enable several jobs to be scheduled to run at the same time.

� Multi-cluster support to allow several LoadLeveler clusters to work together to run user
jobs.

For more information about LoadLeveler support, see Chapter 10 of IBM System Blue Gene
Solution: Configuring and Maintaining Your Environment, SG24-7352, which describes
step-by-step how to use LoadLeveler on the Blue Gene/L system. Almost all of the contents
are still applicable to a Blue Gene/P system.

The LoadLeveler installation procedure is slightly different for the Blue Gene/P system. New
functions are provided for both the Blue Gene/P and Blue Gene/L systems at the same time
that basic LoadLeveler support for Blue Gene/P is provided.

9.1.4 Other scheduler products
You can use custom scheduling applications to run applications on the Blue Gene/P system.
You write custom “glue” code between the scheduler and the Blue Gene/P system by using
the Bridge application programming interfaces (APIs), which are described in Chapter 11,
“Control system (Bridge) APIs” on page 159, and Chapter 12, “Real-time Notification APIs” on
page 197.

9.2 Debugging applications
In this section, we discuss the debuggers that are supported by the Blue Gene/P system.

9.2.1 General debugging architecture
Four pieces of code are involved when debugging applications on the Blue Gene/P system:

� The Compute Node Kernel, which provides the low-level primitives that are necessary to
debug an application

� The control and I/O daemon (CIOD) running on the I/O Nodes, which provides control and
communications to Compute Nodes
132 IBM System Blue Gene Solution: Blue Gene/P Application Development

� A “debug server” running on the I/O Nodes, which is vendor-supplied code that interfaces
with the CIOD

� A debug client running on a Front End Node, which is where the user does their work
interactively

A debugger must interface to the Compute Node through an API implemented in CIOD in
order to debug an application running on a Compute Node. This debug code is started on the
I/O Nodes by the control system and can interface with other software, such as a GUI or
command line utility on a front-end system. The code running on the I/O Nodes using the API
in CIOD is referred to as a debug server. It is provided by the debugger vendor for use with the
Blue Gene/P system. Many possible debug servers are possible.

A debug client is a piece of code that runs on a Front End Node that the user interacts with
directly. It makes remote requests to the debug server running on the I/O Nodes, which in turn
passes the request through CIOD and eventually to the Compute Node. The debug client and
debug server usually communicate using TCP/IP.

9.2.2 GNU Project debugger
The GNU Project debugger (GDB) is the primary debugger of the GNU project. You can learn
more about GDB on the Web at the following address:

http://www.gnu.org/software/gdb/gdb.html

A great amount of documentation is available about the GDB. Since we do not discuss how to
use it in this book, refer to the following Web site for details:

http://www.gnu.org/software/gdb/documentation/

Support has been added to the Blue Gene/P system for which the GDB can work with
applications that run on Compute Nodes. IBM provides a simple debug server called
gdbserver. Each running instance of GDB is associated with one, and only one, Compute
Node. If you must debug an MPI application that runs on multiple Compute Nodes, and you
must, for example, view variables that are associated with more than one instance of the
application, you run multiple instances of GDB.

Most people use GDB to debug local processes that run on the same machine on which they
are running GDB. With GDB, you also have the ability to do remote debug via a GDB server
on the remote machine. GDB on the Blue Gene/L system is used in this mode. We refer to
GDB as the “GDB client,” although most users recognize it as GDB used in a slightly different
manner.

Limitations
Gdbserver implements the minimum number of primitives required by the GDB remote
protocol specification. As such, advanced features that might be available in other
implementations are not available in this implementation. However, enough is implemented to
make it a useful tool. Here are some of the limitations:

� Each instance of a GDB client can connect to and debug one Compute Node. To debug
multiple Compute Nodes at the same time, you must run multiple GDB clients at the same
time. Although you might need multiple GDB clients for multiple Compute Nodes, one
gdbserver on each I/O Node is all that is required. The Blue Gene/P control system
manages that part.

� IBM does not ship a GDB client with the Blue Gene/P system. The user can use an
existing GDB client to connect to the IBM-supplied gdbserver. Most functions will work, but
standard GDB clients are not aware of the full “double hummer” floating point register set
Chapter 9. Running and debugging applications 133

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/documentation/

that Blue Gene/L provides. The GDB clients that come with SUSE Linux Enterprise Server
(SLES) 10 for PowerPC are known to work.

� To debug an application, the debug server must be started and running before you
attempt to debug. Using an option on the mpirun command, you can get the debug server
running before your application does. If you do not use this option and you must debug
your application, you do not have a mechanism to start the debug server and thus have no
way to debug your application.

� Gdbserver is not aware of user-specified MPI topologies. You can still debug your
application, but the connection information given to you by mpirun for each MPI rank can
be incorrect.

Prerequisite software
The GDB should have been installed during the installation procedure. You can verify the
installation by seeing if the /bgsys/drivers/ppcfloor/gnu-linux/bin/gdb file exists on your Front
End Node.

The rest of the software support required for GDB should be installed as part of the control
programs.

Preparing your program
The MPI, OpenMP, or MPI-OpenMP program that you want to debug must be compiled in a
manner that allows for debugging information (symbol tables, ties to source, and so on) to be
included in the executable. In addition, do not use compiler optimization because it makes it
difficult, if not impossible, to tie object code back to source. For example, when compiling a
program written in Fortran that you want to debug, compile the application using an
invocation similar to one shown in Example 9-3.

Example 9-3 Makefile used for building the program with debugging flags

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include -I$(BGP_FLOOR)/comm/include
BGP_LIBS = -L$(BGP_FLOOR)/comm/lib -lmpich.cnk -L$(BGP_FLOOR)/comm/lib -ldcmfcoll.cnk
-ldcmf.cnk -lpthread -lrt -L$(BGP_FLOOR)/runtime/SPI -lSPI.cna

XL = /opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90

EXE = example_9_4_bgp
OBJ = example_9_4.o
SRC = example_9_4.f
FLAGS = -g -O0 -qarch=450 -qtune=450 -I$(BGP_FLOOR)/comm/include
FLD = -O3 -qarch=450 -qtune=450

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $(EXE) $(OBJ) $(BGP_LIBS)
$(OBJ): $(SRC)
 ${XL} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm *.o example_9_4_bgp

cpsosa@descartes:/bgusr/cpsosa/red/debug> make
134 IBM System Blue Gene Solution: Blue Gene/P Application Development

/opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90 -g -O0 -qarch=450 -qtune=450
-I/bgsys/drivers/ppcfloor/comm/include -I/bgsys/drivers/ppcfloor/arch/include
-I/bgsys/drivers/ppcfloor/comm/include -c example_9_4.f
** nooffset === End of Compilation 1 ===
1501-510 Compilation successful for file example_9_4.f.
/opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90 -g -O0 -qarch=450 -qtune=450
-I/bgsys/drivers/ppcfloor/comm/include -o example_9_4_bgp example_9_4.o
-L/bgsys/drivers/ppcfloor/comm/lib -lmpich.cnk -L/bgsys/drivers/ppcfloor/comm/lib -ldcmfcoll.cnk
-ldcmf.cnk -lpthread -lrt -L/bgsys/drivers/ppcfloor/runtime/SPI -lSPI.cna

The -g switch tells the compiler to include debug information. The -O0 (the letter capital “O”
followed by a zero) switch tells it to disable optimization.

For more information about the IBM XL compilers for the Blue Gene/P system, see Chapter 8,
“Developing applications with IBM XL compilers” on page 91.

Debugging
Follow the steps in this section to start debugging your application. For the sake of this
example, let us say that the program’s name is example_9_4_bgp as illustrated in Example 9-4
on page 136 (source code not shown), and the source code file is example_9_4.f. We use a
partition (block) called N14_32_1.

An extra parameter (-start_gdbserver...) is passed in on the mpirun command. The extra
option changes the way mpirun loads and executes your code. Here is a brief summary of the
changes:

1. The code is loaded onto the Compute Nodes (in our example, the executable is
example_9_4_bgp), but it does not start running immediately.

2. The control system starts the specified debug server (gdbserver) on all of the I/O Nodes in
the partition that is running your job, which in our example is N14_32_1.

3. The mpirun command pauses, so that you a chance to connect GDB clients to the
Compute Nodes that you are going to debug.

4. When you are done connecting GDB clients to Compute Nodes, you press Enter to signal
the mpirun command, and then the application starts running on the Compute Nodes.

During the pause in step 3, you have an opportunity to connect the GDB clients to the
Compute Nodes before the application runs, which is desirable if you must start the
application under debugger control. This step is optional. If you do not connect before the
application starts running on the Compute Nodes, you can still connect later because the
debugger server was started on the I/O Nodes.

Important: Make sure that the text file that contains the source for your program is located
in the same directory as the program itself and has the same file name (different
extension).
Chapter 9. Running and debugging applications 135

To start debugging your application:

1. Open two separate console shells.

2. Go to the first shell window.

a. Change to the directory (cd) that contains your program executable. In our example,
the directory is /bgusr/cpsosa/red/debug.

b. Start your application using mpirun with a command similar to the one shown in
Example 9-4. You should see messages in the console, like those shown in
Example 9-4.

Example 9-4 Messages in the console

set MPIRUN="/bgsys/drivers/ppcfloor/bin/mpirun"
set MPIOPT="-np 1"
set MODE="-mode SMP"
set PARTITION="-partition N14_32_1"
set WDIR="-cwd /bgusr/cpsosa/red/debug"
set EXE="-exe /bgusr/cpsosa/red/debug/example_9_4_bgp"
#
$MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE -env "OMP_NUM_THREADS=4" -start_gdbserver
/bgsys/drivers/ppcfloor/ramdisk/sbin/gdbserver -verbose 1
#
echo "That's all folks!!"

descartes red/debug> set EXE="-exe /bgusr/cpsosa/red/debug/example_9_4_bgp"
descartes red/debug> $MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE -env "OMP_NUM_THREADS=4"
-start_gdbserver /bgsys/drivers/ppcfloor/ramdisk/sbin/gdbserver -verbose 1
<Sep 15 10:14:58.642369> FE_MPI (Info) : Invoking mpirun backend
<Sep 15 10:14:05.741121> BRIDGE (Info) : rm_set_serial() - The machine serial number (alias) is
BGP
<Sep 15 10:15:00.461655> FE_MPI (Info) : Preparing partition
<Sep 15 10:14:05.821585> BE_MPI (Info) : Examining specified partition
<Sep 15 10:14:10.085997> BE_MPI (Info) : Checking partition N14_32_1 initial state ...
<Sep 15 10:14:10.086041> BE_MPI (Info) : Partition N14_32_1 initial state = READY ('I')
<Sep 15 10:14:10.086059> BE_MPI (Info) : Checking partition owner...
<Sep 15 10:14:10.086087> BE_MPI (Info) : partition N14_32_1 owner is 'cpsosa'
<Sep 15 10:14:10.088375> BE_MPI (Info) : Partition owner matches the current user
<Sep 15 10:14:10.088470> BE_MPI (Info) : Done preparing partition
<Sep 15 10:15:04.804078> FE_MPI (Info) : Adding job
<Sep 15 10:14:10.127380> BE_MPI (Info) : Adding job to database...
<Sep 15 10:15:06.104035> FE_MPI (Info) : Job added with the following id: 14035
<Sep 15 10:15:06.104096> FE_MPI (Info) : Loading Blue Gene job
<Sep 15 10:14:11.426987> BE_MPI (Info) : Loading job 14035 ...
<Sep 15 10:14:11.450495> BE_MPI (Info) : Job load command successful
<Sep 15 10:14:11.450525> BE_MPI (Info) : Waiting for job 14035 to get to Loaded/Running state
...
<Sep 15 10:14:16.458474> BE_MPI (Info) : Job 14035 switched to state LOADED
<Sep 15 10:14:21.467401> BE_MPI (Info) : Job loaded successfully
<Sep 15 10:15:16.179023> FE_MPI (Info) : Starting debugger setup for job 14035
<Sep 15 10:15:16.179090> FE_MPI (Info) : Setting debug info in the block record
<Sep 15 10:14:21.502593> BE_MPI (Info) : Setting debugger executable and arguments in block
description
<Sep 15 10:14:21.523480> BE_MPI (Info) : Debug info set successfully
<Sep 15 10:15:16.246415> FE_MPI (Info) : Query job 14035 to find MPI ranks for compute nodes
<Sep 15 10:15:16.246445> FE_MPI (Info) : Getting process table information for the debugger
136 IBM System Blue Gene Solution: Blue Gene/P Application Development

<Sep 15 10:14:22.661841> BE_MPI (Info) : Query job completed - proctable is filled in
<Sep 15 10:15:17.386617> FE_MPI (Info) : Starting debugger servers on I/O nodes for job 14035
<Sep 15 10:15:17.386663> FE_MPI (Info) : Attaching debugger to a new job.
<Sep 15 10:14:22.721982> BE_MPI (Info) : Debugger servers are now spawning
<Sep 15 10:15:17.446486> FE_MPI (Info) : Notifying debugger that servers have been spawned.

Make your connections to the compute nodes now - press [Enter] when you
are ready to run the app. To see the IP connection information for a
specific compute node, enter its MPI rank and press [Enter]. To see
all of the compute nodes, type 'dump_proctable'.

>
<Sep 15 10:17:20.754179> FE_MPI (Info) : Debug setup is complete
<Sep 15 10:17:20.754291> FE_MPI (Info) : Waiting for Blue Gene job to get to Loaded state
<Sep 15 10:16:26.118529> BE_MPI (Info) : Waiting for job 14035 to get to Loaded/Running state
...
<Sep 15 10:16:31.128079> BE_MPI (Info) : Job loaded successfully
<Sep 15 10:17:25.806882> FE_MPI (Info) : Beginning job 14035
<Sep 15 10:16:31.129878> BE_MPI (Info) : Beginning job 14035 ...
<Sep 15 10:16:31.152525> BE_MPI (Info) : Job begin command successful
<Sep 15 10:17:25.871476> FE_MPI (Info) : Waiting for job to terminate
<Sep 15 10:16:31.231304> BE_MPI (Info) : IO - Threads initialized
<Sep 15 10:27:31.301600> BE_MPI (Info) : I/O output runner thread terminated
<Sep 15 10:27:31.301639> BE_MPI (Info) : I/O input runner thread terminated
<Sep 15 10:27:31.355816> BE_MPI (Info) : Job 14035 switched to state TERMINATED ('T')
<Sep 15 10:27:31.355848> BE_MPI (Info) : Job successfully terminated - TERMINATED ('T')
<Sep 15 10:28:26.113983> FE_MPI (Info) : Job terminated normally
<Sep 15 10:28:26.114057> FE_MPI (Info) : exit status = (0)
<Sep 15 10:27:31.435578> BE_MPI (Info) : Starting cleanup sequence
<Sep 15 10:27:31.435615> BE_MPI (Info) : cleanupDatabase() - job already terminated / hasn't
been added
<Sep 15 10:27:31.469474> BE_MPI (Info) : cleanupDatabase() - Partition was supplied with READY
('I') initial state
<Sep 15 10:27:31.469504> BE_MPI (Info) : cleanupDatabase() - No need to destroy the partition
<Sep 15 10:28:26.483855> FE_MPI (Info) : == FE completed ==
<Sep 15 10:28:26.483921> FE_MPI (Info) : == Exit status: 0 ==

c. Find the IP address and port of the Compute Node that you want to debug. You can do
this using either of the following ways:

• Enter the rank of the program instance that you want to debug and press Enter.
• Dump the address or port of each node by typing dump_proctable and press Enter.

See Example 9-5.

Example 9-5 Finding the IP address and port of the Compute Node for debugging

> 2
MPI Rank 2: Connect to 172.30.255.85:7302
> 4
MPI Rank 4: Connect to 172.30.255.85:7304
>
or
> dump_proctable
MPI Rank 0: Connect to 172.24.101.128:7310
>

Chapter 9. Running and debugging applications 137

3. From the second shell, follow these steps:

a. Change to the directory (cd) that contains your program executable.

b. Type the following command, using the name of your own executable instead of
example_9_4_bgp:

/bgsys/drivers/ppcfloor/gnu-linux/bin/gdb example_9_4_bgp

c. Enter the following command, using the address of the Compute Node that you want to
debug and determined in step 2c:

target remote ipaddr:port

You are now debugging the specified application on the configured Compute Node.

4. Set one or more breakpoints (using the GDB break command). Press Enter from the first
shell to continue that application.

If successful, your breakpoint should eventually be reached in the second shell and you
can use standard GDB commands to continue.

9.2.3 Core Processor debugger

Core Processor is a basic tool that can help you debug your application. This tool is
discussed in detail in IBM System Blue Gene Solution: Blue Gene/P System Administration,
SG24-7417. In the following sections, we briefly describe how to use it to debug applications.

9.2.4 Starting the Core Processor tool

To start the Core Processor tool:

1. Export DISPLAY and make sure it works.

2. Type coreprocessor.pl to specify the Core Processor tool. You might need to specify the
full path.

3. From the GUI window that opens, click OK. The Perl script is invoked automatically.
138 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 9-1 shows how the Core Processor tool GUI looks after the Perl script is invoked. The
Core Processor windows do not provide any initial information. You must explicitly select a
task that is provided via the GUI.

Figure 9-1 Core Processor initial window

9.2.5 Attaching running applications

To do a live debug on Compute Nodes:

1. Start the Core Processor GUI as explained in the previous section.

2. Select File → Attach To Block.
Chapter 9. Running and debugging applications 139

3. In the Attach Coreprocessor window (Figure 9-2 on page 140), supply the following
information:

– Session Name: You can run more than one session at a time, so use this option to
distinguish between multiple sessions.

– Block name

– CNK binary (with path): To see both your application and the Compute Node Kernel in
the stack, specify your application binary and the Compute Node Kernel image
separated by a colon (:) as shown in the following example:

/bgsys/drivers/ppcfloor/cnk/bgp_kernel.cn:/bguser/bgpuser/hello_mpi_loop.rts

– User name or owner of the Midplane Management Control System (MMCS) block

– Port: TCP port on which the MMCS server is listening for console connections, which is
probably 32031.

– Host name or TCP/IP address for the MMCS server: Typically this is localhost or the
Service Node’s TCP/IP address.

Click the Attach button.

Figure 9-2 Core Processor Attach window
140 IBM System Blue Gene Solution: Blue Gene/P Application Development

4. At this point, you have not yet affected the state of the processors. Choose Select
Grouping Mode → Processor Status.

Notice the text in the upper left pane (Figure 9-3). The Core Processor tool posts the
status ?RUN? because it does not yet know the state of the processors. (2048) is the
number of nodes in the block that are in that state. The number in parentheses always
indicates the number of nodes that share the attribute that is displayed on the line, which is
the processor state in this case.

Figure 9-3 Processor status

5. Back at the main screen (Figure 9-1 on page 139), click the Select Grouping Mode
button.

6. Choose one of the Stack Traceback options. The Core Processor tool halts all the
Compute Node processor cores and displays the requested information. Choose each of
the options on that menu in turn so that you can see the variety of data formats that are
available.
Chapter 9. Running and debugging applications 141

Stack Traceback (condensed)
In the condensed version of Stack Traceback, data from all nodes is captured. The unique
instruction addresses per stack frame are grouped and displayed. However, the last stack
frame is grouped based on the function name, not the IAR. This is normally the most useful
mode for debug (Figure 9-4).

Figure 9-4 Stack Traceback (condensed)
142 IBM System Blue Gene Solution: Blue Gene/P Application Development

Stack Traceback (detailed)
In Stack Traceback (detailed), data from all nodes is captured (Figure 9-5). The unique
instruction addresses per stack frame are grouped and displayed. The IAR at each stack
frame is also displayed.

Figure 9-5 Stack Traceback (detailed)
Chapter 9. Running and debugging applications 143

Stack Traceback (survey)
Stack Traceback (survey) is a quick but potentially inaccurate mode. IARs are initially
captured and stack data is collected for each node from a group of nodes that contain the
same IAR. The stack data fetched for that one node is then applied to all nodes with the same
IAR. Figure 9-6 shows an example of the survey mode.

Figure 9-6 Stack Traceback (survey)

Refer to the following points to help you use the tool more effectively:

� The number at the far left, before the colon, indicates the depth within the stack.

� The number in parentheses at the end of each line indicates the number of nodes that
share the same stack frame.

� If you click any line in the stack dump, the pane on the right (labeled Common nodes)
shows the list of nodes that share that stack frame. See Figure 9-7 on page 145.

� When you click one of the stack frames and then select Control → Run, the action is
performed for all nodes that share that stack frame. A new Processor Status summary is
displayed. If you again chose a Stack Traceback option, the running processors are halted
and the stacks are refetched.

� You can hold down the Shift key and click several stack frames if you want to control all
procedures that are at a range of stack frames.

� From the Filter menu option, you can select Group Selection → Create Filter to add a
filter with the name that you specify in the Filter pull-down. When the box for your filter is
highlighted, only the data for those processors is displayed in the upper left window. You
can create several filters if you want.

� Set Group Mode to Ungrouped or Ungrouped with Traceback to control one processor at
a time.
144 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 9-7 Stack Traceback common nodes

9.2.6 Saving your information

To save the current contents of Traceback information of the upper left pane, select File →
Save Traceback to a file of your choice.

To gain more complete data, select File → Take Snapshot. Notice that you then have two
sessions to choose from on the Sessions menu. The original session is (MMCS) and the
second one is (SNAP). The snapshot is exactly what the name implies, a picture of the debug
session at a particular point. Notice that you cannot start or stop the processors from the
snapshot session. You can choose File → Save Snapshot to save the snapshot to a file. If
you are sending data to IBM for debug, Save Snapshot is a better choice than Save
Traceback because the snapshot includes objdump data.

If you choose File → Quit and processors are halted, you are given an option to restart them
before quitting.

9.2.7 Debugging live I/O Node problems

It is possible to debug I/O Node as well as Compute Nodes, but you normally want to avoid
doing so. Collecting data causes the processor to be stopped, and stopping the I/O Node
processors can cause problems with your file system. In addition, the Compute Nodes will not
be able to communicate with the I/O Nodes. If you want to debug an I/O Node, you must
specify the I/O Node binary when you select File → Attach to block the window and choose
Filter → Debug I/O Nodes.
Chapter 9. Running and debugging applications 145

9.2.8 Debugging core files

To work with core files, select File → Load Core. In the window, specify the following
information:

� The location of the Compute Node Kernel binary or binaries

� The core files location

� The lowest and highest-numbered core files that you want to work with (The default is all
available core files.)

Click the Load Cores button when you have specified the information.

The same Grouping Modes are available for core file debug as for live debug. Figure 9-8
shows an output example of the Condensed Stack Traceback options from a core file.
Condensed mode is the easiest format to work with.

Figure 9-8 Core file condensed stack trace
146 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 9-9 shows the detailed version of the same trace.

Figure 9-9 Core file detailed stack trace

The Survey option is less useful for core files because speed is not such a concern.
Chapter 9. Running and debugging applications 147

When you select a stack frame in the Traceback output (Figure 9-10), two additional pieces of
information are displayed. The core files that share that stack frame are displayed in the
Common nodes pane. The Location field under the Traceback pane displays the location of
that function and the line number represented by the stack frame. If you select one of the core
files in the Common nodes pane, the contents of that core file are displayed in the bottom
pane.

Figure 9-10 Core files common nodes

9.2.9 The addr2line utility

The addr2line utility is a standard Linux program. You can find additional information about
this utility in any Linux manual as well as at the following Web site:

http://www.linuxcommand.org/man_pages/addr2line1.html

The addr2line utility translates an address into file names and line numbers. Using an
address and an executable, this utility uses the debugging information in the executable to
provide information about the file name and line number. To take advantage of this utility,
compile your program with the -g option. On the Blue Gene/P system, the core file is a plain
text file that you can view with the vi editor.

You can the use the Linux addr2line command on the front-end node and enter the address
found in the core file and the -g executable. Then the utility points you to the source line
where the problem occurred.

Example 9-6 on page 149 shows a core file and how to use the addr2line utility to identify
potential problems in the code. In this particular, case the program was not compiled with the
-g flag option since this was a production run. However, notice in Example 9-6 that addr2line
points to malloc(). This can be a hint that perhaps there is not enough memory to run this
particular calculation or some other problems might be related to the usage of malloc() in the
code.
148 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www.linuxcommand.org/man_pages/addr2line1.html

Example 9-6 Using addr2line to identify potential problems in your code

vi core.0 and select the addresses between +++STACK and ---STACK and use them as input for
addr2line
+++STACK
0x01342cb8
0x0134653c
0x0106e5f8
0x010841ec
0x0103946c
0x010af40c
0x010b5e44
0x01004fa0
0x010027cc
0x0100c028
0x0100133c
0x013227ec
0x01322a4c
0xfffffffc
---STACK

Run addr2line with your executable
$addr2line -e a.out
0x01342cb8
0x0134653c
0x0106e5f8
0x010841ec
0x0103946c
0x010af40c
0x010b5e44
0x01004fa0
0x010027cc
0x0100c028
0x0100133c
0x013227ec
0x01322a4c
0xfffffffc/bglhome/usr6/bgbuild/DRV360_2007-070906P-SLES10-DD2-GNU10/ppc/bgp/gnu/glibc-2.4/mallo
c/malloc.c:3377
/bglhome/usr6/bgbuild/DRV360_2007-070906P-SLES10-DD2-GNU10/ppc/bgp/gnu/glibc-2.4/malloc/malloc.c
:3525
modify.cpp:0
??:0
??:0
??:0
??:0
main.cpp:0
main.cpp:0
main.cpp:0
??:0
../csu/libc-start.c:231
../sysdeps/unix/sysv/linux/powerpc/libc-start.c:127
Chapter 9. Running and debugging applications 149

150 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 10. Checkpoint and restart support
for applications

In this chapter, we provide details about the checkpoint and restart support provided by the
Blue Gene/P system. The contents of this chapter reflect the information that was presented
in IBM System Blue Gene Solution: Application Development, SG24-7179, but have been
updated for the Blue Gene/P system.

Nowadays scientific and engineering applications tend to consume most of the compute
cycles on high-performance computers. This is certainly the case on the Blue Gene/P
system. Many of the simulations run for extended periods of time.

Checkpoint and restart capabilities are critical for fault recovery. If an application is running for
a long period of time, you do not want it to fail after consuming many hours of compute cycles,
losing all the calculations made up until the failure. By using checkpoint and restart, you can
restart the application at the last checkpoint position, losing a much smaller slice of
processing time. In addition, checkpoint and restart are helpful in cases where the given
access to a Blue Gene/P system is in relatively small increments of time and you know that
your application run will take longer than your allotted amount of processing time. With
checkpoint and restart capabilities, you can execute your application in fragmented periods of
time rather than an extended interval of time.

We discuss the following topics in this chapter:

� “Checkpoint and restart” on page 152
� “Technical overview” on page 152
� “Checkpoint API” on page 155
� “Directory and file naming conventions” on page 157
� “Restart” on page 157

10
© Copyright IBM Corp. 2007. All rights reserved. 151

10.1 Checkpoint and restart
Checkpoint and restart are among the primary techniques for fault recovery. A special
user-level checkpoint library has been developed for Blue Gene/P applications. Using this
library, application programs can take a checkpoint of their program state at the appropriate
stages. Then the program can be restarted later from the last successful checkpoint.

10.2 Technical overview
The checkpoint library is a user-level library that provides support for user-initiated
checkpoints in parallel applications. The current implementation requires application
developers to insert calls manually to checkpoint library functions at proper places in the
application code. However, the restart is transparent to the application and requires only the
user or system to set specific environment variables while launching the application.

The application is expected to make a call to the BGCheckpointInit() function at the
beginning of the program, to initialize the checkpoint related data structures, and to carry out
an automated restart when required. The application can then make calls to the
BGCheckpoint() function to store a snapshot of the program state in stable storage (files on a
disk). The current model assumes that, when an application must take a checkpoint, all of the
following points are true:

� All processes of the application make a call to the BGCheckpoint() function.

� When a process makes a call to BGCheckpoint(), no outstanding messages are in the
network or buffers. That is the recv that corresponds to all the send calls has occurred.

� After a process has made a call to BGCheckpoint(), other processes do not send
messages to the process until their checkpoint is complete. Typically, applications are
expected to place calls to BGCheckpoint() immediately after a barrier operation, such as
MPI_Barrier or after a collective operation, such as MPI_Allreduce, when there are no
outstanding messages in the Message Passing Interface (MPI) buffers and the network.

BGCheckpoint() can be called multiple times. Successive checkpoints are identified and
distinguished by a checkpoint sequence number. A program state that corresponds to
different checkpoints is stored in separate files. It is possible to safely delete the old
checkpoint files after a newer checkpoint is complete.

The data that corresponds to the checkpoints is stored in a user-specified directory. A
separate checkpoint file is made for each process. This checkpoint file contains header
information and a dump of the process’s memory, including its data and stack segments, but
excluding its text segment and read-only data. It also contains information that pertains to the
input/output (I/O) state of the application, including open files and the current file positions.

For restart, the same job is launched again with the environment variables
BG_CHKPTRESTARTSEQNO and BG_CHKPTDIRPATH set to the appropriate values. The
BGCheckpointInit() function checks for these environment variables and, if specified,
restarts the application from the desired checkpoint.
152 IBM System Blue Gene Solution: Blue Gene/P Application Development

10.2.1 Input/output considerations
All the external I/O calls made from a program are shipped to the corresponding I/O Node
using a function shipping procedure implemented in the Compute Node Kernel.

The checkpoint library intercepts calls to the following main file I/O functions:

� open()
� close()
� read()
� write()
� lseek()

The function name open() is a weak alias that maps to the _libc_open function. The
checkpoint library intercepts this call and provides its own implementation of open() that
internally uses the _libc_open function.

The library maintains a file state table that stores the file name, current file position, and the
mode of all the files that are currently open. The table also maintains a translation that
translates the file descriptors used by the Compute Node Kernel to another set of file
descriptors to be used by the application. While taking a checkpoint, the file state table is also
stored in the checkpoint file. Upon a restart, these tables are read. Also the corresponding
files are opened in the required mode, and the file pointers are positioned at the desired
locations as given in the checkpoint file.

The current design assumes that the programs either always read the file or write the files
sequentially. A read followed by an overlapping write, or a write followed by an overlapping
read, is not supported.

10.2.2 Signal considerations
Applications can register handlers for signals using the signal() function call. The checkpoint
library intercepts calls to signal() and installs its own signal handler instead. It also updates
a signal-state table that stores the address of the signal handler function (sighandler)
registered for each signal (signum). When a signal is raised, the checkpoint signal handler
calls the appropriate application handler given in the signal-state table.

While taking checkpoints, the signal-state table is also stored in the checkpoint file in its
signal-state section. At the time of restart, the signal-state table is read, and the checkpoint
signal handler is installed for all the signals listed in the signal state table. The checkpoint
handler calls the required application handlers when needed.

Signals during checkpoint
The application can potentially receive signals while the checkpoint is in progress. If the
application signal handlers are called while a checkpoint is in progress, it can change the
state of the memory that is being checkpointed. This can make the checkpoint inconsistent.
Therefore, the signals arriving while a checkpoint is under progress must be handled
carefully.

For certain signals, such as SIGKILL and SIGSTOP, the action is fixed, and the application
terminates without much choice. The signals without any registered handler are simply
ignored. For signals with installed handlers, there are two choices:

� Deliver the signal immediately.
� Postpone the signal delivery until the checkpoint is complete.
Chapter 10. Checkpoint and restart support for applications 153

All signals are classified into one of these two categories as shown in Table 10-1. If the signal
must be delivered immediately, the memory state of the application might change, making the
current checkpoint file inconsistent. Therefore, the current checkpoint must be aborted. The
checkpoint routine periodically checks if a signal has been delivered since the current
checkpoint began. In case a signal has been delivered, it aborts the current checkpoint and
returns to the application.

For signals that are to be postponed, the checkpoint handler simply saves the signal
information in a pending signal list. When the checkpoint is complete, the library calls
application handlers for all the signals in the pending signal list. If more than one signal of the
same type is raised while the checkpoint is in progress, the checkpoint library ensures that
the handler registered by the application will be called at least once. However, it does not
guarantee in-order-delivery of signals.

Table 10-1 Action taken on signal

Signal name Signal type Action to be taken

SIGINT Critical Deliver

SIGXCPU Critical Deliver

SIGILL Critical Deliver

SIGABRT/SIGIOT Critical Deliver

SIGBUS Critical Deliver

SIGFPE Critical Deliver

SIGSTP Critical Deliver

SIGSEGV Critical Deliver

SIGPIPE Critical Deliver

SIGSTP Critical Deliver

SIGSTKFLT Critical Deliver

SIGTERM Critical Deliver

SIGHUP Non-critical Postpone

SIGALRM Non-critical Postpone

SIGUSR1 Non-critical Postpone

SIGUSR2 Non-critical Postpone

SIGTSTP Non-critical Postpone

SIGVTALRM Non-critical Postpone

SIGPROF Non-critical Postpone

SIGPOLL/SIGIO Non-critical Postpone

SIGSYS/SIGUNUSED Non-critical Postpone

SIGTRAP Non-critical Postpone
154 IBM System Blue Gene Solution: Blue Gene/P Application Development

Signals during restart
The pending signal list is not stored in the checkpoint file. Therefore, if an application is
restarted from a checkpoint, the handlers for pending signals received during the checkpoint
are not called. If some signals are raised while the restart is in progress, they are ignored.
The checkpoint signal handlers are installed only in the end after the memory state, I/O state,
and signal-state table have been restored. This ensures that, when the application signal
handlers are called, they see a consistent memory and I/O state.

10.3 Checkpoint API
The checkpoint interface consists of the following items:

� A set of library functions that are used by the application developer to checkpoint enable
the application

� A set of conventions used to name and store the checkpoint files

� A set of environment variables used to communicate with the application

In the following section, we describe each of these components in detail.

10.3.1 Checkpoint library API
To ensure minimal overhead, the basic interface has been kept fairly simple. Ideally, a
programmer must call only two functions, one at the time of initialization and the other at the
places where the application needs to be checkpointed. Restart is done transparently using
the environment variable BG_CHKPTRESTARTSEQNO specified at the time of job launch.
Alternatively, an explicit restart API is also provided to the programmer to manually restart the
application from a specified checkpoint. The remainder of this section describes the
checkpoint API in detail.

void BGCheckpointInit(char * ckptDirPath)
BGCheckpointInit is a mandatory function that must be invoked at the beginning of the
program. You use this function to initialize the data structures of the checkpoint library. In
addition, you use this function for transparent restart of the application program.

The ckptDirPath parameter specifies the location of checkpoint files. If ckptDirPath is NULL,
then the default checkpoint file location is assumed as explained in 10.4, “Directory and file
naming conventions” on page 157.

int BGCheckpoint()
BGCheckpoint takes a snapshot of the program state at the instant at which it is called. All the
processes of the application must make a call to BGCheckpoint to take a consistent global
checkpoint.

When a process makes a call to BGCheckpoint, no outstanding messages should be in the
network or buffers. That is, the recv that corresponds to all the send calls should have
occurred. In addition, after a process has made a call to BGCheckpoint, other processes must
not send messages to the process until their call to BGCheckpoint is complete. Typically,
applications are expected to place calls to BGCheckpoint immediately after a barrier operation,
such as MPI_Barrier, or after a collective operation, such as MPI_Allreduce, when there is no
outstanding message in the MPI buffers and the network.

The state that corresponds to each application process is stored in a separate file. The
location of checkpoint files is specified by ckptDirPath in the call to BGCheckpointInit. If
Chapter 10. Checkpoint and restart support for applications 155

ckptDirPath is NULL, then the checkpoint file location is decided by the storage rules
mentioned in 10.4, “Directory and file naming conventions” on page 157.

void BGCheckpointRestart(int restartSqNo)
BGCheckpointRestart restarts the application from the checkpoint given by the argument
restartSqNo. The directory where the checkpoint files are searched is specified by
ckptDirPath in the call to BGCheckpointInit. If ckptDirPath is NULL, then the checkpoint file
location is decided by the storage rules provided in 10.4, “Directory and file naming
conventions” on page 157.

An application developer does not need to explicitly invoke this function. BGCheckpointInit
automatically invokes this function whenever an application is restarted. The environment
variable BG_CHKPTRESTARTSEQNO is set to an appropriate value. If the restartSqNo, the
environment variable BG_CHKPTRESTARTSEQNO, is zero, then the system picks up the most
recent consistent checkpoint files. However, the function is available for use if the developer
chooses to call it explicitly. The developer must know the implications of using this function.

int BGCheckpointExcludeRegion(void *addr, size_t len)
BGCheckpointExcludeRegion marks the specified region (addr to addr + len - 1) to be
excluded from the program state, while a checkpoint is being taken. The state that
corresponds to this region is not saved in the checkpoint file. Therefore, after restart the
corresponding memory region in the application is not overwritten. You can use this facility to
protect critical data that should not be restored at the time of restart such as personality and
checkpoint data structures. An application programmer can also use this call to exclude a
scratch data structure that does not need to be saved at checkpoint time.

int BGAtCheckpoint((void *) function(void *arg), void *arg)
BGAtCheckpoint registers the functions to be called just before taking the checkpoint. You can
use this function to take some action at the time of checkpoint. For example, a user can call
this function to close all the communication states open at the time of checkpoint. The
functions registered are called in the reverse order of their registration. The argument arg is
passed to the function that is being called.

int BGAtRestart((void *) function (void *arg), void *arg)
BGAtRestart registers the functions to be called during restart after the program state has
been restored, but before jumping to the appropriate position in the application code. The
functions that are registered are called in the reverse order of their registration. You can use
this function to resume or re-initialize functions or data structures at the time of restart. For
example, in the symmetrical multiprocessing Node Mode (SMP Node Mode), the SMP needs
to be re-initialized at the time of restart. The argument arg is passed to the function that is
being called.

int BGAtContinue((void *) function (void *arg), void *arg)
BGAtContinue registers the functions to be called when continuing after a checkpoint. You can
use this function to re-initialize or resume some functions or data structures that were closed
or stopped at the time of checkpoint. The functions that are registered are called in the
reverse order of their registration. The argument arg is passed to the function that is being
called.
156 IBM System Blue Gene Solution: Blue Gene/P Application Development

10.4 Directory and file naming conventions
By default, all the checkpoint files are stored, and retrieved during restart, in the directory
specified by ckptDirPath in the initial call to BGCheckpointInit(). If ckptDirPath is not
specified (or is null), the directory is picked from the environment variable BG_CHKPTDIRPATH.
This environment variable can be set by the job control system at the time of job launch to
specify the default location of the checkpoint files. If this variable is not set, the Blue Gene/P
system looks for a $(HOME)/checkpoint directory. Finally, if this directory is also not available,
$(HOME) is used to store all checkpoint files.

The checkpoint files are automatically created and named with the following convention:

<ckptDirPath>/ckpt.<xxx-yyy-zzz>.<seqNo>

Note the following explanation:

� <ckptDirPath>: Name of the executable, for example, sweep3d or mg.W.2
� <xxx-yyy-zzz>: Three-dimensional torus coordinates of the process
� <seqNo>: The checkpoint sequence number

The checkpoint sequence number starts at one and is incremented after every successful
checkpoint.

10.5 Restart
A transparent restart mechanism is provided through the use of the BGCheckpointInit()
function and the BG_CHKPTRESTARTSEQNO environment variable. Upon startup, an application is
expected to make a call to BGCheckpointInit(). The BGCheckpointInit() function initializes
the checkpoint library data structures.

Moreover the BGCheckpointInit() function checks for the environment variable
BG_CHKPTRESTARTSEQNO. If the variable is not set, a job launch is assumed and the function
returns normally. In case the environment variable is set to zero, the individual processes
restart from their individual latest consistent global checkpoint. If the variable is set to a
positive integer, the application is started from the specified checkpoint sequence number.

10.5.1 Determining the latest consistent global checkpoint
Existence of a checkpoint file does not guarantee consistency of the checkpoint. An
application might have crashed before completely writing the program state to the file. We
have changed this by adding a checkpoint write complete flag in the header of the checkpoint
file. As soon as the checkpoint file is opened for writing, this flag is set to zero and written to
the checkpoint file. When complete checkpoint data is written to the file, the flag is set to one
indicating the consistency of the checkpoint data. The job launch subsystem can use this flag
to verify the consistency of checkpoint files and delete inconsistent checkpoint files.

During a checkpoint, some of the processes can crash, while others might complete. This can
create consistent checkpoint files for some processes and inconsistent or non-existent
checkpoint files for other processes. The latest consistent global checkpoint is determined by
the latest checkpoint for which all the processes have consistent checkpoint files.

It is the responsibility of the job launch subsystem to make sure that BG_CHKPTRESTARTSEQNO
corresponds to a consistent global checkpoint. In case BG_CHKPTRESTARTSEQNO is set to zero,
the job launch subsystem must make sure that files with the highest checkpoint sequence
number correspond to a consistent global checkpoint. The behavior of the checkpoint library
is undefined if BG_CHKPTRESTARTSEQNO does not correspond to a global consistent checkpoint.
Chapter 10. Checkpoint and restart support for applications 157

10.5.2 Checkpoint and restart functionality
It is often desirable to enable or disable the checkpoint functionality at the time of job launch.
Application developers are not required to provide two versions of their programs: one with
checkpoint enabled and another with checkpoint disabled. We have used environment
variables to transparently enable and disable the checkpoint and restart functionality.

The checkpoint library calls check for the environment variable BG_CHKPT_ENABLED. The
checkpoint functionality is invoked only if this environment variable is set to a value of “1.”
Table 10-2 summarizes the checkpoint-related function calls.

Table 10-2 Checkpoint and restart APIs

Table 10-3 summarizes the environment variables.

Table 10-3 Checkpoint and restart environment variables

The most common environment variable settings are:

� BG_CHKPT_ENABLED=1
� BG_CHKPTDIRPATH= checkpoint directory
� BG_CHKPTRESTARTSEQNO=0

A combination of BG_CHKPT_ENABLED and BG_CHKPTRESTARTSEQNO (as in Table 10-3)
automatically signifies that after restart, further checkpoints are taken. A developer can
restart an application but disable further checkpoints by simply unsetting (removing
altogether) the BG_CHKPT_ENABLED variable.

Function name Usage

BGCheckpointInit(char
*ckptDirPath);

Sets the checkpoint directory to ckptDirPath. Initializes the
checkpoint library data structures. Carries out restart if environment
variable BG_CHKPTRESTARTSEQNO is set.

BGCheckpoint(); Takes a checkpoint. Stores the program state in the checkpoint
directory.

BGCheckpointRestart(int
rstartSqNo);

Carries out an explicit restart from the specified sequence number.

BGCheckpointExcludeRegion
(void *addr, size_t len);

Excludes the specified region from the checkpoint state.

Environment variables Usage

BG_CHKPT_ENABLED Is set (to 1) if checkpoints are desired; otherwise it is not specified.

BG_CHKPTDIRPATH Default path to keep checkpoint files.

BG_CHKPTRESTARTSEQNO Set to a desired checkpoint sequence number from where a user
wants the application to restart. If set to zero, each process restarts
from its individual latest consistent checkpoint. This option must not
be specified, if no restart is desired.
158 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 11. Control system (Bridge) APIs

In this chapter, we define a list of application programming interfaces (APIs) into the Midplane
Management Control System (MMCS) that can be used by a job management system. The
mpirun program that ships with the Blue Gene/P software is an application that uses these
APIs to manage partitions, jobs, and other similar aspects of the Blue Gene/P system. You
can use these APIs to write applications to manage Blue Gene/P partitions and control Blue
Gene/P job execution, as well as other similar administrative tasks.

In this chapter, we present an overview of the support provided by the APIs and discuss the
following topics:

� “API requirements” on page 160
� “APIs” on page 162
� “Small partition allocation” on page 191
� “API examples” on page 192

11
© Copyright IBM Corp. 2007. All rights reserved. 159

11.1 API requirements

There are several requirements for writing programs to the Bridge API as explained in the
following sections.

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� C and C++ are supported with the GNU gcc 4.1.1 level compilers. For more information
and downloads, refer to the following Web address:

http://gcc.gnu.org/

� All required include files are installed in the /bgsys/drivers/ppcfloor/include directory. See
Appendix B, “Header files and libraries” on page 271, for additional information about
include files. The include file for the Bridge API is rm_api.h.

� The Bridge API supports 64-bit applications that use dynamic linking using shared objects.
The required library files are installed in the /bgsys/drivers/ppcfloor/lib64 directory.

The shared object for linking to the Bridge API is libbgpbridge.so. The libbgpbridge.so
library has dependencies on other libraries that are included with the Blue Gene/P
software, including:

– libbgpconfig.so
– libbgpdb.so
– libsaymessage.so
– libtableapi.so

These files are installed with the standard system installation procedure. They are
contained in the bgpbase.rpm file.

11.1.1 Configuring environment variables

Table 11-1 provides information about the environment variables that are used to control the
Bridge API.

Table 11-1 Environment variables that control the Bridge API

For more information about the db.properties and bridge.config files, see Blue Gene System
Administration, SG24-7417.

Environment variable Required Description

DB_PROPERTY Yes This variable must be set to the path of the db.properties file
with database connection information. For default installation,
the path to this file is /bgsys/local/etc/db.properties.

BRIDGE_CONFIG Yes This variable must be set to the path of the bridge.config file
that contains the Bridge API configuration values. For a
default installation, the path to this file is
/bgsys/local/etc/bridge.config.

BRIDGE_DUMP_XML No When set to any value, this variable causes the Bridge API to
dump its in-memory XML streams to files in /tmp for
debugging. When this variable is not set, the Bridge API does
not dump its in-memory XML streams.
160 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://gcc.gnu.org/
http://gcc.gnu.org/

11.1.2 General comments
All of the APIs that are used have general considerations that apply to all calls. In the
following list, we highlight the common features:

� All the API calls return a status_t indicating either success or an error code.

� The get APIs that retrieve a compound structure include accessory functions to retrieve
relevant nested data.

� The get calls allocate new memory for the structure to be retrieved and return a pointer to
the allocated memory in the corresponding argument.

� To add information to MMCS, use new functions as well as rm_set_data(). The new
functions allocate memory for new data structures, and the rm_set_data() API is used to
fill these structures.

� For each get and new function, a corresponding free function frees the memory allocated
by these functions. For instance, rm_get_BG(rm_BG_t **bg) is complemented by
rm_free_BG(rm_BG_t *bg).

� The caller is responsible for matching the calls to the get and new allocators to the
corresponding free deallocators. Memory leaks result if this is not done.

Memory allocation and deallocation
Some API calls result in memory being allocated on behalf of the user. The user must call the
corresponding free function to avoid memory leaks, which can cause the process to run out
of memory.

For the rm_get_data() API, see 11.2.8, “Field specifications for the rm_get_data() and
rm_set_data() APIs” on page 178, for a complete list of the fields that require calls to free
memory.

Avoiding invalid pointers
Some APIs return a pointer to an offset in a data structure, or object, that was previously
allocated (based on element in rm_get_data()). An example of this is the rm_get_data() API
call using the RM_PartListNextPart specification. In this example, element is a partition list,
and it returns a pointer to the first or next partition in the list. If the caller of the API frees the
memory of the partition list (element) and data is pointing to a subset of that freed memory,
then the data pointer is invalid. The caller must make sure that no further calls are made
against a data structure returned from an rm_get_data() call after it is freed.

First and next calls
Before a next call can be made against a data structure returned from an rm_get_data() call,
the first call must have been made. Failure to do so results in an invalid pointer, either
pointing at nothing or at invalid data.

Example 11-1 shows correct usage of the first and next API calls. Notice how memory is freed
after the list is consumed.

Example 11-1 Correct usage of first and next API calls

status_t stat;
int list_size = 0;
rm_partition_list_t * bgp_part_list = NULL;
rm_partition_t * bgp_part = NULL;

// Get all information on existing partitions
stat = rm_get_partitions_info(PARTITION_ALL_FLAG, &bgp_part_list);
Chapter 11. Control system (Bridge) APIs 161

if (stat != STATUS_OK) {
// Do some error handling here...
return;

}

// How much data (# of partitions) did we get back?
rm_get_data(bgp_part_list, RM_PartListSize, &list_size);

for (int i = 0; i < list_size; i++) {
// If this is the first time through, use RM_PartListFirstPart
if (i == 0){

rm_get_data(bgp_part_list, RM_PartListFirstPart, &bgp_part);
}
// Otherwise, use RM_PartListNextPart
else {

rm_get_data(bgp_part_list, RM_PartListNextPart, &bgp_part);
}

}

// Make sure we free the memory when finished
stat = rm_free_partition_list(bgp_part_list);
if (stat != STATUS_OK) {

// Do some error handling here...
return;

}

11.2 APIs
In the following sections, we describe details about the APIs.

11.2.1 API to the Midplane Management Control System
The Bridge API contains an rm_get_BG() function to retrieve current configuration and status
information about all the physical components of the Blue Gene/P system from the MMCS
database. The Bridge API also includes functions that add, remove, or modify information
about transient entities, such as jobs and partitions.

The rm_get_BG() function returns all the necessary information to define new partitions in the
system. The information is represented by three lists: a list of base partitions (BPs), a list of
wires, and a list of switches. This representation does not contain redundant data. In general,
it allows manipulation of the retrieved data into any desired format. The information is
retrieved using a structure called rm_BG_t. It includes the three lists that are accessed using
iteration functions and the various configuration parameters, for example, the size of a base
partition in Compute Nodes.

All the data that is retrieved by using the get functions can be accessed using rm_get_data()
with one of the specifications listed in 11.2.8, “Field specifications for the rm_get_data() and
rm_set_data() APIs” on page 178. There are additional get functions to retrieve information
about the partitions and jobs entities.

The rm_add_partition() and rm_add_job() functions add and modify data in the MMCS. The
memory for the data structures is allocated by the new functions and updated using the
rm_set_data() function. The specifications that can be set using the rm_set_data() function
are shown in 11.2.8, “Field specifications for the rm_get_data() and rm_set_data() APIs” on
page 178.
162 IBM System Blue Gene Solution: Blue Gene/P Application Development

11.2.2 Asynchronous APIs

Some APIs that operate on partitions or jobs are documented as being asynchronous.
Asynchronous means that control returns to your application before the operation requested
is complete.

Before you perform additional operations on the partition or job, make sure that it is in a valid
state by using the rm_get_partition_info() or rm_get_job() APIs to check the current state
of the partition or job.

11.2.3 State sequence IDs

For most Blue Gene objects that have a state field, there is a corresponding sequence ID field
for the state value. MMCS guarantees that any time the state field changes for a given object,
the associated sequence ID will be incremented.

The sequence ID fields can be used to determine which state value is more recent. A state
value with a higher corresponding sequence ID is the more recent value. This comparison
can be helpful for applications that retrieve state information from multiple sources such as
the Bridge API and the real-time APIs.

The function to increment sequence IDs only occurs if the real-time APIs are configured for
the system. For information about configuring the real-time APIs, see Blue Gene System
Administration, SG24-7417.

11.2.4 Bridge API return codes

When a failure occurs, an API invocation returns an error code. You can use the error code to
take corrective actions within your application. In addition, a failure always generates a log
message, which provides more information for the possible cause of the problem and an
optional corrective action. These log messages are used for debugging and programmed
recovery of failures.

The design aims at striking a balance between the number of error codes detected and the
different error paths per return code. Thus, some errors have specific return codes, while
others have more generic ones. The Bridge API has the following return codes:

� STATUS_OK: The invocation completed successfully.

� PARTITION_NOT_FOUND: The required partition specified by the ID cannot be found in
the control system.

� JOB_NOT_FOUND: The required job specified by the ID cannot be found in the control
system.

� BP_NOT_FOUND: One or more of the base partitions in the rm_partition_t structure do
not exist.

� SWITCH_NOT_FOUND: One or more of the switches in the rm_partition_t structure do
not exist.

� JOB_ALREADY_DEFINED: A job with the same name already exists.

� PARTITION_ALREADY_DEFINED: A partition already exists with the ID specified.

Deprecated: Some specifications can be marked as “deprecated”. A deprecated
specification may be removed in future versions of the Blue Gene supercomputer.
Chapter 11. Control system (Bridge) APIs 163

� CONNECTION_ERROR: The connection with the control system has failed or could not
be established.

� INVALID_INPUT: The input to the API invocation is invalid, which is due to missing
required data, illegal data, and so on.

� INCOMPATIBLE_STATE: The state of the partition or job prohibits the specific action. See
Figure 11-1 on page 171, Figure 11-2 on page 175, Figure 11-3 on page 176, and
Figure 11-4 on page 177 for state diagrams.

� INCONSISTENT_DATA: The data retrieved from the control system is not valid.

� INTERNAL_ERROR: Such errors do not belong to any of the previously listed categories,
such as a memory allocation problem or failures during the manipulation of internal XML
streams.

11.2.5 Blue Gene hardware resource APIs

In this section, we describe the APIs that are used to manage the hardware resources in the
Blue Gene system:

� status_t rm_get_BG(rm_BG_t **BG);

This function retrieves a snapshot of the Blue Gene/P machine, held in the rm_BG_t data
structure.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

• List of base partitions is empty.
• Wire list is empty, and the number of base partitions is greater than one.
• Switch list is empty, and the number of base partitions is greater than one.

– INTERNAL_ERROR

� status_t rm_get_data(rm_element_t *rme, enum RMSpecification spec, void *
result);

This function returns the content of the requested field from a valid rm_element_t (Blue
Gene object, base partition object, wire object, switch object, and so on). The
specifications that are available when using rm_get_data() are listed in 11.2.8, “Field
specifications for the rm_get_data() and rm_set_data() APIs” on page 178, and are
grouped by the object type that is being accessed.

The following return codes are possible:

– STATUS_OK
– INVALID_INPUT

• The specification spec is unknown.
• The specification spec is illegal (per the “rme” element).

– INTERNAL_ERROR
164 IBM System Blue Gene Solution: Blue Gene/P Application Development

� status_t rm_get_nodecards(rm_bp_id_t bpid, rm_nodecard_list_t **nc_list);

This function returns all node cards in the specified base partition.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

• The Base Partition was not found.

– INTERNAL_ERROR

� status_t rm_get_serial(rm_serial_t *serial);

This function gets the machine serial number that was set previously by rm_set_serial().

The following return codes are possible:

– STATUS_OK
– INTERNAL_ERROR

� status_t rm_set_data(rm_element_t *rme, enum RMSpecification spec, void *
result);

This function sets the value of the requested field in the rm_element_t (Blue Gene/P
object, base partition object, wire object, switch object, and so on). The specifications,
which are available when using rm_set_data(), are listed in 11.2.8, “Field specifications
for the rm_get_data() and rm_set_data() APIs” on page 178, and are grouped by the
object type that is being accessed.

The following return codes are possible:

– STATUS_OK
– INVALID_INPUT

• The specification spec is unknown.
• The specification spec is illegal (per the rme element).

– INTERNAL_ERROR

� status_t rm_set_serial(rm_serial_t serial);

This function sets the machine serial number to be used in all the API calls following this
call. The database can contain more than one machine. Therefore, it is necessary to
specify which machine to work with.

The following return codes are possible:

– STATUS_OK
– INVALID_INPUT

• The machine serial number serial is null.
• The machine serial number is too long.
Chapter 11. Control system (Bridge) APIs 165

11.2.6 Partition-related APIs

In this section, we describe the APIs that are used to create and manage partitions in the
Blue Gene system:

� status_t rm_add_partition(rm_partition_t* p);

This function adds a partition record to the database. The partition structure includes an
ID field that is filled by the resource manager.

The following return codes are possible:

– STATUS_OK

– CONNECTION_ERROR

– INVALID_INPUT: The data in the rm_partition_t structure is invalid.

• No base partition nor switch list is supplied.
• Base partition or switches do not construct a legal partition.
• No boot images nor boot image name is too long.
• No user nor user name is too long.

– BP_NOT_FOUND:

• One or more of the base partitions in the rm_partition_t structure does not exist.

– SWITCH_NOT_FOUND:

• One or more of the switches in the rm_partition_t structure does not exist.

– INTERNAL_ERROR

� status_t rm_add_part_user (pm_partition_id_t partition_id, const char *user);

This function adds a new user to the partition. The partition’s owner can add users who
are allowed to use this partition. Adding users to the partition can be done only by the
partition owner and only to partitions in the INITIALIZE state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null or the length exceeds the limitations of the control system.
• user is null or the length exceeds the limitations of the control system.
• user is already defined as the partition’s user.

– INTERNAL_ERROR

� status_t rm_assign_job(pm_partition_id_t partition_id, db_job_id_t jid);

This function assigns a job to a partition. A job can be created and simultaneously
assigned to a partition by calling rm_add_job() with a partition ID. If a job is created and
not assigned to a specific partition, it can be assigned later by calling rm_assign_job().

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds control system limitations.
166 IBM System Blue Gene Solution: Blue Gene/P Application Development

– PARTITION_NOT_FOUND
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The current state of the partition is not FREE. See Figure 11-1 on page 171.

– INTERNAL_ERROR

� status_t pm_create_partition(pm_partition_id_t partition_id);

This function allocates the necessary hardware for a partition, boots the partition, and
updates the resulting status in the MMCS database.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds control system limitations.

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

• The current state of the partition prohibits its creation. See Figure 11-1 on
page 171.

– INTERNAL_ERROR

� status_t pm_destroy_partition(pm_partition_id_t partition_id);

This function shuts down a currently booted partition and updates the database
accordingly.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system.

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

• The state of the partition prohibits its destruction. See Figure 11-1 on page 171.

– INTERNAL_ERROR

� status_t rm_get_partition(pm_partition_id_t partition_id, rm_partition_t **p);

This function retrieves a partition, according to its ID.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
Chapter 11. Control system (Bridge) APIs 167

– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system.

– PARTITION_NOT_FOUND
– INCONSISTENT_DATA

• The base partition or switch list of the partition is empty.

– INTERNAL_ERROR

� status_t rm_get_partitions(rm_partition_state_t_flag_t flag,
rm_partition_list_t **part_list);

This function is useful for status reports and diagnostics. It returns a list of partitions
whose current state matches the flag. The possible flags are contained in the rm_api.h
include file and listed in Table 11-2. You can use OR on these values to create a flag for
including partitions with different states.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

• At least one of the partitions has an empty base partition list.

– INTERNAL_ERROR

� status_t rm_get_partitions_info(rm_partition_state_t_flag_t flag,
rm_partition_list_t ** part_list);

This function is useful for status reports and diagnostics. It returns a list of partitions
whose current state matches the flag. This function returns the partition information
without their base partitions, switches, and node cards.

The possible flags are contained in the rm_api.h include file and are listed in Table 11-2.
You can use OR on these values to create a flag for including partitions with different
states.

Table 11-2 Flags for partition states

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

• At least one of the partitions has an empty base partition list.

– INTERNAL_ERROR

Flag Value

PARTITION_FREE_FLAG 0x01

PARTITION_CONFIGURING_FLAG 0x02

PARTITION_READY_FLAG 0x04

PARTITION_DEALLOCATING_FLAG 0x10

PARTITION_ERROR_FLAG 0x20

PARTITION_REBOOTING_FLAG 0x40

PARTITION_ALL_FLAG 0xFF
168 IBM System Blue Gene Solution: Blue Gene/P Application Development

� status_t rm_modify_partition(pm_partition_id_t partition_id, enum rm_modify_op
modify_option, const void *value);

This function makes it possible to change a set of fields in an already existing partition.
Only partitions whose state is RM_PARTITION_FREE can be modified. The fields that can be
modified are owner, description, options, and the partition boot images. The
modify_option parameter identifies the field to be modified.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system.
• The value for the modify_option parameter is not valid.

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

• The partition’s current state forbids its modification. See Figure 11-1 on page 171.

– INTERNAL_ERROR

� status_t rm_reboot_partition(pm_partition_id_t partition_id);

This function sends a request to reboot a partition and update the resulting status in the
database.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system.

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

• The partition’s current state forbids its removal. See Figure 11-1 on page 171.

– INTERNAL_ERROR

� status_t rm_release_partition(pm_partition_id_t partition_id);

This function is the opposite of rm_assign_job(), because it releases the partition from all
jobs. Only jobs that are in an RM_JOB_IDLE state have their partition reference removed.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system
(configuration parameter).

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
Chapter 11. Control system (Bridge) APIs 169

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

• The current state of one or more jobs assigned to the partition prevents this release.
See Figure 11-1 on page 171 and Figure 11-2 on page 175.

– INTERNAL_ERROR

� status_t rm_remove_partition(pm_partition_id_t partition_id);

This function removes the specified partition record from MMCS.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system
(configuration parameter).

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

• The partition’s current state forbids its removal. See Figure 11-1 on page 171 and
Figure 11-2 on page 175.

– INTERNAL_ERROR

� status_t rm_remove_part_user(pm_partition_id_t partition_id, const char *user);

This function removes a user from a partition. The partition’s owner can remove users
from the partition’s user list. Removing a user from a partition can be done only by the
partition owner and only to partitions in the RM_PARTITION_FREE state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system
(configuration parameter).

• user is null, or the length exceeds the limitations of the control system.
• user is already defined as the partition’s user.
• Current user is not the partition owner.

– INTERNAL_ERROR

� status_t rm_set_part_owner(pm_partition_id_t partition_id, const char *user);

This function sets the new owner of the partition. Changing the partition’s owner can be
done only to a partition in the RM_PARTITION_FREE state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is null, or the length exceeds the limitations of the control system
(configuration parameter).

• owner is null, or the length exceeds the limitations of the control system.

– INTERNAL_ERROR
170 IBM System Blue Gene Solution: Blue Gene/P Application Development

State transition diagram for partitions
Figure 11-1 illustrates the states that a partition goes through during its life cycle.

Figure 11-1 Partition state diagram

11.2.7 Job-related APIs

In this section, we describe the APIs to create and manage jobs in the Blue Gene system:

� status_t rm_add_job(rm_job_t *job);

This function adds a job record to the database. The job structure includes an ID field that
will be filled by the resource manager.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT:

• Data in the rm_job_t structure is invalid.
• There is no job name, or a job name is too long.
• There is no user, or the user name is too long.
• There is no executable, or the executable name is too long.
• The output or error file name is too long.

– JOB_ALREADY_DEFINED

• A job with the same name already exists.

– INTERNAL_ERROR

State changed by API call

State changed by MMCS

rm_remove_partition()

RM_PARTITION_DEALLOCATING
pm_destroy_partition()

RM_PARTITION_REBOOTING

pm_reboot_partition()

RM_PARTITION_READY

pm_destroy_partition()

RM_PARTITION_ERROR

RM_PARTITION_CONFIGURING
pm_create_partition()

RM_PARTITION_FREE

rm_add_partition()
Chapter 11. Control system (Bridge) APIs 171

� status_t jm_attach_job(jobid);

This function initiates the spawn of debug servers to job in the RM_JOB_LOADED state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents it from being attached. See Figure 11-2 on page 175.

– INTERNAL_ERROR

� status_t jm_begin_job(jobid);

This function begins a job that is already loaded.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents it from beginning. See Figure 11-2 on page 175.

– INTERNAL_ERROR

� status_t jm_cancel_job(db_job_id_t jid);

This function sends a request to cancel the job identified by the jid parameter.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents it from being canceled. See Figure 11-2 on page 175.

– INTERNAL_ERROR

� status_t jm_debug_job(jobid);

This function initiates the spawn of debug servers to job in the RM_JOB_RUNNING state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents it from being debugged. See Figure 11-2 on page 175.

– INTERNAL_ERROR

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
172 IBM System Blue Gene Solution: Blue Gene/P Application Development

� status_t rm_get_job(db_job_id_t jid, rm_job_t **job);

This function retrieves the specified job object.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INTERNAL_ERROR

� status_t rm_get_jobs(rm_job_state_flag_t flag, rm_job_list_t **job_list);

This function returns a list of jobs whose current state matches the flag.

The possible flags are contained in the rm_api.h include file and are listed in Table 11-3.
You can use OR on these values to create a flag for including jobs with different states.

Table 11-3 Flags for job states

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INTERNAL_ERROR

� status_t jm_load_job(jobid);

This function sets the job state to LOAD.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents it from being loaded. See Figure 11-2 on page 175.

– INTERNAL_ERROR

Flag Value

JOB_IDLE_FLAG 0x001

JOB_STARTING_FLAG 0x002

JOB_RUNNING_FLAG 0x004

JOB_TERMINATED_FLAG 0x008

JOB_ERROR_FLAG 0x010

JOB_DYING_FLAG 0x020

JOB_DEBUG_FLAG 0x040

JOB_LOAD_FLAG 0x080

JOB_LOADED_FLAG 0x100

JOB_BEGIN_FLAG 0x200

JOB_ATTACH_FLAG 0x400

JOB_KILLED_FLAG 0x800
Chapter 11. Control system (Bridge) APIs 173

� status_t rm_query_job(db_job_id_t db_job_id, MPIR_PROCDESC **proc_table, int *
proc_table_size);

This function fills the proc_table with information about the specified job.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INTERNAL_ERROR

� status_t rm_remove_job(db_job_id_t jid);

This function removes the specified job record from MMCS.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents its removal. See Figure 11-2.

– INTERNAL_ERROR

� status_t jm_signal_job(db_job_id_t jid, rm_signal_t signal);

This function sends a request to signal the job identified by the jid parameter.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents it from being signaled.

– INTERNAL_ERROR

� status_t jm_start_job(db_job_id_t jid);

This function starts the job identified by the jid parameter. Note that the partition
information is referenced from the job record in MMCS.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The job’s state prevents its execution. See Figure 11-2.

– INTERNAL_ERROR

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
174 IBM System Blue Gene Solution: Blue Gene/P Application Development

State transition diagrams for jobs
Figure 11-2 illustrates the states that a job goes through during its life cycle. It also illustrates
the order of API calls for creating, running, and canceling a job.

Figure 11-2 Job state diagram for running a Blue Gene/P job

State changed by API call

State changed by MMCS

RM_JOB_DYING

jm_cancel_job()

RM_JOB_TERMINATED

RM_JOB_RUNNING

jm_start_job()

RM_JOB_ERRORRM_JOB_STARTING

jm_start_job()

RM_JOB_IDLE

rm_add_job()
Chapter 11. Control system (Bridge) APIs 175

Figure 11-3 illustrates the main states that a job goes through when debugging a new job.

Figure 11-3 Job state diagram for debugging a running job

State changed by API call

State changed by MMCS

RM_JOB_DYING

jm_cancel_job()

jm_cancel_job()

RM_JOB_TERMINATED

RM_JOB_RUNNING

RM_JOB_BEGIN

jm_begin_job()RM_JOB_ATTACH

jm_attach_job()

RM_JOB_LOADED

jm_load_job()

RM_JOB_ERRORRM_JOB_LOAD

jm_load_job()

RM_JOB_IDLE

rm_add_job()
176 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 11-4 illustrates the states that a job goes through when debugging an already running
job.

Figure 11-4 Job state diagram for debugging a new job

State changed by API call

State changed by MMCS

RM_JOB_DYING

jm_cancel_job()

jm_cancel_job()

RM_JOB_TERMINATED

RM_JOB_RUNNING

RM_JOB_BEGIN

jm_begin_job()RM_JOB_ATTACH

jm_attach_job()

RM_JOB_LOADED

jm_load_job()

RM_JOB_ERRORRM_JOB_LOAD

jm_load_job()

RM_JOB_IDLE

rm_add_job()
Chapter 11. Control system (Bridge) APIs 177

11.2.8 Field specifications for the rm_get_data() and rm_set_data() APIs

In this section, we describe all the field specifications that can be used to get and set fields
from various objects using the rm_get_data() and rm_set_data() APIs.

Blue Gene object
The Blue Gene/P object (rm_BG_t) represents the Blue Gene/P system. You can use this
object to retrieve information and status for other components in the system, such as base
partitions, node cards, I/O Nodes, switches, wires, and port (Table 11-4). The Blue Gene
object is retrieved by calling the rm_get_BG() API.

Table 11-4 Values retrieved from a Blue Gene object using rm_get_data()

Base partition object
The base partition object (rm_BP_t) represents one base partition in the Blue Gene system.
The base partition object is retrieved from the Blue Gene object using either the RM_FirstBP
or RM_NextBP specification. See Table 11-5.

Table 11-5 Values retrieved from a base partition object using rm_get_data()

Description Specification Argument type Notes

Size of a base partition (in Compute
Nodes) in each dimension

RM_BPsize rm_size3D_t *

Size of the machine in base partition units RM_Msize rm_size3D_t *

Number of base partitions in the machine RM_BPNum int *

First base partition in the list RM_FirstBP rm_BP_t **

Next base partition in the list RM_NextBP rm_BP_t **

Number of switches in the machine RM_SwitchNum int *

First switch in the list RM_FirstSwitch rm_switch_t **

Next switch in the list RM_NextSwitch rm_switch_t **

Number of wires in the machine RM_WireNum int *

First wire in the list RM_FirstWire rm_wire_t **

Next wire in the list RM_NextWire rm_wire_t **

Description Specification Argument type Notes

Base partition identifier RM_BPID rm_bp_id_t * free required

Base partition state RM_BPState rm_BP_state_t *

Sequence ID for the base
partition state

RM_BPStateSeqID rm_sequence_id_t *

Location of the base partition
in the 3D machine

RM_BPLoc rm_location_t *

Identifier of the partition
assocated with the base
partition

RM_BPPartID pm_partition_id_t * free required.
If no partition is
associated, NULL
is returned.
178 IBM System Blue Gene Solution: Blue Gene/P Application Development

Table 11-6 shows the values that are set in the base partition object using rm_set_data().

Table 11-6 Values set in a base partition object using rm_set_data()

Node card list object
The node card list object (rm_nodecard_list_t) contains a list of node card objects. The node
card list object is retrieved by calling the rm_get_nodecards() API for a given base partition.
See Table 11-7.

Table 11-7 Values retrieved from a node card list object using rm_get_data()

State of the partition
assocated with the base
partition

RM_BPPartState rm_partition_state_t *

Sequence ID for the state of
the partition assocated with
the base partition

RM_BPStateSeqID rm_sequence_id_t *

Flag indicating whether this
base partition is being used by
a small partition (smaller than
a base partition)

RM_BPSDB int * 0=No
1=Yes

Flag indicating whether this
base partition is being divided
into one or more small
partitions

RM_BPSD int * 0=No
1=Yes

Compute Node memory size
for the base partition

RM_BPComputeNodeMemory rm_BP_computenode_memory_t *

Number of available node
cards

RM_BPAvailableNodeCards int *

Number of available I/O Nodes RM_BPNumberIONodes int *

Description Specification Argument type Notes

Description Specification Argument type Notes

Base partition identifier RM_BPID rm_bp_id_t free required

Description Specification Argument type Notes

Number of node cards in the list RM_NodeCardListSize int *

First node card in the list RM_NodeCardListFirst rm_nodecard_t **

Next node card in the list RM_NodeCardListNext rm_nodecard_t **
Chapter 11. Control system (Bridge) APIs 179

Node card object
The node card object (rm_nodecard_t) represents a node card within a base partition. The
node card object is retrieved from the node card list object using the RM_NodeCardListFirst
and RM_NodeCardListNext specifications. See Table 11-8.

Table 11-8 Values retrieved from a node card object using rm_get_data()

Table 11-9 shows the values that are set in a node card object when using rm_set_data().

Table 11-9 Values set in a node card object using rm_set_data()

Description Specification Argument type Notes

Node card identifier RM_NodeCardID rm_nodecard_id_t * free required;
possible values:
N00..N15

The quadrant of the base partition that
this node card is installed

RM_NodeCardQuarter rm_quarter_t *

Node card state RM_NodeCardState rm_nodecard_state_t *

Sequence ID for the node card state RM_NodeCardStateSeqID rm_sequence_id_t *

Number of I/O Nodes on the node card
(can be 0, 1, or 2)

RM_NodeCardIONodes int *

Identifier of the partition assocated
with the node card

RM_NodeCardPartID pm_partition_id_t * free required.
If no partition is
associated,
NULL is
returned.

State of the partition assocated with
the node card

RM_NodeCardPartState rm_partition_state_t *

Sequence ID for the state of the
partition assocated with the node card

RM_NodeCardPartStateSeqID rm_sequence_id_t *

Flag indicating whether the node card
is being used by a partition whose size
is smaller than a node card

RM_NodeCardSDB int * 0=No
1=Yes

Number of I/O Nodes in a list RM_NodeCardIONodeNum int *

First I/O Node in the node card RM_NodeCardFirstIONode rm_ionode_t **

Next I/O Node in the node card RM_NodeCardNextIONode rm_ionode_t **

Description Specification Argument type Notes

Node card identifier RM_NodeCardID rm_nodecard_id_t

Number of I/O Nodes in list RM_NodeCardIONodeNum int *

First I/O Node in the node card RM_NodeCardFirstIONode rm_ionode_t *

Next I/O Node in the node card RM_NodeCardNextIONode rm_ionode_t *
180 IBM System Blue Gene Solution: Blue Gene/P Application Development

I/O Node object
The I/O Node object (rm_ionode_t) represents an I/O Node within a node card. The I/O Node
object is retrieved from the node card object using the RM_NodeCardFirstIONode and
RM_NodeCardNextIONode specifications. See Table 11-10.

Table 11-10 Values retrieved from an I/O Node object using rm_get_data()

Table 11-11 shows the values that are set in an I/O Node object by using rm_set_data().

Table 11-11 Values set in an I/O Node object using rm_set_data()

Switch object
The switch object (rm_switch_t) represents a switch in the Blue Gene system. The switch
object is retrieved from the following specifications:

� The Blue Gene object using the RM_FirstSwitch and RM_NextSwitch specifications

� The partition object using the RM_PartitionFirstSwitch and RM_PartitionNextSwitch
specifications

Description Specification Argument type Notes

I/O Node identifier RM_IONodeID rm_ionode_id_t * Possible values:
J00, J01;
free required

Node card identifier RM_IONodeNodeCardID rm_nodecard_id_t * Possible values:
N00..N15;
free required

IP address RM_IONodeIPAddress char ** free required

MAC address RM_IONodeMacAddress char ** free required

Identifier of the partition assocated
with the I/O Node

RM_IONodePartID pm_partition_id_t * free required.
If no partition is
associated with this
I/O Node, NULL is
returned.

State of the partition assocated with
the I/O Node

RM_IONodePartState rm_partition_state_t *

Sequence ID for the state of the
partition assocated with the I/O
Node

RM_IONodePartStateSeqID rm_sequence_id_t *

Description Specification Argument type Notes

I/O Node identifier RM_IONodeID rm_ionode_id_t Possible values: J00, J01
Chapter 11. Control system (Bridge) APIs 181

Table 11-12 shows the values that are retrieved from a switch object using rm_get_data().

Table 11-12 Values retrieved from a switch object using rm_get_data()

Table 11-13 shows the values that are set in a switch object using rm_set_data().

Table 11-13 Values set in a switch object using rm_set_data()

Description Specification Argument type Notes

Switch identifier RM_SwitchID rm_switch_id_t * free required

Identifier of the base partition
connected to the switch

RM_SwitchBPID rm_BP_id_t * free required

Switch state RM_SwitchState rm_switch_state_t *

Sequence ID for the switch state RM_SwitchStateSeqID rm_sequence_id_t *

Switch dimension RM_SwitchDim rm_dimension_t * Values:
� RM_DIM_X
� RM_DIM_Y
� RM_DIM_Z

Number of connections in the switch RM_SwitchConnNum int * A connection is a pair
of ports that are
connected internally in
the switch.

First connection in the list RM_SwitchFirstConnection rm_connection_t *

Next connection in the list RM_SwitchNextConnection rm_connection_t *

Description Specification Argument type Notes

Switch identifier RM_SwitchID rm_switch_id_t *

Number of connections in the
switch

RM_SwitchConnNum int * A connection is a pair of
ports that are connected
internally in the switch.

First connection in the list RM_SwitchFirstConnection rm_connection_t *

Next connection in the list RM_SwitchNextConnection rm_connection_t *
182 IBM System Blue Gene Solution: Blue Gene/P Application Development

Wire object
The wire object (rm_wire_t) represents a wire in the Blue Gene/P system. The wire object is
retrieved from the Blue Gene/P object using the RM_FirstWire and RM_NextWire
specifications. See Table 11-14.

Table 11-14 Values retrieved from a wire object using rm_get_data()

Port object
The port object (rm_port_t) represents a port for a switch in the Blue Gene System. The port
object is retrieved from the wire object using the RM_WireFromPort and RM_WireToPort
specifications. See Table 11-15.

Table 11-15 Values retrieved from a port object using rm_get_data()

Partition list object
The partition list object (rm_partition_list_t) contains a list of partition objects. The partition
list object is retrieved by calling the rm_get_partitions() or rm_get_partitions_info() API.
See Table 11-16.

Table 11-16 Values retrieved from a partition list object using rm_get_data()

Description Specification Argument type Notes

Wire identifier RM_WireID rm_wire_id_t * free required

Wire state RM_WireState rm_wire_state_t * The state can be UP or
DOWN.

Source port RM_WireFromPort rm_port_t **

Destination port RM_WireToPort rm_port_t **

Identifier of the partition
associated with the wire

RM_WirePartID pm_partition_id_t * free required. If no
partition is associated,
NULL is returned.

State of the partition associated
with the wire

RM_WirePartState rm_partition_state_t *

Sequence ID for the state of the
partition associated with the wire

RM_WirePartStateSeqID rm_sequence_id_t *

Description Specification Argument type Notes

Identifier of the base
partition or switch
associated with the port

RM_PortComponentID rm_component_id_t * free required

Port identifier RM_PortID rm_port_id_t * Possible values for base partitions:
plus_x minus_x, plus_y, minus_y,
plus_z minus_z.
Possible values for switches: s0..S5

Description Specification Argument type Notes

Number of partitions in the list RM_PartListSize int *

First partition in the list RM_PartListFirstPart rm_partition_t **

Next partition in the list RM_PartListNextPart rm_partition_t **
Chapter 11. Control system (Bridge) APIs 183

Partition object
The partition object (rm_partition_t) represents a partition that is defined in the Blue Gene
system. The partition object is retrieved from the partition list object using the
RM_PartListFirstPart and RM_PartListNextPart specifications. A new partition object is
created using the rm_new_partition() API. After setting the appropriate fields in a new
partition object, the partition can be added to the system using the rm_add_partition() API.
See Table 11-17.

Table 11-17 Values retrieved from a partition object using rm_get_data()

Description Specification Argument type Notes

Partition identifier RM_PartitionID pm_partition_id_t * free required

Partition state RM_PartitionState rm_partition_state_t *

Sequence ID for the partition state RM_PartitionStateSeqID rm_sequence_id_t *

Connection type of the partition RM_PartitionConnection rm_connection_type_t * Values: TORUS
or MESH

Partition description RM_PartitionDescription char ** free required

Flag indicating whether this partition
is a partition smaller than the base
partition

RM_PartitionSmall int * 0=No
1=Yes

Number of used processor sets
(psets) per base partition

RM_PartitionPsetsPerBP int *

Job identifier of the current job RM_PartitionJobID int * If no job is
currently on the
partition, zero is
returned

User name of the user who submitted
the job

RM_PartitionUserName char ** free required

Partition options RM_PartitionOptions char ** free required

File name of the machine loader
image

RM_PartitionMloaderImg char ** free required

Comma-separated list of images to
load on the Compute Nodes

RM_PartitionCnloadImg char ** free required

Comma-separated list of images to
load on the I/O Nodes

RM_PartitionIoloadImg char ** free required

Number of base partitions in the
partition

RM_PartitionBPNum int *

First base partition in the partition RM_PartitionFirstBP rm_BP_t **

Next base partition in the partition RM_PartitionNextBP rm_BP_t **

Number of switches in the partition RM_PartitionSwitchNum int *

First switch in the partition RM_PartitionFirstSwitch rm_switch_t **

Next switch in the partition RM_PartitionNextSwitch rm_switch_t **

Number of node cards in the partition RM_PartitionNodeCardNum int *

First node card in the partition RM_PartitionFirstNodeCard rm_nodecard_t **
184 IBM System Blue Gene Solution: Blue Gene/P Application Development

Table 11-18 shows the values that are set in a partition object using rm_set_data().

Table 11-18 Values set in a partition object using rm_set_data()

Next node card in the partition RM_PartitionNextNodeCard rm_nodecard_t **

Number of users of the partition RM_PartitionUsersNum int *

First user name for the partition RM_PartitionFirstUser char ** free required

Next user name for the partition RM_PartitionNextUser char ** free required

Description Specification Argument type Notes

Description Specification Argument type Notes

Partition identifier RM_PartitionID pm_partition_id_t Up to 32 characters for a
new partition ID, or up to
16 characters followed by
an asterisk (*) for a prefix
for a unique name

Connection type of the
partition

RM_PartitionConnection rm_connection_type_t * Values: TORUS or MESH

Partition description RM_PartitionDescription char *

Flag indicating whether this
partition is a partition smaller
than the base partition

RM_PartitionSmall int * 0=No
1=Yes

Number of used processor
sets (psets) per base partition

RM_PartitionPsetsPerBP int *

User name who submitted
the job

RM_PartitionUserName char *

File name of the machine
loader image

RM_PartitionMloaderImg char *

Comma-separated list of
images to load on the
Compute Nodes

RM_PartitionCnloadImg char *

Comma-separated list of
images to load on the I/O
Nodes

RM_PartitionIoloadImg char *

Number of base partitions in
the partition

RM_PartitionBPNum int *

First base partition in the
partition

RM_PartitionFirstBP rm_BP_t *

Next base partition in the
partition

RM_PartitionNextBP rm_BP_t *

Number of switches in the
partition

RM_PartitionSwitchNum int *

First switch in the list in the
partition

RM_PartitionFirstSwitch rm_switch_t *

Next switch in the partition RM_PartitionNextSwitch rm_switch_t *
Chapter 11. Control system (Bridge) APIs 185

Job list object
The job list object (rm_job_list_t) contains a list of job objects. The job list object is retrieved
by calling the rm_get_jobs() API. See Table 11-19.

Table 11-19 Values retrieved from a job list object using rm_get_data()

Job object
The job object (rm_job_t) represents a job defined in the Blue Gene system. The job object is
retrieved from the job list object using the RM_JobListFirstJob and RM_JobListNextJob
specifications. A new job object is created using the rm_new_job() API. After setting the
appropriate fields in a new job object, the job can be added to the system using the
rm_add_job() API. See Table 11-20.

Table 11-20 Values retrieved from a job object using rm_get_data()

Number of node cards in the
partition

RM_PartitionNodeCardNum int *

First node card in the partition RM_PartitionFirstNodecard rm_nodecard_t *

Next node card in the
partition

RM_PartitionNextNodecard rm_nodecard_t *

Description Specification Argument type Notes

Description Specification Argument type Notes

Number of jobs in the list RM_JobListSize int *

First job in the list RM_JobListFirstJob rm_job_t **

Next job in the list RM_JobListNextJob rm_job_t **

Description Specification Argument type Notes

Job identifier RM_JobID rm_job_id_t * free required

Identifier is unique across
all jobs on the system.

Identifier of the partition assigned
for the job

RM_JobPartitionID pm_partition_id_t * free required

Job state RM_JobState rm_job_state_t *

Sequence ID for the job state RM_JobStateSeqID rm_sequence_id_t *

Executable file name for the job RM_JobExecutable char ** free required

Name of the user who submitted
the job

RM_JobUserName char ** free required

Integer containing the ID given to
the job by the database

RM_JobDBJobID db_job_id_t *

Job output file name RM_JobOutFile char ** free required

Job error file name RM_JobErrFile char ** free required

Job output directory name RM_JobOutDir char ** free required

This directory contains
the output files if a full
path is not given.
186 IBM System Blue Gene Solution: Blue Gene/P Application Development

Error text returned from the control
daemons

RM_JobErrText char ** free required

Arguments for the job executable RM_JobArgs char ** free required

Environment parameter needed for
the job

RM_JobEnvs char ** free required

Flag indicating whether the job was
retrieved from the history table

RM_JobInHist int * 0=No
1=Yes

Job mode RM_JobMode rm_job_mode_t * Indicates Virtual Node,
SMP, or DUAL mode

System call trace indicator for
Compute Nodes

RM_JobStrace rm_job_strace_t *

Job start time

The format is
yyyy-mm-dd-hh.mm.ss.nnnnnn.
If the job never went to running
state, it will be an empty string. Data
is only valid for completed jobs. The
rm_get_data() specification
RM_JobInHist can be used to
determine whether a job has
completed. If the job is an active
job, then the value returned is
meaningless.

RM_JobStartTime char ** free required

Job end time

Format is
yyyy-mm-dd-hh.mm.ss.nnnnnn.
Data is valid only for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, then the value returned
is meaningless.

RM_JobEndTime char ** free required

Job run time in seconds

Data is only valid for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, then the value returned
is meaningless.

RM_JobRunTime rm_job_runtime_t *

Description Specification Argument type Notes
Chapter 11. Control system (Bridge) APIs 187

Table 11-21 shows the values that are set in a job object using rm_set_data().

Table 11-21 Values set in a job object using rm_set_data()

Number of Compute Nodes used
by the job

Data is only valid for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, then the value returned
is meaningless.

RM_JobComputeNodesUsed rm_job_computenodes
_used_t *

Job exit status

Data is only valid for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, then the value returned
is meaningless.

RM_JobExitStatus rm_job_exitstatus_t *

User UID RM_JobUserUid rm_job_user_uid_t * Zero is returned when
querying existing jobs.

User GID RM_JobUserGid rm_job_user_gid_t * Zero is returned when
querying existing jobs.

Description Specification Argument type Notes

Description Specification Argument type Notes

Job identifier RM_JobID rm_job_id_t This must be unique across all jobs
on the system; if not, return code
JOB_ALREADY_DEFINED is
returned.

Partition identifier assigned for
the job

RM_JobPartitionID pm_partition_id_t This field can be left blank when
adding a new job to the system.

Executable file name for the job RM_JobExecutable char *

Name of the user who submitted
the job

RM_JobUserName char *

Job output file name RM_JobOutFile char *

Job error file name RM_JobErrFile char *

Job output directory RM_JobOutDir char * This directory contains the output
files if a full path is not given.

Arguments for the job executable RM_JobArgs char *

Environment parameter needed
for the job

RM_JobEnvs char *

Job mode RM_JobMode rm_job_mode_t * Possible values: Virtual Node,
SMP or DUAL mode
188 IBM System Blue Gene Solution: Blue Gene/P Application Development

11.2.9 Object allocator APIs
In this section, we describe the APIs that are used to allocate memory for objects used with
other API calls:

� status_t rm_new_BP(rm_BP_t **bp);

Allocates storage for a new base partition object.

� status_t rm_new_ionode(rm_ionode_t **io);

Allocates storage for a new I/O Node object.

� status_t rm_new_job(rm_job_t **job);

Allocates storage for a new job object.

� status_t rm_new_nodecard(rm_nodecard_t **nc);

Allocates storage for a new node card object.

� status_t rm_new_partition(rm_partition_t **partition);

Allocates storage for a new partition object.

� status_t rm_new_switch(rm_switch_t **switch);

Allocates storage for a new switch object.

11.2.10 Object deallocator APIs
In this section, we describe the APIs that used to deallocate memory for objects that are
created by other API calls:

� status_t rm_free_BG(rm_BG_t *bg);

Frees storage for a Blue Gene object.

� status_t rm_free_BP(rm_BP_t *bp);

Frees storage for a base partition object.

� status_t rm_free_ionode(rm_ionode_t *io);

Frees storage for an I/O Node object.

� status_t rm_free_job(rm_job_t *job);

Frees storage for a job object.

� status_t rm_free_job_list(rm_job_list_t *job_list);

Frees storage for a job list object.

� status_t rm_free_nodecard(rm_nodecard_t *nc);

Frees storage for a node card object.

System call trace indicator for
Compute Nodes

RM_JobStrace rm_job_strace_t *

User UID RM_JobUserUid rm_job_user_uid_t * This value can be set when adding
a job.

User GID RM_JobUserGid rm_job_user_gid_t * This value can be set when adding
a job.

Description Specification Argument type Notes
Chapter 11. Control system (Bridge) APIs 189

� status_t rm_free_nodecard_list(rm_nodecard_list_t *nc_list);

Frees storage for a node card list object.

� status_t rm_free_partition(rm_partition_t *partition);

Frees storage for a partition object.

� status_t rm_free_partition_list(rm_partition_list_t *part_list);

Frees storage for a partition list object.

� status_t rm_free_switch(rm_switch_t *switch);

Frees storage for a switch object.

11.2.11 Messaging APIs
In this section, we describe the set of thread-safe Messaging APIs. These APIs are used by
the Bridge as well as by other components of the job management system, such as the
mpirun program that ships with the Blue Gene software. Each message is written using the
following format:

<Timestamp> Component (Message type): Message text

Here is an example:

<Mar 9 04:24:30> BRIDGE (Debug): rm_get_BG()- Completed Successfully

The message can be one of the following types:

� MESSAGE_ERROR: Error messages
� MESSAGE_WARNING: Warning messages
� MESSAGE_INFO: Informational messages
� MESSAGE_DEBUG1: Basic debug messages
� MESSAGE_DEBUG2: More detailed debug messages
� MESSAGE_DEBUG3: Very detailed debug messages

The following verbosity levels, to which the messaging APIs can be configured, define the
policy:

� Level 0: Only error or warning messages are issued.
� Level 1: Level 0 messages and informational messages are issued.
� Level 2: Level 1 messages and basic debug messages are issued.
� Level 3: Level 2 messages and more debug messages are issued.
� Level 4: The highest verbosity level. All messages that will be printed are issued.

By default, only error and warning messages are written. To have informational and minimal
debug messages written, set the verbosity level to 2. To obtain more detailed debug
messages, set the verbosity level to 3 or 4.

In the following list, we describe the Message APIs:

� int isSayMessageLevel(message_type_t m_type);

Tests the current messaging level. Returns 1 if the specified message type is included in
the current messaging level; otherwise returns 0.

� void closeSayMessageFile();

Closes the messaging log file.

Note: Any messaging output after calling this method is sent to stderr.
190 IBM System Blue Gene Solution: Blue Gene/P Application Development

� int sayFormattedMessage(FILE * curr_stream, const void * buf, size_t bytes);

Logs a preformatted message to the messaging output without a time stamp.

� void sayMessage(const char * component, message_type_t m_type, const char *
curr_func, const char * format, ...);

Logs a message to the messaging output.

The format parameter is a format string that specifies how subsequent arguments are
converted for output. This value must be compatible with printf format string
requirements.

� int sayPlainMessage(FILE * curr_stream, const char * format, ...);

Logs a message to the messaging output without a time stamp.

The format parameter is a format string that specifies how subsequent arguments are
converted for output. This value must be compatible with the printf format string
requirements.

� void setSayMessageFile(const char* oldfilename, const char* newfilename);

Opens a new file for messaging logging.

� void setSayMessageLevel(unsigned int level);

Sets the messaging verbose level.

� void setSayMessageParams(FILE * stream, unsigned int level);

Uses the provided file for message logging and sets the logging level.

11.3 Small partition allocation
The base allocation unit in the Blue Gene/P system is a base partition. Partitions are
composed of whole numbers of base partitions, except in two special cases concerning small
partitions. A small partition is a partition that is comprised of a fraction of a base partition.
Small partitions can be created in the following sizes:

� 16 Compute Nodes

A 16-node partition is comprised of 16 Compute Nodes from a single node card. The node
card must have two installed I/O Nodes in order to be used for a 16-node partition.

� 32 Compute Nodes

A 32-node partition is comprised of all the Compute Nodes in a single node card. The
node card must have at least one installed I/O Node in order to be used for a 32-node
partition.

� 64 Compute Nodes

A 64-node partition is comprised of two adjacent node cards beginning with N00, N02,
N04, N06, N08, N10, N12, or N14. The first node card in the pair must have at least one
installed I/O Node in order to be used for a 64-node partition.

Note: This method can be used to atomically rotate log files.

Note: This method has been deprecated in favor of the setSayMessageFile() and
setSayMessageLevel() methods.
Chapter 11. Control system (Bridge) APIs 191

� 128 Compute Nodes

A 128-node partition is comprised of set of four adjacent node cards beginning with N00,
N04, N08, or N12. The first node card in the set must have at least one installed I/O Node
in order to be used for a 128-node partition.

� 256 Compute Nodes

A 256-node partition is comprised of a set of eight adjacent node cards beginning with
N00 or N08. The first node card in the set must have at least one installed I/O Node in
order to be used for a 256-node partition.

11.3.1 Subdivided busy base partitions
It is important that you understand the concept of subdivided busy base partitions when
working with small partitions. A base partition is considered subdivided busy if at least one
partition, defined for a subset of its node cards, is busy. A partition is busy if its state is not
free (RM_PARTITION_FREE).

A base partition that is subdivided busy cannot be booted as a whole because some of its
hardware is unavailable. A base partition can have small partitions and full midplane
partitions (multiples of 512 Compute Nodes) defined for it in the database. If the base
partition has small partitions defined, they do not have to be in use, and a full midplane
partition can use the actual midplane. In this case, the partition name that is using the base
partition is returned on the RM_BPPartID specification.

For small partitions, multiple partitions can use the same base partition. This is the
subdivided busy (SDB) example. In this situation, the value returned for the RM_BPPartID
specification is meaningless. You must use the RM_BPSDB specification to determine whether
the base partition is subdivided busy (small partition in use).

11.4 API examples

In this section, we provide example API calls for several common situations.

11.4.1 Retrieving base partition information

The code in Example 11-2 retrieves the Blue Gene/P hardware information and prints some
information about each base partition in the system.

Example 11-2 Retrieving base partition information

#include "rm_api.h"
int main(int argc, char *argv[]) {
 status_t rmrc;
 rm_BG_t *rmbg;
 int bpNum;
 enum rm_specification getOption;
 rm_BP_t *rmbp;
 rm_bp_id_t bpid;
 rm_BP_state_t state;
 rm_location_t loc;
 rmrc = rm_set_serial("BGP");
 rmrc = rm_get_BG(&rmbg);
 if (rmrc) {
 printf("Error occured calling rm_get_BG: %d\n", rmrc);
 return -1;
192 IBM System Blue Gene Solution: Blue Gene/P Application Development

 }
 rm_get_data(rmbg, RM_BPNum, &bpNum);
 printf("Number of base partitions: %d\n", bpNum);
 getOption = RM_FirstBP;
 for (int ii = 0; ii < bpNum; ++ii) {
 rm_get_data(rmbg, getOption, &rmbp);
 rm_get_data(rmbp, RM_BPID, &bpid);
 rm_get_data(rmbp, RM_BPState, &state);
 rm_get_data(rmbp, RM_BPLoc, &loc);
 printf(" BP %s with state %d at location <%d,%d,%d>\n", bpid, state, loc.X,
loc.Y, loc.Z);
 free(bpid);
 getOption = RM_NextBP;
 }
 rm_free_BG(rmbg); // Deallocate memory from rm_get_BG()
}

The example code can be compiled and linked with the commands shown in Figure 11-5.

Figure 11-5 Example compile and link commands

11.4.2 Retrieving node card information

The code in Example 11-3 shows how to retrieve information about the node cards for a base
partition. The rm_get_nodecards() function retrieves a list of all the node cards in a base
partition. The list always contains exactly 16 node cards.

Example 11-3 Retrieving node card information

int getNodeCards(rm_bp_id_t bpid) {
 int rmrc;
 rm_nodecard_list_t *ncList;
 int ncNum;
 enum rm_specification getOption;
 rm_nodecard_t *rmnc;
 rm_nodecard_id_t ncid;
 rm_nodecard_state_t ncState;
 int ioNum;
 rmrc = rm_get_nodecards(bpid, &ncList);
 if (rmrc) {
 printf("Error occured calling rm_get_nodecards: %d\n", rmrc);
 return -1;
 }
 rmrc = rm_get_data(ncList, RM_NodeCardListSize, &ncNum);
 printf(" Base partition %s has %d nodecards\n", bpid, ncNum);
 getOption = RM_NodeCardListFirst;
 for (int ii = 0; ii < ncNum; ++ii) {
 rmrc = rm_get_data(ncList, getOption, &rmnc);
 rmrc = rm_get_data(rmnc, RM_NodeCardID, &ncid);
 rmrc = rm_get_data(rmnc, RM_NodeCardState, &ncState);
 rmrc = rm_get_data(rmnc, RM_NodeCardIONodes, &ioNum);
 printf(" Node card %s with state %d has %d I/O nodes\n", ncid, ncState,
ioNum);
 free(ncid);

g++ -m64 -pthread -I/bgsys/drivers/ppcfloor/include -c sample1.cc -o sample1.o_64

g++ -m64 -pthread -o sample1 sample1.o_64 -L/bgsys/drivers/ppcfloor/lib64 -lbgpbridge
Chapter 11. Control system (Bridge) APIs 193

 getOption = RM_NodeCardListNext;
 }
 rm_free_nodecard_list(ncList);
}

11.4.3 Defining a new small partition
Example 11-4 contains pseudo code that shows how to allocate a new small partition.

Example 11-4 Allocating a new small partition

int isSmall = 1;

rm_new_partition(&newpart); //Allocate space for new partition

// Set the descriptive fields
rm_set_data(newpart,RM_PartitionUserName, username);
rm_set_data(newpart,RM_PartitionMloaderImg, BGP_MLOADER_IMAGE);
rm_set_data(newpart,RM_PartitionCnloadImg, BGP_CNLOAD_IMAGE);
rm_set_data(newpart,RM_PartitionIoloadImg, BGP_IOLOAD_IMAGE);
rm_set_data(newpart,RM_PartitionSmall, &isSmall); // Mark partition as a small partition

// Add a single BP
rm_new_BP(rm_BP_t **BP);
rm_set_data(BP, RM_BPID, “R01-M0”);
rm_set_data(newpart, RM_PartitionFirstBP, BP);

// Add the node card(s) comprising the partition
ncNum = 4; // The number of node cards is 4 for 128 compute nodes
rm_set_data(newpart, RM_PartitionNodeCardNum, &ncNum); // Set the number of node cards
for (1 to ncNum) {

// all four node cards must belong to same quarter!
rm_new_nodecard(rm_nodecard_t **nc); // Allocate space for new node card
rm_set_data(nc, RM_NodeCardID, ncid);
rm_set_data(newpart, RM_PartitionFirstNodeCard, nc); // Add the node card to the

partition
 or

rm_set_data(newpart, RM_PartitionNextNodeCard, nc);
rm_free_nodecard(nc);

}

rm_add_partition(newpart);
194 IBM System Blue Gene Solution: Blue Gene/P Application Development

11.4.4 Querying a small partition

Example 11-5 contains pseudo code that shows how to query a small partition for its node
cards.

Example 11-5 Querying a small partition

rm_get_partition(part_id, &mypart); // Get the partition
rm_get_data(mypart, RM_PartitionSmall, &small); // Check if this is a “small” partition
if (small) {

rm_get_data(mypart,RM_PartitionFirstBP, &BP); // Get the First (and only) BP
rm_get_data(mypart,RM_PartitionNodeCardNum, &nc_num); // Get the number of node cards

for (1 to nc_num) {
rm_get_data(mypart, RM_PartitionFirstNodeCard, &nc);

or
rm_get_data(mypart, RM_PartitionNextNodeCard, &nc);

rm_get_data(nc, RM_NodeCardID, &ncid); // Get the id
rm_get_data(nc, RM_NodeCardQuarter, &quarter); // Get the quarter
rm_get_data(nc, RM_NodeCardState, &state); // Get the state
rm_get_data(nc, RM_NodeCardIONodes, &ionodes); // Get num of I/O nodes
rm_get_data(nc, RM_NodeCardPartID, &partid); // Get the partition ID
rm_get_data(nc, RM_NodeCardPartState, &partstate); // Get the partition state

print node card information

}
}

Chapter 11. Control system (Bridge) APIs 195

196 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 12. Real-time Notification APIs

With the Blue Gene/P system, two programming models can handle state transitions for jobs,
blocks, base partitions, switches, and node cards. The first model is based on a polling
model, where the Bridge application programming interface (API) caller is responsible for the
continuous polling of state information. The second model consists of Real-time Notification
APIs that allow callers to register for state transition event notifications.

The Real-time Notification APIs are designed to eliminate the need for a resource
management system to constantly have to read in all of the machine state in order to detect
changes. The APIs allow the caller to be notified in real-time of state changes to jobs, blocks
and hardware, such as base partitions, switches, and node cards. After a resource
management application has obtained an initial snapshot of the machine state using the
Bridge APIs, the Bridge APIs can then determine to only get notified of changes, and the
Real-time Notification APIs provides that mechanism.

In this chapter, we describe the thread-safe Real-time Notification APIs for the Blue Gene/P
system that can be used by a resource management application.

12
© Copyright IBM Corp. 2007. All rights reserved. 197

12.1 API support overview
In the following sections, we present an overview of the support provided by the APIs.

12.1.1 Requirements
There are several requirements for writing programs to the Real-time Notification APIs as
explained in the following sections:

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� When the application calls rt_init, the API looks for the DB_PROPERTY environment
variable. The corresponding db.properties file indicates the port on which the real-time
server is listening and that the real-time client will use to connect to the server. The
environment variable should be set to point to the actual db.properties file location as
follows:

– On a bash shell

export DB_PROPERTY=/bgsys/drivers/ppcfloor/bin/db.properties

– On a csh shell

setenv DB_PROPERTY /bgsys/drivers/ppcfloor/bin/db.properties

� C and C++ are supported with the GNU gcc 4.1.1 level compilers. For more information
and downloads, refer to the following Web address:

http://gcc.gnu.org/

� The include file is /bgsys/drivers/ppcfloor/include/rt_api.h.

� Only 64-bit shared library support is provided. Link your real-time application with the file
/bgsys/drivers/ppcfloor/lib64/libbgrealtime.so.

Both the include and shared library files are installed as part of the standard system
installation. They are contained in the bgpbase.rpm file.

Makefile excerpt
Example 12-1 shows a possible excerpt from a makefile that you might want to create to help
automate builds of your application. This sample is shipped in the
/bgsys/drivers/ppcfoor/doc/realtime/simple/Makefile directory. In this makefile, the program
that is being built is rt_sample_app, and the source is in the rt_sample_app.cc file.

Example 12-1 Makefile excerpt

...
ALL_APPS = rt_sample_app

CXXFLAGS += -w -Wall -g -m64 -pthread
CXXFLAGS += -I/bgsys/drivers/ppcfloor/include

LDFLAGS += -L/bgsys/drivers/ppcfloor/lib64 -lbgrealtime
LDFLAGS += -pthread

.PHONY: all clean default distclean

default: $(ALL_APPS)

all: $(ALL_APPS)
198 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://gcc.gnu.org/

clean:
$(RM) $(ALL_APPS) *.o

distclean: clean

...

Real-time server
Before using these functions, the Blue Gene/P administrator must start the real-time server.
Otherwise the rt_init API returns an RT_CONNECTION_ERROR status code. Configuring
and starting the real-time server is documented in IBM System Blue Gene Solution: Blue
Gene/P System Administration, SG24-7417.

12.1.2 General comments
All of the real-time APIs have general considerations that apply to all calls. We highlight the
common features here:

� All the API calls return an rt_status_t, which indicates either success or a status code.
Successful status codes are non-negative, where failure status codes are negative.

� All the API calls take a pointer to rt_handle_t, which is an opaque structure that
represents a stream of real-time messages.

� The real-time APIs use sayMessage APIs for printing debug and error messages. The
application should set the sayMessage logging level before calling the real-time APIs.

Blocking mode versus non-blocking mode
A real-time handle can be in blocking or non-blocking mode. In blocking mode, the
rt_request_realtime API blocks until it can send the request, and the rt_read_msgs API
blocks until there is an event to receive. In non-blocking mode, the rt_request_realtime API
returns RT_WOULD_BLOCK if it cannot send the request. If you get this return code from
rt_request_realtime, you must call it again until it returns RT_FINISHED_PREV. In non-blocking
mode, the rt_read_msgs API returns RT_NO_REALTIME_MSGS immediately if no real-time event
is ready to be processed.

The rt_get_socket_descriptor API can be used to get a file descriptor that can be used with
a select()-type function to wait for a real-time event when a handle is in blocking mode.

The initial blocking or non-blocking mode is set using the rt_init API. An initialized handle
can be set to blocking mode by using the rt_set_blocking API or set to non-blocking mode
by using the rt_set_nonblocking API.

Filtering events
A real-time handle can be configured so that only partition events that affect certain partitions,
job events, or both that affect certain jobs are passed to the application.

Setting the partition filter is done by using the rt_set_filter API with RT_PARTITION as the
filter_type parameter. The filter_names parameter can specify one or more partition IDs
separated by spaces. When the rt_get_msgs API is called, partition events are delivered only
to the application if the partition ID matches any of the partition IDs in the filter. If the
filter_names parameter is set to NULL, then the partition filter is removed and all partition
events are delivered to the application. An example of the value to use for the filter_names
parameter for partition IDs R00-M0 and R00-M1 is R00-M0 R00-M1.
Chapter 12. Real-time Notification APIs 199

Setting the job filter is done by using the rt_set_filter API with RT_JOB as the filter_type
parameter. The filter_names parameter can specify one or more job IDs (as strings)
separated by spaces. When the rt_get_msgs API is called, job events are delivered only to
the application if the job ID matches any of the job IDs in the filter. If the filter_names
parameter is set to NULL, then the job filter is removed and all job events are delivered to the
application. An example of the value to use for the filter_names parameter for job IDs 10030
and 10031 is 10030 10031.

The other use of the rt_set_filter API is to remove both types of filter by passing
RT_CLEAR_ALL in the filter_type parameter.

12.2 Real-time Notification APIs
In this section, we describe the Real-time Notification APIs:

� rt_status_t rt_init(rt_handle_t **handle_out, rt_block_flag_t blocking_flag,
rt_callbacks_t* callbacks);

Initializes a real-time handle. This function gets port of the real-time server from the
db.properties file. The name of the db.properties file must be in the DB_PROPERTY
environment variable, or RT_DB_PROPERTY_ERROR will be returned.

If this function is successful, *handle_out is set to a valid handle that is connected to the
real-time server. The blocking state for the handle is set based on the blocking flag
parameter. The callbacks for the handle are set to the callbacks parameter. If this function
is not successful and handle_out is not NULL, then *handle_out is set to NULL.

� rt_status_t rt_close(rt_handle_t **handle);

Closes a real-time handle. The handle must not be used after calling this function.

� rt_status_t rt_set_blocking(rt_handle_t **handle);

Sets a real-time handle to blocking mode.

� rt_status_t rt_set_nonblocking(rt_handle_t **handle);

Sets a real-time handle to non-blocking mode.

� rt_status_t rt_set_filter(rt_handle_t **handle, rt_filter_type_t filter_type,
const char* filter_names);

Sets the filter on a real-time handle. The filter names consists of a C-style string that
contains a space-separated list of names to filter on. If removing filter entries, then set this
to NULL. For filtering on partition names, consider this example of R01-M0 R02-M1 R03.

� rt_status_t rt_request_realtime(rt_handle_t **handle);

Requests real-time events for this handle. If this function returns RT_WOULD_BLOCK,
then the request has not been sent. Call this function again until it returns
RT_FINISHED_PREV, which indicates that the previous request has been sent.

If this function returns RT_FINISHED_PREV, then a new request was not sent.

� rt_status_t rt_get_socket_descriptor(rt_handle_t **handle, int *sd_out);

Gets the socket descriptor that is used by the real-time APIs. You can use this socket
descriptor with the select() or poll() Linux APIs to wait until a real-time message is
ready to be read. Other file or socket descriptor APIs, such as close(), should not be used
on the socket descriptor returned by this API.

� rt_status_t rt_read_msgs(rt_handle_t **handle, void* data);

Receives real-time events on a handle. If the handle is blocking, this function blocks as
long as there are no events waiting. If the handle is non-blocking, the function returns
200 IBM System Blue Gene Solution: Blue Gene/P Application Development

immediately with RT_NO_REALTIME_MSGS if no events are waiting. If an event is waiting to be
processed, the callback associated with the event type is called. If the callback returns
RT_CALLBACK_CONTINUE, then events continue to be processed.

12.3 Real-time callback functions
Developers who use the Real-time Notification APIs must write functions that will be called
when real-time events are received. These functions are callback functions because the
application calls the rt_read_msgs API, which then calls the function that is supplied by the
application.

Pointers to the callback functions must be set in an rt_callbacks_t structure. When a
real-time event is received, the corresponding function is called using that pointer. The
application passes its rt_callbacks_t into rt_init, which is stored for use when
rt_read_msgs is called. If the pointer to the callback function in the rt_callbacks_t structure
is NULL, then the event is discarded.

In addition to setting the callback functions in the rt_callbacks_t structure, the application
must also set the version field to RT_CALLBACK_VERSION_0. With a later version of the real-time
APIs, you can allow different callbacks and provide a different version for this field.

From inside your callback function, you cannot call a real-time API using the same handle on
which the event occurred. Otherwise your application will deadlock.

The return type of the callback functions is an indicator of whether rt_read_msgs should
continue to attempt to receive another real-time event on the handle or whether it should stop.
If the callback function returns RT_CALLBACK_CONTINUE, then rt_read_msgs continues to
attempt to receive real-time events. If the callback function returns RT_CALLBACK_QUIT, then
rt_read_msgs does not attempt to receive another real-time event but returns RT_STATUS_OK.

Sequence identifiers (IDs) are associated with the state of each partition, job, base partition,
node card, and switch. A state with a higher sequence ID is newer. If your application gets the
state for an object from the Bridge APIs in addition to the real-time APIs, you will want to
discard any state that has a lower sequence ID for the same object.

These APIs provide the raw state for partitions, jobs, base partitions, node cards, and
switches in addition to the state. The raw state is the status value that is stored in the
Blue Gene database as a single character, rather than the state enumeration that the Bridge
APIs use. Several raw state values map to a single state value, so that your application might
receive real-time event notifications where the state does not change but the raw state does.
For example, the partition raw states of “A” (allocating), “C” (configuring), and “B” (booting) all
map to the Bridge enumerated state of RM_PARTITION_CONFIGURING.

Real-time callbacks structure
In this section, we describe each of the callbacks that are available to applications in the
rt_callbacks_t structure. We list each field of the structure along with the following
information:

� The description of the event that causes the callback to be invoked

� The signature of the callback function

Your function must match the signature. Otherwise your program will fail to compile.

� A description of each argument to the callback function
Chapter 12. Real-time Notification APIs 201

Field end_cb
The field end_cb callback function is called when a real-time ended event occurs. Your
application does not receive any more real-time events on this handle until you request
real-time events from the server again by calling the rt_request_realtime API.

The function uses the following signature:

cb_ret_t my_rt_end(rt_handle_t **handle, void* extended_args, void* data);

Table 12-1 lists the arguments to the field end_cb function.

Table 12-1 Field end_cb

Field partition_added_cb
The field partition_added_cb function is called when a partition added event occurs.

The function uses the following signature:

cb_ret_t my_rt_partition_added(rt_handle_t **handle, rm_sequence_id_t seq_id,
pm_partition_id_t partition_id, rm_partition_state_t partition_new_state,
rt_raw_state_t partition_raw_new_state, void* extended_args, void* data);

Table 12-2 lists the arguments to the field partition_added_cb function.

Table 12-2 Field partition_added_cb

Field partition_state_changed_cb
The field partition_state_changed_cb function is called when a partition state changed
event occurs.

The function uses the following signature:

cb_ret_t my_rt_partition_state_changed(rt_handle_t **handle, rm_sequence_id_t
seq_id, rm_sequence_id_t previous_seq_id, pm_partition_id_t partition_id,
rm_partition_state_t partition_new_state, rm_partition_state_t
partition_old_state, rt_raw_state_t partition_raw_new_state, rt_raw_state_t
partition_raw_old_state, void* extended_args, void* data);

Argument Description

handle Real-time handle on which the event occurred

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for this partition’s state

partition_id The partition’s ID

partition_new_state The partition’s new state

partition_raw_new_state The partition’s new raw state

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs
202 IBM System Blue Gene Solution: Blue Gene/P Application Development

Table 12-3 lists the arguments to the field partition_state_changed_cb function.

Table 12-3 Field partition_state_changed_cb

Field partition_deleted_cb
The field partition_deleted_cb is called when a partition deleted event occurs.

The function uses the following signature:

cb_ret_t my_rt_partition_deleted(rt_handle_t **handle, rm_sequence_id_t
previous_seq_id, pm_partition_id_t partition_id, void* extended_args, void* data);

Table 12-4 lists the arguments to the field partition_deleted_cb function.

Table 12-4 Field partition_deleted_cb

Field job_added_cb
The field job_added_cb function is called when a job added event occurs.

The function uses the following signature:

cb_ret_t my_rt_job_added(rt_handle_t **handle, rm_sequence_id_t seq_id,
db_job_id_t job_id, pm_partition_id_t partition_id, rm_job_state_t job_new_state,
rt_raw_state_t job_raw_new_state, void* extended_args, void* data);

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for this partition’s new state

previous_seq_id Sequence ID for this partition’s old state

partition_id The partition’s ID

partition_new_state The partition’s new state

partition_old_state The partition’s old state

partition_raw_new_state The partition’s new raw state

partition_raw_old_state The partition’s old raw state

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs

Argument Description

handle Real-time handle on which the event occurred

previous_seq_id Sequence ID for this partition’s state when removed

partition_id The partition’s ID

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs
Chapter 12. Real-time Notification APIs 203

Table 12-5 lists the arguments to the field job_added_cb function.

Table 12-5 Field job_added_cb

Field job_state_changed_cb
The field job_state_changed_cb function is called when a job state changed event occurs.

The function uses the following signature:

cb_ret_t my_rt_job_state_changed(rt_handle_t **handle, rm_sequence_id_t
seq_id,rm_sequence_id_t previous_seq_id, db_job_id_t job_id, pm_partition_id_t
partition_id, rm_job_state_t job_new_state, rm_job_state_t job_old_state,
rt_raw_state_t job_raw_new_state, rt_raw_state_t job_raw_old_state, void*
extended_args, void* data);

Table 12-6 lists the arguments to the field job_state_changed_cb function.

Table 12-6 Field job_state_changed_cb

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the job’s state

job_id The new job’s ID

partition_id ID of the partition to which the job is assigned

job_new_state The job’s new state

job_raw_new_state The job’s new raw state

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the job’s new state

previous_seq_id Sequence ID of the job’s previous state

job_id The job’s ID

partition_id ID of the partition to which the job is assigned

job_new_state The job’s new state

job_old_state The job’s old state

job_raw_new_state The job’s new raw state

job_raw_old_state The job’s old raw state

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs
204 IBM System Blue Gene Solution: Blue Gene/P Application Development

Field job_deleted_cb
The field job_deleted_cb function is called when a job-deleted event occurs.

The function uses the following signature:

cb_ret_t my_rt_job_deleted(rt_handle_t **handle, rm_sequence_id_t previous_seq_id,
db_job_id_t job_id, pm_partition_id_t partition_id, void* extended_args, void*
data);

Table 12-7 lists the arguments to the field job_deleted_cb function.

Table 12-7 Field job_deleted_cb

Field bp_state_changed_cb
The field bp_state_changed_cb is called when a base partition state changed event occurs.

The function uses the following signature:

cb_ret_t (*rt_BP_state_changed_fn_p)(rt_handle_t **handle, rm_sequence_id_t
seq_id, rm_sequence_id_t previous_seq_id, rm_bp_id_t bp_id, rm_BP_state_t
BP_new_state, rm_BP_state_t BP_old_state, rt_raw_state_t BP_raw_new_state,
rt_raw_state_t BP_raw_old_state, void* extended_args, void* data);

Table 12-8 lists the arguments to the field bp_state_changed_cb function.

Table 12-8 Field bp_state_changed_cb

Argument Description

handle Real-time handle on which the event occurred

previous_seq_id Sequence ID of the job’s previous state

job_id The deleted job’s ID

partition_id ID of the partition to which the job was assigned

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID of the base partition’s new state

previous_seq_id Sequence ID of the base partition’s previous state

bp_id The base partition’s ID

BP_new_state The base partition’s new state

BP_old_state The base partition’s old state

BP_raw_new_state The base partition’s new raw state

BP_raw_old_state The base partition’s old raw state

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs
Chapter 12. Real-time Notification APIs 205

Field switch_state_changed_cb
The field switch_state_changed_cb is called when a switch state changed event occurs.

The function uses the following signature:

cb_ret_t my_rt_switch_state_changed(rt_handle_t **handle, rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id, rm_switch_id_t switch_id, rm_bp_id_t bp_id,
rm_switch_state_t switch_new_state, rm_switch_state_t switch_old_state,
rt_raw_state_t switch_raw_new_state, rt_raw_state_t switch_raw_old_state, void*
extended_args, void* data);

Table 12-9 lists the arguments to the field switch_state_changed_cb function.

Table 12-9 Field switch_state_changed_cb

Field nodecard_state_changed_cb
The field nodecard_state_changed_cb is called when a node card state changed event
occurs.

The function uses the following signature:

b_ret_t my_rt_nodecard_state_changed(rt_handle_t **handle, rm_sequence_id_t
seq_id, rm_sequence_id_t previous_seq_id, rm_nodecard_id_t nodecard_id, rm_bp_id_t
bp_id, rm_nodecard_state_t nodecard_new_state, rm_nodecard_state_t
nodecard_old_state, rt_raw_state_t nodecard_raw_new_state, rt_raw_state_t
nodecard_raw_old_state, void* extended_args, void* data);

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the switch’s new state

previous_seq_id Sequence ID of the switch’s previous state

switch_id The switch’s ID

bp_id The switch’s base partition's ID

switch_new_state The switch’s new state

switch_old_state The switch’s old state

switch_raw_new_state The switch’s new raw state

switch_raw_old_state The switch’s old raw state

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs
206 IBM System Blue Gene Solution: Blue Gene/P Application Development

Table 12-10 lists the arguments to the field nodecard_state_changed_cb function.

Table 12-10 Field nodecard_state_changed_cb

12.4 Real-time Notification API status codes

When a failure occurs, an API invocation returns a status code. This status code helps apply
automatic corrective actions within the resource management application. In addition, a
failure always generates a log message, which provides more information for the possible
cause of the problem and any corrective action. These log messages are used for debugging
and non-automatic recovery of failures.

The design aims at striking a balance between the number of status codes detected and the
different error paths per status code. Thus, some errors have specific status codes, while
others have more generic ones.

The Real-time Notification API uses the following status codes:

� RT_STATUS_OK: API call completed successfully.

� RT_NO_REALTIME_MSGS: No events available.

� RT_WOULD_BLOCK: In non-blocking mode and request would block.

� RT_FINISHED_PREV: Previous request completed.

� RT_CONNECTION_ERROR: Connection to the real-time server failed.

� RT_INTERNAL_ERROR: Unexpected internal error. No recovery possible.

� RT_INVALID_INPUT_ERROR: The input to the API is bad due to missing required data, illegal
data, and so on.

� RT_DB_PROPERTY_ERROR: Error trying to read the db.properties file.

� RT_PROTOCOL_ERROR: An incorrect message was received from the real-time server.

� RT_HANDLE_CLOSED: The handle passed to the API was previously closed.

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the node card’s new state

previous_seq_id Sequence ID of the node card’s previous state

nodecard_id The node card’s ID

bp_id The node card's base partition’s ID

nodecard_new_state The node card’s new state

nodecard_old_state The node card’s old state

nodecard_raw_new_state The node card’s new raw state

nodecard_raw_old_state The node card’s old raw state

extended_args Not used; will be NULL for now

data Application data forwarded by rt_read_msgs
Chapter 12. Real-time Notification APIs 207

12.4.1 Status code specification
The various API functions have the following status codes:

� rt_status_t rt_init(rt_handle_t **handle_out, rt_block_flag_t blocking_flag,
rt_callbacks_t* callbacks);

This function initializes a real-time handle.

The status codes are:

– RT_STATUS_OK: The handle is initialized.
– RT_INVALID_INPUT_ERROR: One or more of the parameters are not valid.
– RT_CONNECTION_ERROR: Failed to connect to the real-time server.
– RT_INTERNAL_ERROR: There was an unexpected internal error in setting blocking or

non-blocking mode on socket.
– RT_DB_PROPERTY_ERROR: Problem accessing the db.properties file.

� rt_status_t rt_close(rt_handle_t **handle);

This function closes a real-time handle.

The status codes are:

– RT_STATUS_OK: The handle was closed.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_INTERNAL_ERROR: There was an unexpected internal error in closing the handle.

� rt_status_t rt_set_blocking(rt_handle_t **handle);

This function sets a real-time handle to blocking mode.

The status codes are:

– RT_STATUS_OK: Blocking mode was set for the handle.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_INTERNAL_ERROR: There was an unexpected internal error in setting blocking mode.

� rt_status_t rt_set_nonblocking(rt_handle_t **handle);

This function sets a real-time handle to non-blocking mode.

The status codes are:

– RT_STATUS_OK: Non-blocking mode was set for the handle.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_INTERNAL_ERROR: There was an unexpected internal error in setting non-blocking

mode.

� rt_status_t rt_set_filter(rt_handle_t **handle, rt_filter_type_t filter_type,
const char* filter_names);

This function sets the filter on a real-time handle.

The status codes are:

– RT_STATUS_OK: Filtering was set successfully.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_INTERNAL_ERROR: There was an unexpected internal error in setting the filter.

� rt_status_t rt_request_realtime(rt_handle_t **handle);

This function requests real-time events for this handle.

The status codes are:

– RT_STATUS_OK: Request to start real-time updates was successful.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_CONNECTION_ERROR: The connection to the server was lost.
208 IBM System Blue Gene Solution: Blue Gene/P Application Development

– RT_WOULD_BLOCK: The handle is non-blocking and this request would block.
– RT_FINISHED_PREV: A previous request finished.

� rt_status_t rt_get_socket_descriptor(rt_handle_t **handle, int *sd_out);

This functions gets the socket descriptor used by the real-time APIs.

The status codes are:

– RT_STATUS_OK: Socket descriptor was retrieved successfully.
– RT_INVALID_INPUT_ERROR: The handle is not valid.

� rt_status_t rt_read_msgs(rt_handle_t **handle, void* data);

This function receives real-time events.

The status codes are:

– RT_STATUS_OK: Message or messages were read successfully.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_CONNECTION_ERROR: The connection to the server was lost.
– RT_INTERNAL_ERROR: There was an unexpected internal error when reading messages.
– RT_HANDLE_CLOSED: The real-time handle was closed.
– RT_NO_REALTIME_MSGS: Non-blocking mode and no messages to receive.

12.5 Sample real-time application code
Example 12-2 shows basic example code for calling the real-time APIs and programming the
callback functions.

Example 12-2 Sample real-time call

/* --- */
/* */
/* (C)Copyright IBM Corp. 2007, 2007 */
/* All rights reserved. */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted */
/* by GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Licensed Materials-Property of IBM */
/* --- */
/*
 Title: Blue Gene Real-time Notification Interface - Sample Program

 The environment must have DB_PROPERTY set for the realtime apis.
*/

#include <rt_api.h>
#include <sayMessage.h>

#include <getopt.h>
#include <stdio.h>
#include <unistd.h>

#include <iostream>
#include <sstream>

using namespace std;
Chapter 12. Real-time Notification APIs 209

// Converts partition state enum to character string for messages
string partition_state_to_msg(rm_partition_state_t state)
{
 switch(state) {
 case RM_PARTITION_FREE:
 return "Free";
 case RM_PARTITION_CONFIGURING:
 return "Configuring";
 case RM_PARTITION_READY:
 return "Ready";
 case RM_PARTITION_DEALLOCATING:
 return "Deallocating";
 case RM_PARTITION_ERROR:
 return "Error";
 case RM_PARTITION_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
}

// Converts job state enum to character string for messages
string job_state_to_msg(rm_job_state_t state)
{
 switch(state) {
 case RM_JOB_IDLE:
 return "Queued/Idle";
 case RM_JOB_STARTING:
 return "Starting";
 case RM_JOB_RUNNING:
 return "Running";
 case RM_JOB_TERMINATED:
 return "Terminated";
 case RM_JOB_ERROR:
 return "Error";
 case RM_JOB_DYING:
 return "Dying";
 case RM_JOB_DEBUG:
 return "Debug";
 case RM_JOB_LOAD:
 return "Load";
 case RM_JOB_LOADED:
 return "Loaded";
 case RM_JOB_BEGIN:
 return "Begin";
 case RM_JOB_ATTACH:
 return "Attach";
 case RM_JOB_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
}

// Converts BP state enum to character string for messages
string BP_state_to_msg(rm_BP_state_t state)
{
 switch(state) {
 case RM_BP_UP:
 return "Available/Up";
 case RM_BP_MISSING:
 return "Missing";
210 IBM System Blue Gene Solution: Blue Gene/P Application Development

 case RM_BP_ERROR:
 return "Error";
 case RM_BP_DOWN:
 return "Service/Down";
 case RM_BP_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
}

// Converts switch state enum to character string for messages
string switch_state_to_msg(rm_switch_state_t state)
{
 switch(state) {
 case RM_SWITCH_UP:
 return "Available/Up";
 case RM_SWITCH_MISSING:
 return "Missing";
 case RM_SWITCH_ERROR:
 return "Error";
 case RM_SWITCH_DOWN:
 return "Service/Down";
 case RM_SWITCH_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
}

// Converts nodecard state enum to character string for messages
string nodecard_state_to_msg(rm_nodecard_state_t state)
{
 switch(state) {
 case RM_NODECARD_UP:
 return "Available/Up";
 case RM_NODECARD_MISSING:
 return "Missing";
 case RM_NODECARD_ERROR:
 return "Error";
 case RM_NODECARD_DOWN:
 return "Service/Down";
 case RM_NODECARD_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
}

/* Definitions of the Real-time callback functions. */

cb_ret_t rt_end_callback(
 rt_handle_t **handle,
 void* extended_args,
 void* data)
{
 cout << "Received real-time end message." << endl;
 return RT_CALLBACK_QUIT;
}

cb_ret_t rt_partition_added_callback(
Chapter 12. Real-time Notification APIs 211

 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 pm_partition_id_t partition_id,
 rm_partition_state_t partition_new_state,
 rt_raw_state_t partition_raw_new_state,
 void* extended_args,
 void* data)
{
 cout << "Received callback for add partition " << partition_id
 << " state of partition is " << partition_state_to_msg(partition_new_state) <<
endl
 << "Raw state=" << partition_raw_new_state << " sequence ID=" << seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_partition_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 pm_partition_id_t partition_id,
 rm_partition_state_t partition_new_state,
 rm_partition_state_t partition_old_state,
 rt_raw_state_t partition_raw_new_state,
 rt_raw_state_t partition_raw_old_state,
 void* extended_args,
 void* data)
{
 cout << "Received callback for partition " << partition_id
 << " state change, old state is " << partition_state_to_msg(partition_old_state)
 << ", new state is " << partition_state_to_msg(partition_new_state) << endl
 << "Raw old state=" << partition_raw_old_state
 << " Raw new state=" << partition_raw_new_state
 << " New sequence ID=" << seq_id << " Previous sequence ID=" << prev_seq_id <<
endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_partition_deleted_callback(
 rt_handle_t **handle,
 rm_sequence_id_t prev_seq_id,
 pm_partition_id_t partition_id,
 void* extended_args,
 void* data)
{
 cout << "Received callback for delete on partition " << partition_id
 << " Previous sequence ID=" << prev_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_job_added_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 db_job_id_t job_id,
 pm_partition_id_t partition_id,
 rm_job_state_t job_new_state,
 rt_raw_state_t job_raw_new_state,
 void* extended_args,
212 IBM System Blue Gene Solution: Blue Gene/P Application Development

 void* data)
{
 cout << "Received callback for add job " << job_id
 << " on partition " << partition_id << ","
 << " state of job is " << job_state_to_msg(job_new_state) << endl
 << "Raw new state=" << job_raw_new_state << " New sequence ID=" << seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_job_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 db_job_id_t job_id,
 pm_partition_id_t partition_id,
 rm_job_state_t job_new_state,
 rm_job_state_t job_old_state,
 rt_raw_state_t job_raw_new_state,
 rt_raw_state_t job_raw_old_state,
 void* extended_args,
 void* data)
{
 cout << "Received callback for job " << job_id
 << " state change on partition " << partition_id << ", old state is "
 << job_state_to_msg(job_old_state)
 << ", new state is " << job_state_to_msg(job_new_state) << endl
 << "Raw old state=" << job_raw_old_state << " Raw new state=" << job_raw_new_state
 << " New sequence ID=" << seq_id << " Previous sequence ID=" << prev_seq_id <<
endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_job_deleted_callback(
 rt_handle_t **handle,
 rm_sequence_id_t prev_seq_id,
 db_job_id_t job_id,
 pm_partition_id_t partition_id,
 void* extended_args,
 void* data)
{
 cout << "Received callback for delete of job " << job_id
 << " on partition " << partition_id << " Previous sequence ID=" << prev_seq_id <<
endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_BP_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 rm_bp_id_t bp_id,
 rm_BP_state_t BP_new_state,
 rm_BP_state_t BP_old_state,
 rt_raw_state_t BP_raw_new_state,
 rt_raw_state_t BP_raw_old_state,
 void* extended_args,
 void* data)
Chapter 12. Real-time Notification APIs 213

{
 cout << "Received callback for BP " << bp_id
 << " state change, old state is " << BP_state_to_msg(BP_old_state)
 << ", new state is " << BP_state_to_msg(BP_new_state) << endl
 << "Raw old state=" << BP_raw_old_state << " Raw new state=" << BP_raw_new_state
 << " New sequence ID=" << seq_id << " Previous sequence ID=" << prev_seq_id <<
endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_switch_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 rm_switch_id_t switch_id,
 rm_bp_id_t bp_id,
 rm_switch_state_t switch_new_state,
 rm_switch_state_t switch_old_state,
 rt_raw_state_t switch_raw_new_state,
 rt_raw_state_t switch_raw_old_state,
 void* extended_args,
 void* data)
{
 cout << "Received callback for switch " << switch_id
 << " state change on BP " << bp_id
 << ", old state is " << switch_state_to_msg(switch_old_state)
 << ", new state is " << switch_state_to_msg(switch_new_state) << endl
 << "Raw old state=" << switch_raw_old_state << " Raw new state=" <<
switch_raw_new_state
 << " New sequence ID=" << seq_id << " Previous sequence ID=" << prev_seq_id <<
endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_nodecard_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 rm_nodecard_id_t nodecard_id,
 rm_bp_id_t bp_id,
 rm_nodecard_state_t nodecard_new_state,
 rm_nodecard_state_t nodecard_old_state,
 rt_raw_state_t nodecard_raw_new_state,
 rt_raw_state_t nodecard_raw_old_state,
 void* extended_args,
 void* data)
{
 cout << "Received callback for node card " << nodecard_id
 << " state change on BP " << bp_id
 << ", old state is " << nodecard_state_to_msg(nodecard_old_state)
 << ", new state is " << nodecard_state_to_msg(nodecard_new_state) << endl
 << "Raw old state=" << nodecard_raw_old_state
 << " Raw new state=" << nodecard_raw_new_state
 << " New sequence ID=" << seq_id << " Previous sequence ID=" << prev_seq_id <<
endl;
 return RT_CALLBACK_CONTINUE;
}

214 IBM System Blue Gene Solution: Blue Gene/P Application Development

/* Program entry point */

int main(int argc, char *argv[]) {

 string job_filter, *job_filter_p(0);
 string partition_filter, *partition_filter_p(0);
 int verbose(0);

 const int JOB_FILTER_PARAM_IND = 0;
 const int PARTITION_FILTER_PARAM_IND = 1;
 const int VERBOSE_PARAM_IND = 2;

 struct option long_options[] = {
 { "job_filter", 1, 0, JOB_FILTER_PARAM_IND },
 { "partition_filter", 1, 0, PARTITION_FILTER_PARAM_IND },
 { "verbose", 1, 0, VERBOSE_PARAM_IND },
 { 0, 0, 0, 0 }
 };

 int option_index = 0;

 while (1) {
 int getopt_ret = getopt_long(argc, argv, "", long_options, &option_index);
 if (-1 == getopt_ret) {
 break;
 }
 switch (getopt_ret) {
 case JOB_FILTER_PARAM_IND:
 job_filter = optarg;
 job_filter_p = &job_filter;
 break;
 case PARTITION_FILTER_PARAM_IND:
 partition_filter = optarg;
 partition_filter_p = &partition_filter;
 break;
 case VERBOSE_PARAM_IND:
 {
 istringstream iss(optarg);
 iss >> verbose;
 }
 break;
 }
 }

 setSayMessageParams(stdout, verbose);

 rt_handle_t *rt_handle;
 rt_callbacks_t rt_callbacks;

 rt_callbacks.version = RT_CALLBACK_VERSION_0;
 rt_callbacks.end_cb = &rt_end_callback;
 rt_callbacks.partition_added_cb = &rt_partition_added_callback;
 rt_callbacks.partition_state_changed_cb = &rt_partition_state_changed_callback;
 rt_callbacks.partition_deleted_cb = &rt_partition_deleted_callback;
 rt_callbacks.job_added_cb = &rt_job_added_callback;
 rt_callbacks.job_state_changed_cb = &rt_job_state_changed_callback;
 rt_callbacks.job_deleted_cb = &rt_job_deleted_callback;
 rt_callbacks.bp_state_changed_cb = &rt_BP_state_changed_callback;
 rt_callbacks.switch_state_changed_cb = &rt_switch_state_changed_callback;
Chapter 12. Real-time Notification APIs 215

 rt_callbacks.nodecard_state_changed_cb = &rt_nodecard_state_changed_callback;

 // Get a handle, set socket to block, and setup callbacks
 if (rt_init(&rt_handle, RT_BLOCKING, &rt_callbacks) != RT_STATUS_OK)
 {
 cout << "Failed on real-time initialize (rt_init), exiting program." << endl;
 return -1;
 }

 // Set the job filter if requested.
 if (job_filter_p != 0) {
 if (rt_set_filter(&rt_handle, RT_JOB, job_filter_p->c_str()) != RT_STATUS_OK) {
 cout << "Failed to set job filter." << endl;
 rt_close(&rt_handle);
 return -1;
 }
 }

 // Set the partition filter if requested.
 if (partition_filter_p != 0) {
 if (rt_set_filter(&rt_handle, RT_PARTITION, partition_filter_p->c_str()) !=
RT_STATUS_OK) {
 cout << "Failed to set partition filter." << endl;
 rt_close(&rt_handle);
 return -1;
 }
 }

 // Tell real-time server we are ready to handle messages
 if (rt_request_realtime(&rt_handle) != RT_STATUS_OK)
 {
 cout << "Failed to connect to real-time server, exiting program." << endl;
 rt_close(&rt_handle);
 return -1;
 }

 // Read messages
 if (rt_read_msgs(&rt_handle, NULL) != RT_STATUS_OK)
 {
 cout << "rt_read_msgs failed" << endl;
 rt_close(&rt_handle);
 return -1;
 }

 // Close the handle
 rt_close(&rt_handle);
 return 0;
} // main()
216 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 13. mpirun

mpirun is a software utility for launching, monitoring, and controlling programs (applications)
that run on the BlueGene/ P system. mpirun on the Blue Gene/P system serves the same
function as on the Blue Gene/L system.

The name mpirun comes from Message Passing Interface (MPI) since its primary use is to
launch parallel jobs. This was certainly the case on the Blue Gene/L system. mpirun can be
used as a stand-alone program by providing parameters either directly through a command
line or environmental variable arguments, or indirectly through the framework of a scheduler
that submits the job on the user’s behalf. In the former case, mpirun can be invoked as a shell
command and the user can interact with the running applications within the mpirun
capabilities. In turn, mpirun acts as a shadow of the job by monitoring its status, as well as
providing access to standard input, output, and error. After the job has terminated, mpirun
terminates as well. If the user wants to prematurely end the job before it has terminated,
mpirun provides a mechanism to do so explicitly or via a timeout period.

mpirun provides the capability to debug the job, currently only with gdb. In this chapter, we
describe the stand-alone interactive use of mpirun. We also provide a brief overview of
mpirun on the Blue Gene/P system. In addition, we define a list of application programming
interfaces (APIs) that allow interaction with the mpirun program. These APIs are used by
applications, such as external resource managers, that want to programmatically invoke jobs
via mpirun.

We address the following topics in this chapter:

� “mpirun implementation on Blue Gene/P” on page 218
� “mpirun setup” on page 219
� “Invoking mpirun” on page 220
� “Environmental variables” on page 224
� “Return codes” on page 225
� “Examples” on page 227
� “mpirun application program interfaces” on page 234

13
© Copyright IBM Corp. 2007. All rights reserved. 217

13.1 mpirun implementation on Blue Gene/P

mpirun accepts a rich set of parameters, following the philosophy of the Blue Gene/L system,
that describe its behavior prior to submitting the application for execution on the Compute
Nodes and during execution of the application. These parameters can be divided into three
groups. The first group identifies resources that are required to run the application. The
second group identifies the application (binary) to execute and the environment settings for
that particular run or executable. The third group identifies the level of verbosity that mpirun
prints to STDOUT or STDERR.

Although mpirun has kept all the functionality that is available on the Blue Gene/L system, it
has the following differences in its implementation on the Blue Gene/P system:

� The rsh/ssh mechanism has been eliminated for starting the back-end process due to
security concerns of allowing users access to the Service Node. In the Blue Gene/P
system, this is replaced with a daemon process that runs on the Service Node whose
purpose is to handle connections from front-end mpirun processes and fork back-end
mpirun processes as illustrated in Figure 12-1.

Figure 13-1 mpirun interacting with the rest of the control system on the Blue Gene/P system

� After mpirun_be is forked, the sequence of events for booting partitions, starting jobs, and
collecting stdout/stderr is similar to the use of mpirun on the Blue Gene/L system.

� The freepartition program has been integrated as an option in mpirun for the Blue
Gene/P system as illustrated in Example 13-1.

Example 13-1 mpirun example with -nofree option

mpirun -partition N01_32_1 -np 32 -cwd /bgusr/cpsosa -exe a.out -nofree

Example 13-2 shows how the free option is now used as part of mpirun on the Blue
Gene/P system.
218 IBM System Blue Gene Solution: Blue Gene/P Application Development

Example 13-2 mpirun example with -free option

[descartes:/bgusr/cpsosa/red/example.5_1] mpirun -partition N01_32_1 -free wait -verbose 1
<Jul 06 15:10:48.401421> FE_MPI (Info) : Invoking free partition
<Jul 06 15:10:48.414677> FE_MPI (Info) : freePartition() - connected to mpirun server at spinoza
<Jul 06 15:10:48.414768> FE_MPI (Info) : freePartition() - sent free partition request
<Jul 06 15:11:19.202335> FE_MPI (Info) : freePartition() - partition N01_32_1 was freed successfully
<Jul 06 15:11:19.202746> FE_MPI (Info) : == FE completed ==
<Jul 06 15:11:19.202790> FE_MPI (Info) : == Exit status: 0 ==

� Also new in mpirun for the Blue Gene/P system is the support for multiple program,
multiple data (MPMD)32 style jobs where a different executable, arguments, environment,
and current working directory can be supplied for a single job on a processor set (pset)
basis. With this capability, a user can run four different executables on a partition with four
psets.

This capability is handled by a new tool called mpiexec, which should not be confused with
the mpiexec style of submitting a Single Program Multiple Data (SPMD) parallel MPI job.

13.2 mpirun setup
mpirun does not require setup from a user point of view or requires little setup up front.
However, on the Service Node, mpirun requires slightly more setup for a system
administrator. We have classified the setup of mpirun into the following types:

� User setup
� System administrator setup

13.2.1 User setup

In general, little has changed compared to mpirun for the Blue Gene/L system. The following
changes are among those for user setup:

� It is not required to set up .rhosts or ssh-agent.

� It is not required to set up .bashrc, .tcshrc, or .profile to include BRIDGE_CONFIG_FILE or
DB_PROPERTY environmentals.

� The freepartition program is now an option in mpirun.

� The -backend option is no longer available.

Due to the removal or the ssh/rsh mechanism to start a back-end mpirun process, users no
longer are required to create an .rhosts file in their home directory for mpirun to work properly.

13.2.2 System administrator setup

System administrators can change the following configuration files for the mpirun daemon
(mpirund):

db.properties Contains information about the DB2 database

bridge.config Contains locations of the default I/O Node and Compute Node images
when allocating partitions

mpirun.cfg Contains the shared secret that is used for challenge authentication
between mpirun and mpirund
Chapter 13. mpirun 219

Database properties and Bridge configuration files
The location of the database properties and bridge configuration files can be changed by
passing the appropriate arguments to bgpmaster when starting mpirund. The mpirun daemon
then passes these locations to each mpirun_be forked. Example 13-3 shows a sample Bridge
configuration file.

Example 13-3 Sample bridge configuration file

BGP_MACHINE_SN BGP
BGP_MLOADER_IMAGE /bgsys/drivers/ppcfloor/boot/uloader
BGP_CNLOAD_IMAGE
/bgsys/drivers/ppcfloor/boot/cns,/bgsys/drivers/ppcfloor/boot/cnk
BGP_IOLOAD_IMAGE
/bgsys/drivers/ppcfloor/boot/cns,/bgsys/drivers/ppcfloor/boot/linux,/bgsys/drivers
/ppcfloor/boot/ramdisk
BGP_BOOT_OPTIONS
BGP_DEFAULT_CWD $PWD

BGP_DEFAULT_CWD is used for mpirun jobs when a user does not give the -cwd argument or one
of its environmentals. This value can be optionally changed to something more site specific,
such as /bgp/users, /gpfs/, and so on. The special keyword $PWD is expanded to the user’s
current working directory from where they executed mpirun.

Challenge protocol
The challenge protocol, which is used to authenticate the mpirun front end when connecting
to the mpirun daemon on the Service Node, is a challenge/response protocol. It uses a
shared secret to create a hash of a random number, thereby verifying that the mpirun front
end has access to the secret.

To protect the secret, the challenge protocol is stored in a configuration file that is accessible
only by the bgpadmin user on the Service Node and by a special mpirun user on the front-end
nodes. The front-end mpirun binary has its setuid flag enabled so that it can change its uid to
match the mpirun user, and read the configuration file to access the secret. Several steps are
necessary during the installation process for this setup to work.

13.3 Invoking mpirun

The first method of using mpirun is to specify the parameters explicitly as shown in the
following example:

mpirun [options]

Here is a practical example of using mpirun:

mpirun -partition R00-M0 -mode VN -cwd /bgusr/tmp a.out --timeout 50

Alternatively, you can use the mpiexec style where the executable and arguments are implicit
as shown in the following example:

mpirun [options] binary [arg1 arg2 ... argn]

Here is a practical example of using mpiexec:

mpirun -partition R00-M0 -mode VN -cwd /bgusr/tmp -exe a.out --args “--timeout 50”
220 IBM System Blue Gene Solution: Blue Gene/P Application Development

Specifying parameters
You can specify parameters for the mpirun program in the following different ways:

� Command line arguments
� Environmental variables
� Scheduler interface plug-in

In general, users normally use the command line arguments and the environmental variables.
Certain schedulers use the scheduler interface plug-in to restrict or enable mpirun features
according to their environment. For example, the scheduler might have a policy where
interactive job submission with mpirun can be allowed only during certain hours of the day.

Command line arguments
The mpirun arguments consist of the following categories:

� Job control
� Block control
� Output
� Other

Job control arguments
Table 13-1 lists the job control arguments.

Table 13-1 Job control arguments

Arguments Description

-args "program args" Passes “program args” to the BlueGene job on the Compute Nodes.

-env "ENVVAR=value" Sets an environment variable in the environment of the job on the
Compute Nodes.

-exp_env ENVVAR Exports an environment variable in the current environment of mpirun
to the job on the Compute Nodes.

-env_all Exports all environment variables in the current environment of
mpirun to the job on the Compute Nodes.

-np <n> Creates exactly n MPI ranks for the job. Aliases are -nodes and -n.

-mode <SMP or DUAL or VN> Specifies the mode in which the job will run. Choices are SMP (1 rank,
4 threads), DUAL (2 ranks, 2 threads each), or Virtual Node Mode
(4 ranks, 1 thread each).

-exe <executable> Specifies the full path to the executable to run on the Compute Nodes.
The path is specified as seen by the I/O and Compute Nodes.

-cwd <path> Specifies the full path to use as the current working directory on the
Compute Nodes. The path is specified as seen by the I/O and
Compute Nodes.

-mapfile <mapfile> Specifies an alternative MPI topology. The mapfile path must be fully
qualified as seen by the I/O and Compute Nodes.a

a. For additional information about mapping, see Appendix E, “Mapping” on page 281.

-timeout <n> Timeout after n seconds. mpirun monitors the job and terminates it if
the job runs longer than the time specified. The default is never to
timeout.
Chapter 13. mpirun 221

Block control options
mpirun can also allocate partitions and create new partitions if necessary. Use the following
general rules for block control:

� If mpirun is told to use a pre-existing partition and it is already booted, mpirun uses it as is
without trying to boot it again.

� If mpirun creates a partition or is told to use a pre-existing partition that is not already
allocated, mpirun allocates the partition.

� If mpirun allocates a partition, it deallocates the partition when it is done.

Table 13-2 summarizes the options that modify this behavior.

Table 13-2 Block control options

Arguments Description

-partition <block> Specifies a predefined block to use.

-nofree If mpirun booted the block, it does not deallocate the block when the job
is done. This is useful for when you want to run a string of jobs
back-to-back on a block but do not want mpirun to boot and deallocate
the block each time (which happens if you had not booted the block first
using the console.) When your string of jobs is finally done, use the
freepartition command to deallocate the block.

-free <wait|nowait> Frees the partition specified with -partition. No job is run. The wait
parameter does not return control until the partition has changed state
to free. The nowait parameter returns control immediately after
submitting the free partition request.

-noallocate This option is more interesting for job schedulers. It tells mpirun not to
use a block that is not already booted.

-shape <XxYxZ> Specifies a hardware configuration to use. The dimensions are in the
Compute Nodes. If hardware matching is found, a new partition is
created and booted. Implies that -partition is not specified.

-psets_per_bp <n> Specifies the I/O Node to Compute Node ratio. The default is to use the
best possible ratio of I/O Nodes to Compute Nodes. Specifying a higher
number of I/O Nodes than what is available results in an error.

-connect <MESH|TORUS> Specifies a mesh or a torus when mpirun creates new partitions.

-reboot Reboots all the Compute Nodes of an already booted partition that is
specified with -partition before running the job. If the partition is in any
other state, this is an error.

-boot_options <options> Specifies boot options to use when booting a freshly created partition.
222 IBM System Blue Gene Solution: Blue Gene/P Application Development

Output options
The output options (Table 13-3) control information that is sent to STDIN, STDOUT, and
STDERR.

Table 13-3 Output options

Other options
Table 13-4 provides a list of other options. These options provide general information about
selected software and hardware features.

Table 13-4 Other options

Arguments Description

-verbose [0-4] Sets the verbosity level. The default is 0, which means that mpirun does
not output any status or diagnostic messages unless a severe error
occurs. If you are curious about what is happening, try levels 1 or 2. All
mpirun generated status and error messages appear on STDERR.

-label Use this option to have mpirun label the source of each line of output. The
source is the MPI rank, and stderr or stdout from which the output
originated.

-enable_tty_reporting By default, mpirun tells the control system and the C runtime on the
Compute Nodes that STDIN, STDOUT, and STDERR are tied to TTY type
devices. While semantically correct for the BlueGene system, this prevents
blocked I/O to these file descriptors, which can slow down operations. If
you use this option, mpirun will sense if these file descriptors are tied to
TTYs and report the results accurately to the control system.

-strace <all|none|n> Use this argument to enable a syscall trace on all Compute Nodes, no
Compute Nodes, or a specific Compute Node (identified by MPI rank). The
extra output from the syscall trace appears on STDERR. The default is
none.

Arguments Description

-h Displays help text.

-version Displays mpirun version information.

-host <host name> Specifies the Service Node to use.

-port <port> Specifies the listening port of mpirund.

-start_gdbserver
<path_to_gdbserver>

Loads the job in such a way as to enable GDB debugging, either right from
the first instruction or later on while the job is running. There is a separate
set of instructions on GDB debugging.

-nw Reports mpirun-generated return code instead of an application
generated return code. Useful only for debugging mpirun.

-only_test_protocol Simulates a job without using any hardware or talking to the control
system. It is useful for making sure that mpirun can start mpirun_be
correctly.
Chapter 13. mpirun 223

13.4 Environmental variables

An alternative way to control mpirun execution is to use environmental variables. Most
command line options for mpirun can be specified using an environment variable. The
variables are useful for options that are used in production runs. If you do need to alter the
option, you can modify it on the command line to override the environment variable.
Table 13-5 summarizes all the environmental variables. The variables must be defined before
execution of mpirun starts.

Table 13-5 List of environmental variables

Arguments Environmental variables

-partition MPIRUN_PARTITION

-nodes MPIRUN_NODES MPIRUN_N MPIRUN_NP

-mode MPIRUN_MODE

-exe MPIRUN_EXE

-cwd MPIRUN_CWD MPIRUN_WDIR

-host MMCS_SERVER_IP _MPIRUN_SERVER_HOSTNAME

-port MPIRUN_SERVER_PORT

-env MPIRUN_ENV

-exp_env MPIRUN_EXP_ENV

-env_all MPIRUN_EXP_ENV_ALL

-mapfile MPIRUN_MAPFILE

-args MPIRUN_ARGS

-timeout MPIRUN_TIMEOUT

-start_gdbserver MPIRUN_START_GDBSERVER

-label MPIRUN_LABEL

-nw MPIRUN_NW

-nofree MPIRUN_NOFREE

-noallocate MPIRUN_NOALLOCATE

-reboot MPIRUN_REBOOT

-boot_options MPIRUN_BOOT_OPTIONS MPIRUN_KERNEL_OPTIONS

-verbose MPIRUN_VERBOSE

-only_test_protocol MPIRUN_ONLY_TEST_PROTOCOL

-shape MPIRUN_SHAPE

-psets_per_bp MPIRUN_PSETS_PER_BP

-connect MPIRUN_CONNECTION

-enable_tty_reporting MPIRUN_ENABLE_TTY_REPORTING

-config MPIRUN_CONFIG_FILE
224 IBM System Blue Gene Solution: Blue Gene/P Application Development

13.5 Return codes

If mpirun fails for any reason, such as a bug, boot failure, job failure, and so on, it returns a
return code to your shell if you supply the -nw argument. If you omit the -nw argument, it
returns the job’s return code if it is present in the job table. Table 13-6 lists the possible error
codes.

Table 13-6 List of return codes

Return code Description

0 OK; successful

10 Communication error

11 Version handshake failed

12 Front-end initialization failed

13 Failed to execute back-end mpirun on Service Node

14 Back-end initialization failed

15 Failed to locate db.properties file

16 Failed to get the machine serial number (bridge configuration file not found?)

17 Execution interrupted by message from the front end

18 Failed to prepare the partition

19 Failed to initialize allocator

20 Partition name already exists

21 No free space left to allocate partition for this job

22 Failed to allocate partition

23 Failed to allocate a partition; job has illegal requirements

24 Specified partition does not exist

25 Failed to get a partition state

26 Specified partition is in an incompatible state

27 Specified partition is not ready

28 Failed to get a partition owner

29 Failed to set a partition owner

30 Failed while checking to see if the partition is busy

31 Partition is occupied by another job

32 Failed while checking to see if the user is in the partition’s user list

33 A user does not have permission to run the job on the specified partition

34 Failed while examining the specified partition

35 Failed while setting kernel options; the rm_modify_partition() API failed

36 Kernel options were specified but the partition is not in a FREE state
Chapter 13. mpirun 225

37 Failed to boot the partition

38 Failed to reboot the partition

39 Failed to create MPMD configuration file on the Service Node

40 Found a zero-length line while writing to the MPMD configuration file

41 Failed to write a line to the MPMD configuration file

42 Failed to validate the MPMD configuration file

43 Failed to add the new job to the database

44 Failed to get an ID for the new job

45 Failed to start the job

46 An error occurred while mpirun was waiting for the job to terminate

47 Job timed out

48 The job was moved to the history table before it terminated

49 Job execution failed; job switched to an error state

50 Job execution interrupted; job queued

51 Failed to get a job exit status

52 Failed to get a job error text

53 Executable path for the debugger server is not specified

54 Failed to set debug information; unable to attach the debugger

55 Failed to get proctable; unable to attach the debugger

56 Failed while attaching to the job; unable to attach the debugger

57 Failed debugging job; unable to attach the debugger

58 Failed to begin a job

59 Failed to load a job

60 Failed to load a job

61 Failed to clean up a job, partition, or both

62 Failed to cancel a job

63 Failed to destroy a partition

64 Failed to remove a partition

65 Failed to reset kernel options; the rm_modify_partition() API failed

66 One or more threads died

67 Unexpected message

68 Failed to dequeue control message

69 Out of memory

70 Execution interrupted by signal

Return code Description
226 IBM System Blue Gene Solution: Blue Gene/P Application Development

13.6 Examples

In this section, we present various examples of mpirun commands.

Display information
Example 13-4 shows how to display information using the -h flag.

Example 13-4 Invoking mpirun -h or -help to list all the options available

[descartes:/bgusr/cpsosa] mpirun -h
Usage:
 mpirun [options]
 or
 mpirun [options] binary [arg1 arg2 ... argn]

Options:
 -h Provides this extended help information; can also use -help
 -version Display version information
 -partition <partition_id> ID of the partition to run the job on
 -np <compute_nodes> The number of Compute Nodes to use for the job
 -mode <SMP|DUAL|VN> Execution mode, either SMP, DUAL, or Virtual Node Mode; the

default is SMP
 -exe <binary> Full path to the binary to execute
 -cwd <path> Current working directory of the job, as seen by the

Compute Nodes; can also use -wdir
 -host <service_node_host> Host name of the Service Node
 -port <service_node_port> Port of the mpirun server on the Service Node
 -env <env=val> Environment variable that should be set
 -exp_env <env vars> Environment variable in the current environment to export
 -env_all Export all current enviorment variables to the job environment
 -mapfile <mapfile|mapping> mapfile contains a user specified MPI topology;
 mapping is a permutation of XYZT
 -args <"<arguments>"> Arguments to pass to the job; must be enclosed in double

quotation marks
 -timeout <seconds> The limit of the job execution time
 -start_gdbserver <path> Start gdbserver for the job; must specify the path to gdbserver
 -label Add labels (STDOUT, STDERR, and MPI rank) to the job output
 -nw Return mpirun job cycle status instead of the job exit status
 -nofree Do not deallocate the partition if mpirun allocated it
 -free <wait|nowait> Free the partition specified by -partition; no job will be run
 -noallocate Do not allocate the partition; the job will only start
 if the partition was already INITIALIZED or CONFIGURING
 -reboot Reboot all Compute Nodes of the specified partition before
 running the job; the partition must be INIIALIZED prior
 to rebooting
 -backend Use a specified mpirun backend binary on the Service Node
 -boot_options <options> Low-level options used when booting a partition
 -verbose <0|1|2|3|4> Verbosity level, default is 0
 -trace <0-7> Trace level; output is sent to a file in the current working
 directory; default level is 0
 -only_test_protocol Test the mpirun frontend to backend communication;
 no job will be run
 -strace <all|none|n> Enable syscall trace for all, none, or node with MPI rank n
 -shape <XxYxZ> Shape of job in XxYxZ format; if not specified, you must use
 -partition or -np
Chapter 13. mpirun 227

 -psets_per_bp <n> Number of psets per base partition required in the partition
 -connect <TORUS|MESH> Compute Node connections; default is MESH
 -enable_tty_reporting Correctly report tty status to the control system
 -config <path> Specify mpirun config file path

Creating a partition dynamically
In Example 13-5, a user requests a number (-np) of Compute Nodes desired for the job. The
allocator API searches the machine for free resources and boots the temporary partition if
enough resources are found. Upon job completion, mpirun deallocates the partition if the user
has not specified -nofree.

Example 13-5 Dynamic allocation

dd2sys1fen3:~/bgp/control/mpirun/new> mpirun -np 16 -exe /bin/hostname -verbose 1
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3:~/bgp/control/mpirun/new>

Using -psets_per_bp
Example 13-6 illustrates the usage of -psets_per_bp. The number of psets per base partition
is defined in the db.properties file. The value can be overridden with the -psets_per_bp
option.

Example 13-6 psets_per_bp

dd2sys1fen3:~/bgp/control/mpirun/new> mpirun -psets_per_bp 16 -shape 4x4x2 -exe /bin/hostname
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
228 IBM System Blue Gene Solution: Blue Gene/P Application Development

dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3:~/bgp/control/mpirun/new>

Using a predefined partition and -np
Example 13-7 shows a simple script to invoke mpirun.

Example 13-7 csh script to invoke mpirun

[descartes:/bgusr/cpsosa/pallas] ./run.pallas >& pallas_july06_2007_bgp.out
where the script run.pallas is:
#!/bin/csh
set MPIRUN="mpirun"
set MPIOPT="-np 32"
set MODE="-mode VN"
set PARTITION="-partition N01_32_1"
set WDIR="-cwd /bgusr/cpsosa/pallas"
set EXE="-exe /bgusr/cpsosa/pallas/PMB-MPI1"
#
$MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE
#
echo "That's all folks!!"

Using of environmental variables
Example 13-8 shows use of -env to define environmental variables.

Example 13-8 Use of -env

[descartes:/bgusr/cpsosa]mpirun -partition N00_32_1 -np 32 -mode SMP -cwd
/bgusr/cpsosa -exe a.out -env “OMP_NUM_THREADS=4”
Chapter 13. mpirun 229

Using stdin from a terminal
In Example 13-9, the user types their name bgp user in response to the job’s stdout. After a
while, the job is terminated when the user presses Ctrl+C to send mpirun a SIGINT.

Example 13-9 Usage of stin from a terminal

dd2sys1fen3:~/bgp/control/mpirun/new> mpirun -partition R00-M0-N00 -verbose 0 -exe
/BGPhome/stdin.sh -np 1
What's your name?
bgp user
hello bgp user
What's your name?
<Aug 11 15:33:44.021105> FE_MPI (WARN) : SignalHandler() -
<Aug 11 15:33:44.021173> FE_MPI (WARN) : SignalHandler() -
!--!
<Aug 11 15:33:44.021201> FE_MPI (WARN) : SignalHandler() - ! mpirun is now taking all the
necessary actions !
<Aug 11 15:33:44.021217> FE_MPI (WARN) : SignalHandler() - ! to terminate the job and to free
the resources !
<Aug 11 15:33:44.021233> FE_MPI (WARN) : SignalHandler() - ! occupied by this job. This might
take a while... !
<Aug 11 15:33:44.021261> FE_MPI (WARN) : SignalHandler() -
!--!
<Aug 11 15:33:44.021276> FE_MPI (WARN) : SignalHandler() -
<Aug 11 15:33:44.050365> BE_MPI (WARN) : Received a message from frontend
<Aug 11 15:33:44.050465> BE_MPI (WARN) : Execution of the current command interrupted
<Aug 11 15:33:59.532817> FE_MPI (ERROR): Failure list:
<Aug 11 15:33:59.532899> FE_MPI (ERROR): - 1. Execution interrupted by signal (failure #71)
dd2sys1fen3:~/bgp/control/mpirun/new>

Using stdin from a file or pipe
Example 13-10 illustrates the use of stdin from a file or pipe.

Example 13-10 Usage of stin from a file or pipe

dd2sys1fen3:~/bgp/control/mpirun/new> cat ~/stdin.cc
#include <iostream>

using namespace std;

int main() {
 unsigned int lineno = 0;
 while (cin.good()) {
 string line;
 getline(cin, line);
 if (!line.empty()) {
 cout << "line " << ++lineno << ": " << line << endl;
 }
 }
}
dd2sys1fen3:~/bgp/control/mpirun/new> cat stdin.txt
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque id orci. Ut eleifend dui a erat varius
facilisis. Aliquam felis. Ut tincidunt, velit in pulvinar imperdiet, sem sapien sagittis neque, vitae bibendum
sapien erat vitae risus. Aenean suscipit. Aliquam molestie orci nec magna. Aliquam non enim. Integer dictum
magna quis orci. Praesent eget libero sed erat ultrices ullamcorper. Donec sodales hendrerit velit. Fusce
mattis. Suspendisse blandit ornare arcu. Pellentesque venenatis.

dd2sys1fen3:~/bgp/control/mpirun/new> cat stdin.txt | mpirun -partition R00-M0-N00 -verbose 0 -exe /BGPhome/stdin_test
-np 1
line 1: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque id orci. Ut eleifend dui a erat varius
230 IBM System Blue Gene Solution: Blue Gene/P Application Development

line 2: facilisis. Aliquam felis. Ut tincidunt, velit in pulvinar imperdiet, sem sapien sagittis neque, vitae bibendum
line 3: sapien erat vitae risus. Aenean suscipit. Aliquam molestie orci nec magna. Aliquam non enim. Integer dictum
line 4: magna quis orci. Praesent eget libero sed erat ultrices ullamcorper. Donec sodales hendrerit velit. Fusce
line 5: mattis. Suspendisse blandit ornare arcu. Pellentesque venenatis.
dd2sys1fen3:~/bgp/control/mpirun/new>

Using the tee utility
To send stdout, stderr, or both to a file in addition to your terminal, use the tee utility. Give tee
the -i argument, so that it ignores any signals that are sent, such as Ctrl+C to terminate a job
prematurely. See Example 13-11.

Example 13-11 Using tee

dd2sys1fen3:~/bgp/control/mpirun/new> mpirun -partition R00-M0-N00 -verbose 1 -exe
/BGPhome/datespinner.sh -np 1 | tee -i datespinner.out
<Aug 12 10:27:10.997374> FE_MPI (Info) : Invoking mpirun backend
<Aug 12 10:27:11.155416> BRIDGE (Info) : rm_set_serial() - The machine serial
number (alias) is BGP
<Aug 12 10:27:11.194557> FE_MPI (Info) : Preparing partition
<Aug 12 10:27:11.234550> BE_MPI (Info) : Examining specified partition
<Aug 12 10:27:11.823425> BE_MPI (Info) : Checking partition R00-M0-N00 initial
state ...
<Aug 12 10:27:11.823499> BE_MPI (Info) : Partition R00-M0-N00 initial state =
READY ('I')
<Aug 12 10:27:11.823516> BE_MPI (Info) : Checking partition owner...
<Aug 12 10:27:11.823532> BE_MPI (Info) : partition R00-M0-N00 owner is 'userX'
<Aug 12 10:27:11.824744> BE_MPI (Info) : Partition owner matches the current user
<Aug 12 10:27:11.824870> BE_MPI (Info) : Done preparing partition
<Aug 12 10:27:11.864539> FE_MPI (Info) : Adding job
<Aug 12 10:27:11.864876> BE_MPI (Info) : No CWD specified ('-cwd' option)
<Aug 12 10:27:11.864903> BE_MPI (Info) : - it will be set to
'/BGPhome/usr3/bgp/control/mpirun/new'
<Aug 12 10:27:11.865046> BE_MPI (Info) : Adding job to database...
<Aug 12 10:27:11.944540> FE_MPI (Info) : Job added with the following id: 15
<Aug 12 10:27:11.944593> FE_MPI (Info) : Starting job 15
<Aug 12 10:27:12.004492> FE_MPI (Info) : Waiting for job to terminate
<Aug 12 10:27:12.816792> BE_MPI (Info) : IO - Threads initialized
Sun Aug 12 10:27:13 CDT 2007
Sun Aug 12 10:27:18 CDT 2007
Sun Aug 12 10:27:23 CDT 2007
Sun Aug 12 10:27:28 CDT 2007
Sun Aug 12 10:27:33 CDT 2007
Sun Aug 12 10:27:38 CDT 2007
Sun Aug 12 10:27:43 CDT 2007
Sun Aug 12 10:27:48 CDT 2007
Sun Aug 12 10:27:53 CDT 2007
Sun Aug 12 10:27:58 CDT 2007
Sun Aug 12 10:28:03 CDT 2007
Sun Aug 12 10:28:08 CDT 2007
<Aug 12 10:28:11.159680> FE_MPI (Info) : SignalHandler() -
<Aug 12 10:28:11.159737> FE_MPI (Info) : SignalHandler() - ! Received signal
SIGINT
<Aug 12 10:28:11.159760> FE_MPI (WARN) : SignalHandler() -
<Aug 12 10:28:11.159773> FE_MPI (WARN) : SignalHandler() -
!--!
Chapter 13. mpirun 231

<Aug 12 10:28:11.159788> FE_MPI (WARN) : SignalHandler() - ! mpirun is now taking
all the necessary actions !
<Aug 12 10:28:11.159801> FE_MPI (WARN) : SignalHandler() - ! to terminate the job
and to free the resources !
<Aug 12 10:28:11.159815> FE_MPI (WARN) : SignalHandler() - ! occupied by this job.
This might take a while... !
<Aug 12 10:28:11.159829> FE_MPI (WARN) : SignalHandler() -
!--!
<Aug 12 10:28:11.159842> FE_MPI (WARN) : SignalHandler() -
<Aug 12 10:28:11.201498> FE_MPI (Info) : Termination requested while waiting for
backend response
<Aug 12 10:28:11.201534> FE_MPI (Info) : Starting cleanup sequence
<Aug 12 10:28:11.201794> BE_MPI (WARN) : Received a message from frontend
<Aug 12 10:28:11.201863> BE_MPI (WARN) : Execution of the current command
interrupted
<Aug 12 10:28:11.201942> BE_MPI (Info) : Starting cleanup sequence
<Aug 12 10:28:11.201986> BE_MPI (Info) : cancel_job() - Cancelling job 15
<Aug 12 10:28:11.204567> BE_MPI (Info) : cancel_job() - Job 15 state is RUNNING
('R')
<Aug 12 10:28:11.230352> BE_MPI (Info) : cancel_job() - Job 15 state is DYING
('D'). Waiting...
<Aug 12 10:28:16.249665> BE_MPI (Info) : cancel_job() - Job 15 has been moved to
the history table
<Aug 12 10:28:16.255793> BE_MPI (Info) : cleanupDatabase() - Partition was
supplied with READY ('I') initial state
<Aug 12 10:28:16.255996> BE_MPI (Info) : cleanupDatabase() - No need to destroy
the partition
<Aug 12 10:28:16.591667> FE_MPI (ERROR): Failure list:
<Aug 12 10:28:16.591708> FE_MPI (ERROR): - 1. Execution interrupted by signal
(failure #71)
<Aug 12 10:28:16.591722> FE_MPI (Info) : == FE completed ==
<Aug 12 10:28:16.591736> FE_MPI (Info) : == Exit status: 1 ==
dd2sys1fen3:~/bgp/control/mpirun/new> cat datespinner.out
Sun Aug 12 10:28:49 CDT 2007
Sun Aug 12 10:28:54 CDT 2007
Sun Aug 12 10:28:59 CDT 2007
Sun Aug 12 10:29:04 CDT 2007
Sun Aug 12 10:29:09 CDT 2007
Sun Aug 12 10:29:14 CDT 2007
Sun Aug 12 10:29:19 CDT 2007
dd2sys1fen3:~/bgp/control/mpirun/new>

Terminating a job prematurely
Example 13-12 shows a case where the user specified a value for -np larger than the number
provided in the partition.
232 IBM System Blue Gene Solution: Blue Gene/P Application Development

Example 13-12 Error due to requesting an -np value greater than the partition size

dd2sys1fen3:~/bgp/control/mpirun/new> .mpirun -partition R00-M0-N00 -verbose 0 -exe
/bin/hostname -np 55
<Aug 11 15:28:46.797523> BE_MPI (ERROR): Job execution failed
<Aug 11 15:28:46.797634> BE_MPI (ERROR): Job 8 is in state ERROR ('E')
<Aug 11 15:28:46.842559> FE_MPI (ERROR): Job execution failed (error code - 50)
<Aug 11 15:28:46.842738> FE_MPI (ERROR): - Job execution failed - job switched to an error
state
<Aug 11 15:28:46.851840> BE_MPI (ERROR): The error message in the job record is as follows:
<Aug 11 15:28:46.851900> BE_MPI (ERROR): "BG_SIZE of 55 is greater than block 'R00-M0-N00'
size of 32"

Killing a hung job or a running job
mpirun has the capability to kill the job and free your partition if it was booted by mpirun. To kill
your job, we recommend that you send mpirun a SIGINT (kill -2) while the job is running or
hung. We recommend that you do not use SIGKILL since subsequent jobs might experience
problems.

Be aware that using SIGINT is somewhat time consuming depending on the state of the job.
Therefore, do not expect it to return control instantaneously. Alternatively, if you do not want to
wait, try sending mpirun three SIGINTs in succession. In this case, it immediately returns
control to your shell. However, as the warning messages indicate, your job, partition, or both
might be left in a bad state. Ensure that they are cleaned up correctly before you attempt to
use them again. Example 13-13 illustrates this procedure.

Example 13-13 Proper way to kill hung or running jobs

From window 2: (open another window to kill a job)
ps -ef | grep cpsosa

cpsosa 23393 23379 0 13:21 pts/13 00:00:00 /bgsys/drivers/ppcfloor/bin/mpirun -partition
N04_32_1 -np 32 -mode VN -cwd /bgusr/cpsosa/red/pallas -exe /bgusr/cpsosa/red/pallas/PMB-MPI1

From window 1: (where the job is running)
.
. ! Output generated by the program
.
32768 1000 95.49 95.49 95.49 654.50
 65536 640 183.20 183.20 183.20 682.31
<Oct 18 13:22:10.804667> FE_MPI (WARN) : SignalHandler() -
<Oct 18 13:22:10.804743> FE_MPI (WARN) : SignalHandler() -
!--!
<Oct 18 13:22:10.804769> FE_MPI (WARN) : SignalHandler() - ! mpirun is now taking all the
necessary actions !
<Oct 18 13:22:10.804794> FE_MPI (WARN) : SignalHandler() - ! to terminate the job and to free
the resources !
<Oct 18 13:22:10.804818> FE_MPI (WARN) : SignalHandler() - ! occupied by this job. This might
take a while... !
<Oct 18 13:22:10.804841> FE_MPI (WARN) : SignalHandler() -
!--!
Chapter 13. mpirun 233

<Oct 18 13:22:10.804865> FE_MPI (WARN) : SignalHandler() -
 131072 320 357.97 357.97 357.97 698.38
<Oct 18 13:21:10.936378> BE_MPI (WARN) : Received a message from frontend
<Oct 18 13:21:10.936449> BE_MPI (WARN) : Execution of the current command interrupted
<Oct 18 13:21:16.140631> BE_MPI (ERROR): The error message in the job record is as follows:
<Oct 18 13:21:16.140678> BE_MPI (ERROR): "killed with signal 9"
<Oct 18 13:22:16.320232> FE_MPI (ERROR): Failure list:
<Oct 18 13:22:16.320406> FE_MPI (ERROR): - 1. Execution interrupted by signal (failure #71)

13.7 mpirun application program interfaces

When writing programs to the mpirun APIs, you must consider these requirements:

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� C and C++ are supported with the GNU gcc 4.1 level compilers. For more information and
downloads, refer to the following Web address:

http://gcc.gnu.org/

� The include file is include/sched_api.h.

� Regarding the library files, support for both 64-bit dynamic libraries is provided. The 64-bit
dynamic library file called by mpirun must be called libsched_if.so.

mpirun can retrieve runtime information directly from the scheduler without using
command-line parameters or environment variables. Each time mpirun is invoked, it attempts
to load a dynamically loaded library called libsched_if.so. mpirun looks for this library in a set
of directories as described by the dlopen command manual pages.

If the plug-in library is found and successfully loaded, mpirun calls the get_parameters()
function within that library to retrieve the information from the scheduler. The
get_parameters() function returns the information in a data structure of type sched_params.
This data structure contains a set of fields that describe the block that the scheduler has
allocated the job to run. Each field corresponds to one of the command-line parameters or
environment variables.

mpirun complements the information that is retrieved by get_parameters() with values from
its command-line parameters and environment variables. It gives precedence to the
information that is retrieved by get_parameters() first, then to its command line parameters,
and finally to the environment variables. For example, if the number of processors retrieved by
get_parameters() is 256, the -np command-line parameter is set to 512, and the environment
variable MPIRUN_NP is set to 448, mpirun runs the job on 256 Compute Nodes.

The block ID to use for that job can be the one specified by the MPIRUN_PARTITION
environment variable, if both the get_parameters() function does not retrieve the block ID and
the -partition command line parameter is not specified.

If mpirun is invoked with the -verbose parameter with a value greater than 0, it displays
information that describes the loading of the dynamically loaded library. The message
“Scheduler interface library loaded” indicates that mpirun found the library, loaded it, and
is using it.
234 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://gcc.gnu.org/

The implementation of the libsched_if.so library is scheduling-system specific. In general, this
library should use the scheduler’s APIs to retrieve the required information and convert it to
the sched_params data type for mpirun to use. The only requirement is that the library
interface conforms to the definitions in the sched_api.h header file distributed with the mpirun
binaries. This interface may be modified with future releases of mpirun.

The mpirun plug-in interface also requires the implementer provide an mpirun_done() function
(void mpirun_done(int res);). This function is called by mpirun just before it does an exit. It
is used to signal the plug-in implementer that mpirun is terminating.

You can find more information about the library implementation and data structures in the
sched_api.h header file.

The following APIs are supported for mpirun:

� Int get_parameters(sched_params_t *params);

This function is used to provide input parameters to mpirun from your application. If a
value of 1 (failure) is returned on the get_parameters() call, then mpirun proceeds to
terminate. Some external resource managers use this technique to prevent stand-alone
mpirun from being used. If the plug-in provider wants mpirun processing to continue, then
they must return a 0 (success) value on the get_parameters() call.

� void mpirun_done(int res);

This function is called by mpirun just before it calls the exit() function. It can be used to
signal the scheduler that mpirun is terminating.
Chapter 13. mpirun 235

236 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 14. Dynamic Partition Allocator APIs

The Dynamic Partition Allocator application programming interface (API) provides an
easy-to-use interface for the dynamic creation of partitions. This API inspects the current
state of the Blue Gene/P machine and attempts to create a partition based on available
resources. If no resources are available that match the partition requirements, then the
partition is not created. It is expected that any job scheduler that uses the partition allocator
does so from a centralized process to avoid conflicts in finding free resources to build the
partition. Dynamic Partition Allocator APIs are thread safe. Only 64-bit shared libraries are
being provided.

In this chapter, we define a list of APIs into the Midplane Management Control System
(MMCS) Dynamic Partition Allocator. See Chapter 11, “Control system (Bridge) APIs” on
page 159, for details about the Bridge API.

14
© Copyright IBM Corp. 2007. All rights reserved. 237

14.1 Overview of API support
In the following sections, we provide an overview of the support provided by the APIs.

14.1.1 Requirements
When writing programs to the Dynamic Partition Allocator APIs, you must follow the
requirements as explained in the following sections.

Operating system supported
Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

Languages supported
C and C++ are supported with the GNU gcc 4.1.1 level compilers. For more information and
downloads, refer to the following Web address:

http://gcc.gnu.org/

Include files
All required include files are installed in the /bgsys/drivers/ppcfloor/include directory. The
include file for the dynamic allocator API is allocator_api.h.

Library files
The Dynamic Partition Allocator APIs support 64-bit applications using dynamic linking with
shared objects.

64-bit libraries
The required library files are installed in the /bgsys/drivers/ppcfloor/lib64 directory. The
shared object for linking to the Bridge API is libbgpallocator.so.

The libbgpallocator.so library has dependencies on other libraries included with the Blue
Gene software, including the following objects:

� libbgpbridge.so
� libbgpconfig.so
� libbgpdb.so
� libsaymessage.so
� libtableapi.so

These files are installed with the standard system installation procedure. They are contained
in the bgpbase.rpm file.
238 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://gcc.gnu.org/

Configuring environment variables
The environment variables in Table 14-1 are used to control the dynamic allocator and Bridge
API.

Table 14-1 Environment variables that control the Bridge API

14.2 API details
In this section, we provide details about the APIs and return codes for dynamic partition
allocation.

14.2.1 APIs
The following APIs are used for dynamic partition allocation and are all thread safe:

� BGALLOC_STATUS rm_init_allocator(const char * caller_desc, const char *
drain_list);

A program should call rm_init_allocator() and pass a description that will be used as
the text description for all partitions used by subsequent rm_allocate_partition() calls.
For example, passing in ABC job scheduler causes any partitions that are created by
rm_allocate_partition() to have ABC job scheduler as the partition description.

The caller can also optionally specify a drain list file name that identifies the base
partitions (midplanes) that will be excluded from the list of resources to consider when
allocating new partitions. If NULL is passed in for the drain list file name, a default drain list
is set first from the following locations:

– The path in the environment variable ALLOCATOR_DRAIN_LIST if it exists
– The /etc/allocator_drain.lst file if it exists

If no drain list file is established, no base partitions are excluded. If an invalid file name is
passed in, the call fails. For example, a drain list file with the following content excludes
base partitions R00-M0, R00-M1, and R01-M0 when allocating resources for a partition:

R00-M0
R00-M1
R01-M0

Environment variable Required Description

DB_PROPERTY Yes This variable must be set to the path of the db.properties file
with database connection information. For a default
installation, the path to this file is
/bgsys/local/etc/db.properties.

BRIDGE_CONFIG Yes This variable must be set to the path of the bridge.config file
that contains the Bridge API configuration values. For a default
installation, the path to this file is
/bgsys/local/etc/bridge.config.

ALLOCATOR_DRAIN_LIST No This variable can be set to the path of the base partition drain
list to be used if one is not specified on the call to
rm_init_allocator(). When this variable is not set, the file
/etc/allocator_drain.lst is used as a default if it exists.

BRIDGE_DUMP_XML No When set to any value, this variable causes the Bridge API to
dump its in-memory XML streams to files in /tmp for
debugging. When this variable is not set, the Bridge API does
not dump its in-memory XML streams.
Chapter 14. Dynamic Partition Allocator APIs 239

The list of resources can contain items separated by any white-space character (space,
tab, new line, vertical tab or form feed). Items found that do not match an existing resource
are ignored, but an error message is logged.

� BGALLOC_STATUS rm_allocate_partition(
const rm_size_t size,
const rm_connection_type_t conn,
const rm_size3D_t shape,
const rm_job_mode_t mode,
const rm_psetsPerBP_t psetsPerBP,
const char * user_name,
const char * caller_desc,
const char * boot_options,
const char * ignoreBPs,
const char * partition_id,
char ** newpartition_id);

The caller to rm_allocate_partition() provides input parameters that describe the
characteristics of the partition that should be created from available Blue Gene/P machine
resources. If resources are available that match the requirements, a partition is created
and allocated, and the partition name is returned to the caller along with a return code of
BGALLOC_OK.

If both size and shape values are provided, the allocation is based on the shape value
only.

The user_name parameter is required.

If the caller_desc value is NULL, the caller description specified on the call to
rm_init_allocator is used.

The boot_options parameter is optional and can be NULL.

If the ignoreBPs parameter is not NULL, it must be a string of blank separated base
partition identifiers to be ignored. The base partitions listed in the parameter is ignored as
though the partitions were included in the drain list file currently in effect.

If the partition_id parameter is not NULL, it can specify one of the following options:

– The name of the new partition

The name can be from 1 to 32 characters. Valid characters are a..z, A..Z, 0..9, -
(hyphen), and _ (underscore).

– The prefix to be used for generating a unique partition name

The prefix can be from 1 to 16 characters, followed by an asterisk (*). Valid characters
are the same as those for a new partition name. For example, if ABC-Scheduler* is
specified as a prefix, the resulting unique partition name can be
ABC-Scheduler-27Sep1519514155.

14.2.2 Return codes
When a failure occurs, the API invocation returns an error code. In addition, a failure always
generates a log message, which provides more information about the possible cause of the
problem and an optional corrective action. These log messages are used for debugging and
non-automatic recovery of failures.

Important: The returned char * value for newpartition_id should be freed by the caller
when it is no longer needed to avoid memory leaks.
240 IBM System Blue Gene Solution: Blue Gene/P Application Development

The BGALLOC_STATUS return codes for the Dynamic Partition Allocator can be one of the
following types:

� BGALLOC_OK: Invocation completed successfully.

� BGALLOC_ILLEGAL_INPUT: The input to the API invocation is invalid. This result is due to
missing required data, illegal data, and similar problems.

� BGALLOC_ERROR: An error occurred, such as a memory allocation problem or failure on
low-level call.

� BGALLOC_NOT_FOUND: The request to dynamically create a partition failed because required
resources are not available.

� BGALLOC_ALREADY_EXISTS: A partition already exists with the name specified. This error
occurs only when the caller indicates a specific name for the new partition.

14.3 Sample program
The sample program in Example 14-1 shows how to allocate a partition from resources on
base partition R001.

Example 14-1 Sample allocator API program

#include <iostream>
#include <sstream>
#include <cstring>
#include "allocator_api.h"

using std::cout;
using std::cerr;
using std::endl;

int main() {
 rm_size3D_t shape;
 rm_connection_type_t conn = RM_MESH;
 char * ignoreBPs = "R00-M0";
 char* new_partition_id;
 shape.X = 0;
 shape.Y = 0;
 shape.Z = 0;
 BGALLOC_STATUS alloc_rc;

 //set lowest level of verbosity
 setSayMessageParams(stderr, MESSAGE_DEBUG1);
 alloc_rc = rm_init_allocator("test", NULL);
 alloc_rc = rm_allocate_partition(256, conn, shape, RM_SMP_MODE, 0,
 "user1",
 "New partition description",
 ignoreBPs,
 "",
 "ABC-Scheduler*",
 &new_partition_id);
 if (alloc_rc == BGALLOC_OK) {
 cout << "successfully allocated partition: " << new_partition_id << endl;
 free(new_partition_id);
 } else {
 cerr << "could not allocate partition: " << endl;
Chapter 14. Dynamic Partition Allocator APIs 241

 if (alloc_rc == BGALLOC_ILLEGAL_INPUT) {
 cerr << "illegal input" << endl;
 } else if (alloc_rc == BGALLOC_ERROR) {
 cerr << "unknown error" << endl;
 } else if (alloc_rc == BGALLOC_NOT_FOUND) {
 cerr << "not found" << endl;
 } else if (alloc_rc == BGALLOC_ALREADY_EXISTS) {
 cerr << "partition already exists" << endl;
 } else {
 cerr << "internal error" << endl;
 }
}
}

Example 14-2 shows the commands that are used to compile and link the sample program.

Example 14-2 The compile and link commands

g++ -m64 -pthread -I/bgsys/drivers/ppcfloor/include -c sample1.cc -o sample1.o_64

g++ -m64 -pthread -o sample1 sample1.o_64 -L/bgsys/drivers/ppcfloor/lib64
-lbgpallocator
242 IBM System Blue Gene Solution: Blue Gene/P Application Development

Part 4 Applications

In this part, we discuss applications that are being used on the Blue Gene/L or Blue Gene/P
system. This part includes Chapter 15, “Performance overview of engineering and scientific
applications” on page 245.

Part 4
© Copyright IBM Corp. 2007. All rights reserved. 243

244 IBM System Blue Gene Solution: Blue Gene/P Application Development

Chapter 15. Performance overview of
engineering and scientific
applications

In this chapter, we briefly describe a series of scientific and engineering applications that are
currently being used on either the Blue Gene/L or Blue Gene/P system. For a comprehensive
list of applications, refer to the IBM Blue Gene Web page at:

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

The examples in this chapter emphasize the benefits of using the Blue Gene supercomputer
as a highly scalable parallel system. They present results for running applications in various
modes that exploit the architecture of the system.

15
© Copyright IBM Corp. 2007. All rights reserved. 245

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

15.1 Blue Gene/P system from an applications perspective

This book has been dedicated to describing the Blue Gene/P massively parallel
supercomputer from IBM. In this section, we summarize the benefits of the Blue Gene/P
system from an applications point of view. We recall that at the core of the system is the IBM
PowerPC (PowerPC 450) processor with the addition of two floating-point units (FPU). This
system uses a distributed memory, message-passing programming model.

To achieve a high level of integration and quantity of micro-processors with low power
consumption, the machine was developed based on a processor with moderate frequency.
The Blue Gene/P system uses system-on-a-chip (SoC) technology to allow a high level of
integration, low power, and low design cost. Each processor core runs at a frequency of
850 MHz giving a theoretical peak performance of 3.4 gigaflops/core or 13.6 gigaflops/chip.
The chip constitutes the Compute Node.

The next building blocks are the compute and I/O cards. A single Compute Node attached to
a processor card with 2 GB of memory (RAM) creates the compute and I/O cards. The
compute cards and I/O cards are plugged into a node card. There are two rows of sixteen
compute cards on the node card. There can be up to two I/O cards per node card.

A midplane consists of 16 node cards stacked in a rack. A rack holds two midplanes, for a
total of 32 node cards. A system with 72 racks consisting of 294,912 processor cores.

In 2005, running a real application on the Blue Gene/L system broke the barrier of 100
teraflops/second (TF/s), sustaining performance using the domain decomposition
molecular-dynamics code (ddcMD) from the Lawrence Livermore National Laboratory.33 In
2006, first system to break the barrier of 200 TF/s was Qbox running at 207.3 TF/s.34 Real
applications are currently achieving two orders of magnitude higher performance than
previously possible. Successful scaling has pushed from O(1000) processors to O(100,000)
processors by the Gordon Bell Prize finalists at Supercomputing 2006.35 Out of six finalists,
three ran on the Blue Gene/L system.

In silico experimentation plays a crucial role in many scientific disciplines. It provides a
fingerprint to experiment. In engineering applications, such as automotive crash studies,
numerical simulation is much cheaper than physical experimentation. In other applications,
such as global climate change where experiments are impossible, simulations are used to
explore the fundamental scientific issues.36 This is certainly true in Life Sciences as well as in
Materials Science. Figure 15-1 illustrates a landscape of a few selected areas and techniques
where high-performance computing is important to carry out simulations.
246 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 15-1 High-performance computing landscape for selected Scientific and Engineering
applications

In the rest of this chapter, we summarize the performance that has appeared in the literature
for a series of applications in Life Sciences and Materials Science. A comprehensive list of
applications is available for the Blue Gene/L and Blue Gene/P systems. For more information,
see the IBM Blue Gene Applications Web page at:

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

15.2 Selected Chemistry and Life Sciences applications

In this section, we provide a brief overview of the performance characteristics of a selected
set of Chemistry and Life Sciences applications. In particular, we focus on what is known as
Computational Chemistry. However, as other disciplines in sciences that traditionally relied
almost exclusively on experimental observation began to fully incorporate Information
Technology (IT) as one of their tools, the area of Computational Chemistry has expanded to
new disciplines such as Bioinformatics, Systems Biology and several other areas that have
emerged after the post-genomic era.

In order to understand or define the kind of molecular systems that can be studied with these
techniques, Figure 15-2 on page 248 defines the Computational Chemistry landscape as a
function of the size of the systems and the methodology. It illustrates that Classical Molecular
Mechanics/Molecular Dynamics (MM/MD) are commonly used to simulate large biomolecules
that cannot be treated with more accurate methods. The next level corresponds to
semi-empirical methods. Finally Ab Initio methods (also called electronic structure methods)
provide a more accurate description of the system, but the computational demands in terms
of compute cycles increase rapidly.
Chapter 15. Performance overview of engineering and scientific applications 247

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

Alternatively, Bioinformatics techniques rely mainly on string manipulations in an effort to
carry out data mining of large databases. These applications tend to be data intensive.

Figure 15-2 Computational methods landscape in Computational Chemistry

Although, Density Functional Theory-based approaches are not fully represented in
Figure 15-2, nowadays, these types of methods are being used to simulate biologically
important systems.37 These techniques allow for the calculation of larger systems. In this
chapter, we briefly describe Car-Parrinello Molecular Dynamics (CPMD).38 In the same vein,
use of mixed Quantum Mechanical/Molecular Mechanical (QM/MM) methods39 can simulate
larger systems.

15.2.1 Classical Molecular Mechanics and Molecular Dynamics applications

Applications in such areas as Chemistry and Life Sciences can benefit from the type of
architecture used in the Blue Gene supercomputer.40 In particular, software packages based
on molecular dynamics have been considered good candidates for the Blue Gene
architecture. Classical MD simulations compute atomic trajectories by solving equations of
motion numerically by using empirical force fields. The overall MD energy equation is broken
into three components: bonded, van der Waals, and electrostatic. The first two components
are local in nature and therefore do not make a significant contribution to the overall running
time.

The quadratic scaling of the electrostatics force terms, however, requires a high level of
optimization of the MD application.41 To improve performance on simulations in which the
solvent is modeled at the atomic level (that is, explicit solvent modeling), the four Blue Gene
MD applications of AMBER,42 Blue Matter,43 LAMMPS,44 and NAMD45 employ a
reciprocal-space technique called Ewald sums, which enables the evaluation of long-range
electrostatic forces to a pre-selected level of accuracy. In addition to the particle mesh Ewald
(PME) method, LAMMPS offers the particle particle/particle-mesh (PPPM) technique with
characteristics that make it scale well on massively parallel processing (MPP) machines such
as the Blue Gene system.
248 IBM System Blue Gene Solution: Blue Gene/P Application Development

AMBER
AMBER46 is the collective name for a suite of programs that are developed by the Scripps
Research Institute. With these programs, users can carry out molecular dynamics
simulations, particularly on biomolecules. The primary AMBER module, called sander, was
designed to run on parallel systems and provides direct support for several force fields for
proteins and nucleic acids. AMBER includes an extensively-modified version of sander, called
pmemd (particle mesh). For complete information about AMBER as well as benchmarks, refer
to the AMBER Web site at:

http://amber.scripps.edu/

For implicit solvent (continuum) models, which rely on variations of the Poisson equation of
classical electrostatics, AMBER offers the Generalized Born (GB) method. This method uses
an approximation to the Poisson equation that can be solved analytically and allows for good
scaling (Figure 15-3). In Figure 15-3, the experiment is with an implicit solvent (GB) model of
120,000 atoms (Aon benchmark).

Figure 15-3 Parallel scaling of AMBER on the Blue Gene/L system

0

500

1000

1500

2000

2500

3000

3500

0 512 1024 1536 2048 2560 3072

Processors

Pa
ra

lle
l S

pe
ed

up

Linear scaling AMBER GB scaling
Chapter 15. Performance overview of engineering and scientific applications 249

http://amber.scripps.edu/

AMBER also incorporates the PME algorithm, which takes the full electrostatic interactions
into account and to improve the performance of electrostatic force evaluation (Figure 15-4). In
Figure 15-4, the experiment is with an explicit solvent (PME) model of 290,000 atoms
(Rubisco).

Figure 15-4 Parallel scaling of AMBER on the Blue Gene/L system

Blue Matter
Blue Matter47 is a classical molecular dynamics application that has been under development
as part of the IBM Blue Gene project. The effort serves two purposes:

� Enable scientific work in the area of biomolecular simulation that IBM announced in
December 1999.

� Act as an experimental platform for the exploration of programming models and algorithms
for massively parallel machines in the context of a real application.

Blue Matter has been implemented via spatial-force decomposition for N-body simulations
uses the PME method for handling electrostatic interactions. The Ewald summation method
and particle mesh techniques are approximated by a finite range cut-off and a reciprocal
space portion for the charge distribution. This is done in Blue Matter via the
Particle-Particle-Particle-Mesh (P3ME) method.48

The results presented by Fitch et al.49 show impressive scalability on the Blue Gene/L
system. Figure 15-5 shows scalability as a function of the number of nodes. It illustrates that
the performance in time/time step as a function of the number of processors for β-Hairpin
contains a total of 5,239 atoms. SOPE contains 13,758 atoms. In this case, the timings that
are reported here correspond to a size of 643 FFT. Rhodopsin contains 43,222 atoms, and
ApoA contains 92,224 atoms. All runs were carried out using the P3ME method, which was
implemented in Blue Matter at constant particle number, volume, and energy (NVE).51

0

100

200

300

400

500

600

0 128 256 384 512

Processors

Pa
ra

lle
l S

pe
ed

up
Linear scaling AMBER PME scaling
250 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 15-5 Performance in time/time step as a function of number of processors (from Fitch, et al.50)

LAMMPS
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)52 is an MD program
from Sandia National Laboratories that is designed specifically for MPP. LAMMPS is
implemented in C++ and is distributed freely as open-source software under the GNU Public
License (GPL).53 LAMMPS can model atomic, polymeric, biological, metallic, or granular
systems using a variety of force fields and boundary conditions. The parallel efficiency of
LAMMPS varies from the size of the benchmark data and the number of steps being
simulated. In general, LAMMPS can scale to more processors on larger systems
(Figure 15-6).

Figure 15-6 Parallel scaling of LAMMPS on Blue Gene/L (1M System: 1-million atom scaled rhodopsin,
4M System: 4-million atom scaled rhodopsin)

For a 1-million atom system, LAMMPS can scale up to 4096 nodes. For a larger system, such
as a 4-million atom system, LAMMPS can scale up to 4096 nodes as well. As the size of the
system increases, the scalability increases as well.

0

5000

10000

15000

20000

512 1024 2048 4096 8192 16384

Processors

Pa
ra

lle
l S

pe
ed

up

Ideal b-Hairpin SOPE
Rhodopsin ApoA1

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

P r o c e s s o r s

Pa
ra

lle
l s

pe
ed

up

1 M S y s t e m 4 M S y s t e m L in e a r s c a lin g
Chapter 15. Performance overview of engineering and scientific applications 251

NAMD
NAMD is a parallel molecular dynamics application that was developed for high-performance
calculations of large biological molecular systems.54 NAMD supports the force fields used by
AMBER, CHARMM,55 and X-PLOR56 and is also file compatible with these programs. This
commonality allows simulations to migrate between these four programs. The C++ source for
NAMD and Charm++ are freely available from UIUC. For additional information about NAMD,
see the official NAMD Web site at:

http://www.ks.uiuc.edu/Research/namd/

NAMD incorporates the PME algorithm, which takes the full electrostatic interactions into
account and reduces computational complexity. To further reduce the cost of the evaluation of
long-range electrostatic forces, a multiple time step scheme is employed. The local
interactions (bonded, van der Waals, and electrostatic interactions within a specified distance)
are calculated at each time step. The longer range interactions (electrostatic interactions
beyond the specified distance) are computed less often. An incremental load balancer
monitors and adjusts the load during the simulation.

Due to the good balance of network and processor speed of the Blue Gene system, NAMD is
able to scale to large processor counts (see Figure 15-7). While scalability is affected by
many factors, many simulations can make use of multiple Blue Gene racks. Work by Kumar et
al.57 has reported scaling up to 8192 processors. Timing comparisons often use the
“benchmark time” metric instead of wallclock time to completion. The benchmark time metric
omits setup, I/O, and load balance overhead. While benchmark scaling can be considered a
guide to what is possible, ideal load balance and I/O parameters for each case must be found
for the wallclock time to scale similarly. Careful consideration of these parameters might be
necessary to achieve the best scalability.

Figure 15-7 Parallel speedup on the Blue Gene/L system for the NAMD standard apoA1 benchmark

15.2.2 Molecular Docking applications

Applications in the area of Molecular Docking are becoming important in high-performance
computing. In particular, in silico screening using molecular docking has been recognized as
an approach that benefits from high-performance computing to identify novel small molecules
that can then be used for drug design.58 This process consists of the identification or
selection of compounds that show activity against a biomolecule that is of interest as a drug
target.59

0
500

1000
1500
2000
2500
3000
3500
4000
4500

4 128 512 1024 2048 4096
Processors

Pa
ra

lle
l S

pe
ed

up
252 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www.ks.uiuc.edu/Research/namd/

Docking programs place molecules into the active site of the receptor (or target biomolecule)
in a non-covalent fashion and then rank them by the ability of the small molecules to interact
with the receptor.60 There is an extensive family of molecular docking software packages.61

DOCK6
DOCK is an open-source molecular docking software package that is frequently used in
structure-based drug design.62 The computational aspects of this program can be divided
into two parts. The first part consists of the ligand atoms that are located inside the cavity or
binding pocket of a receptor, which is a large biomolecule. This step is carried out by a search
algorithm.63 The second part corresponds to scoring or identifying the most favorable
interactions, which is normally done by means of a scoring function.64

The latest version of the DOCK software package is version 6.1. However, in our work, we
used version 6.0. This version is written in C++ to exploit code modularity and has been
parallelized using the Message Passing Interface (MPI) paradigm. DOCK 6.0 is parallelized
using a master-worker scheme.65 The master handles I/O and tasks management, while
each worker is given an individual molecule to perform simultaneous independent docking.66

Recently, Peters, et al. have shown that DOCK6 is well suited for doing virtual screening on
the Blue Gene/L or Blue Gene/P system.67 Figure 15-8 shows the receptor HIV-1 reverse
transcriptase in complex with nevirapine as used and described in in the Official UCSF DOCK
Web site. The ligand library corresponds to a subset of 27,005 drug-like ligands from the
ZINC database.68 The scalability of the parallel version of the code is illustrated by
constructing a set of ligands with 128,000 copies of nevirapine as recommended in the
Official UCSF DOCK Web site to remove dependence on the order and size of the
compound. You can find this Web site at:

http://dock.compbio.ucsf.edu

In Figure 15-8, the original code is the dark bar. Sorting by total number of atoms per ligand is
the bar with horizontal lines. Sorting by total number of rotatable bonds per ligand is the white
bar.69

Figure 15-8 The effect of load balancing optimization for 27,005 ligands on 2048 processors

15.2.3 Electronic structure (Ab Initio) applications

Electronic structure calculations, such as the Hartree-Fock (HF) method, represent one of the
simplest techniques in this area. However, even this first approximation tends to be
computationally demanding. Many types of calculations begin with a Hartree-Fock calculation

0

10000

20000

30000

40000

50000

60000

256 512 1024 2048

Number of Processors

Ti
m

e(
Se

c.
)

Chapter 15. Performance overview of engineering and scientific applications 253

http://dock.compbio.ucsf.edu

and subsequently correct for electron-electron repulsion, which is also referred to as
electronic correlation. The Møller-Plesset perturbation theory (MPn) and coupled cluster
theory (CC) are examples of these post-Hartree-Fock methods.70

A common characteristic of these techniques is that they are used to accurately compute
molecular properties. As such, they tend to be widely available in high-performance
computing. However, in addition to traditional electronic structure methods, Density
Functional Theory-based methods have proven to be an attractive alternative to include
correction effects and still treat large systems.

CPMD
The CPMD code is based on the original computer code written by Car and Parrinello.71 It
was developed first at the IBM Research Zurich laboratory, in collaboration with many groups
worldwide. It is a production code with many unique features written in Fortran and has grown
from its original size of approximately 10,000 lines to currently close to 200,000 lines of code.
Since January 2002, the program has been freely available for non-commercial use.72

The basics of the implementation of the Kohn-Sham method using a plane-wave basis set
and pseudopotentials are described in several review articles,73 and the CPMD code follows
them closely. All standard gradient-corrected density functionals are supported, and
preliminary support for functionals that depend on the kinetic energy density is available.
Pseudopotentials used in CPMD are either of the norm-conserving or the ultra-soft type.74
Norm-conserving pseudopotentials have been the default method in CPMD, and only some of
the rich functionality has been implemented for ultra-soft pseudopotentials.

The emphasis of CPMD on MD simulations of complex structures and liquids led to the
optimization of the code for large supercells and a single k-point (the k = 0 point)
approximation. Therefore, many features have only been implemented for this special case.
CPMD has a rich set of features, many of which are unique. For a complete overview, refer to
the CPMD manual.75 The basic electronic structure method implemented uses fixed
occupation numbers, either within a spin-restricted or an unrestricted scheme. For systems
with a variable occupation number (small gap systems and metals), the free energy
functional3 can be used together with iterative diagonalization methods.

15.2.4 Bioinformatics applications

The list of molecular biology databases is constantly increasing and more scientists rely on
this information. The NAR Molecular Biology Database collection reported an increase of 139
more databases for 2006 compared to the previous year. enBank doubles its size
approximately every 18 months. However, the increase in microprocessor clock speed is not
changing at the same rate. Therefore, scientists try to leverage the use of multiple processors.
In this section, we introduce some of these applications that are currently running on the Blue
Gene supercomputer.

HMMER
For a complete discussion of hidden Markov models, refer to the work by Krogh et al.76
HMMER 2.3.2 consists of nine different programs: hmmalign, hmmbuild, hmmcalibrate,
hmmconvert, hmmemit, hmmfetch, hmmindex, hmmpfam, and hmmsearch.77 Out of these
nine programs, hmmcalibrate, hmmpfam, and hmmsearch have been parallelized.
hmmcalibrate is used to identify statistical significance parameters for profile HMM. hmmpfam
is used to search a profile HMM database. hmmsearch is used to carry out sequence
database searches.78

The first module tested corresponds to hmmcalibrate. Figure 15-9 on page 255 summarizes
the performance of this module up to 2048 nodes.79 Although this module was not optimized,
254 IBM System Blue Gene Solution: Blue Gene/P Application Development

the parallel efficiency is still 75% on 2048 nodes. The graph in Figure 15-9 illustrates the
performance of hmmcalibrate using only the first 327 entries in the Pfam database.80

Figure 15-9 .hmmcalibrate parallel performance using the first 327 entries of the Pfam database

Figure 15-10 illustrates the work presented by Jiang, et al.81 for optimizing hmmsearch
parallel performance using 50 proteins of the globin family from different organisms and the
UniProt release 8 database. For each processor count, the left bar shows the original PVM to
MPI port. Notice scaling stops at 64 nodes. The second bar shows the multiple master
implementation. The third bar shows the dynamic data collection implementation, and the
right bar shows the load balancing implementation.

Figure 15-10 hmmsearch parallel performance
Chapter 15. Performance overview of engineering and scientific applications 255

mpiBLAST-PIO
mpiBLAST is an open-source parallelization of BLAST that uses MPI.82 One of the key
features of the initial parallelization of mpiBLAST is its ability to fragment and distribute
databases.

Thorsen et al.83 have compared the query Arabidopsis thaliana. This is a model organism for
studying plant genetics. This query was further subdivided into small, medium, and large
query sets that contain 200, 1168, and 28014 sequences, respectively.

Figure 15-11 illustrates the results of comparing three queries of three different sizes. We
labeled them small, medium, and large. The database corresponds to NR. This figure shows
that scalability is a function of the query size. The small query scales to approximately 1024
nodes in coprocessor mode with a parallel efficiency of 72% were the large query scales to
8,192 nodes with a parallel efficiency of 74%.

From the top of Figure 15-11, the thick solid line corresponds to ideal scaling. The thin solid
line corresponds to the large query. The dashed line corresponds to the medium query. The
dotted line corresponds to the small query.

Figure 15-11 Scaling chart for queries run versus the nr database

15.2.5 Performance kernel benchmarks

Communication performance is an important aspect when running parallel applications,
particularly, when running on a distributed-memory system such as the Blue Gene/P system.
On both the Blue Gene/L and Blue Gene/P systems, instead of implementing a single type of
network that is capable of transporting all protocols needed, these two systems have
separate networks for different types of communications.
256 IBM System Blue Gene Solution: Blue Gene/P Application Development

Usually two measurements provide information about the network and can be used to look at
the parallel performance of applications:

Bandwidth The number of MB of data that can be sent from a node to another
node in one second

Latency The amount of time it takes for the first byte sent from one node to
reach its target node

These two values provide information about communication. In this section, we illustrate two
simple cases. The first case corresponds to a benchmark that involves a single transfer. The
second case corresponds to a collective as defined in the Intel MPI Benchmarks. Intel MPI
Benchmarks is formerly known as “Pallas MPI Benchmarks” - PMB-MPI1 (for MPI1 standard
functions only). Intel MPI Benchmarks - MPI1 provides a set of elementary MPI benchmark
kernels.

For more details, see the product documentation included in the package that you can
download from the Web at:

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

Intel MPI Benchmarks
The Intel MPI Benchmarks kernel or elementary set of benchmarks was reported as part of
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. Here we describe and perform
the same benchmarks. You can run all of the supported benchmarks, or just a subset,
specified via the command line. The rules, such as time measurement, message lengths,
selection of communicators to run a particular benchmark, are program parameters. For more
information, see the product documentation that is included in the package, which you can
download from the Web at:

http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm

This set of benchmarks has the following objectives:

� Provide a concise set of benchmarks targeted at measuring important MPI functions:
point-to-point message-passing, global data movement and computation routines, and
one-sided communications and file I/O.

� Set forth precise benchmark procedures: run rules, set of required results, repetition
factors, and message lengths.

� Avoid imposing an interpretation on the measured results: execution time, throughput, and
global operations performance.

15.2.6 MPI point-to-point

In the Intel MPI Benchmarks, single transfer corresponds to PingPong and PingPing
benchmarks. Here we illustrate a comparison between the Blue Gene/L and Blue Gene/P
system for the case of PingPong. This benchmark illustrates a single messaged that was
transferred between two MPI tasks, which in our case, is on two different nodes.

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/L system, the benchmark was run in co-processor mode, which is defined in
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. On the Blue Gene/P system, we
used the SMP Node Mode.
Chapter 15. Performance overview of engineering and scientific applications 257

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm

Example 15-1 shows how mpirun was invoked on the Blue Gene/L system.

Example 15-1 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd /bglscratch/pallas -exe
/bglscratch/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen 4194304.txt -npmin 512
PingPong" | tee IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Example 15-2 shows how mpirun was invoked on the Blue Gene/P system.

Example 15-2 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 PingPong" | tee
IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Figure 15-12 shows the bandwidth on the torus network as a function of the message size, for
one simultaneous pair of nearest neighbor communications. The protocol switch from short to
eager is visible in these two cases, where the eager to rendezvous switch is most pronounced
on the Blue Gene/L system. This figure also shows the improved performance on the Blue
Gene/P system. Notice in Figure 15-12 that the diamonds corresponds to the Blue Gene/P
system and the asterisks (*) to correspond to the Blue Gene/L system.

Figure 15-12 Bandwidth versus message size

MPI collective benchmarks
In the Intel MPI Benchmarks, collective benchmarks correspond to Bcast, Allgather,
Allgatherv, Alltoall, Alltoallv, Reduce, Reduce_scatter, Allreduce, and Barrier benchmarks.
Here we illustrate a comparison between the Blue Gene/L and Blue Gene/P system for the
case of Allreduce, which is a popular collective that is used in certain scientific applications.
These benchmarks measure the message passing power of a system as well as the quality of
the implementation.

0
50

100
150
200
250
300
350
400

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

10
48

57
6

41
94

30
4

Message size in Bytes

Ba
nd

w
id

th
 in

 M
B/

s

258 IBM System Blue Gene Solution: Blue Gene/P Application Development

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/P system, the benchmark was run in co-processor mode, which is defined in
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. On the Blue Gene/P system, we
used SMP Node Mode.

Example 15-3 shows how mpirun was invoked on the Blue Gene/L system.

Example 15-3 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd
/bglscratch/BGTH/testsmall512nodeBGL/pallas -exe
/bglscratch/BGTH/testsmall512nodeBGL/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen
4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Example 15-4 shows how mpirun was invoked on the Blue Gene/P system.

Example 15-4 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Collective operations are more efficient on the Blue Gene/P system. You should try to use
these operations instead of point-to-point communication wherever possible. The overhead
for point-to-point communications is much larger than those for collectives. Unless all your
point-to-point communication is purely the nearest neighbor, it is also difficult to avoid network
congestion on the torus network.

Alternatively, collective operations can use the barrier (global interrupt) network or the torus
network. If they run over the torus network, they can still be optimized by using specially
designed communication patterns that achieve optimum performance. Doing this manually
with point-to-point operations is possible in theory, but in general, the implementation in the
Blue Gene/P MPI library offers superior performance.

With point-to-point communication, the goal of reducing the point-to-point Manhattan
distances necessitates a good mapping of MPI tasks to the physical hardware. For
collectives, mapping is equally important because most collective implementations prefer
certain communicator shapes to achieve optimum performance. The technique of mapping is
illustrated in Appendix E, “Mapping” on page 281.

Similar to point-to-point communications, collective communications also works best if you do
not use complicated derived data types and if your buffers are aligned to 16-byte boundaries.

While the MPI standard explicitly allows for MPI collective communications to occur at the
same time as point-to-point communications (on the same communicator), we generally do
not recommend that you allow this to happen for performance reasons.
Chapter 15. Performance overview of engineering and scientific applications 259

Table 15-1 summarizes the MPI collectives that have been optimized on the Blue Gene/P
system, together with their performance characteristics when executed on the various
networks of the Blue Gene/P system.

Table 15-1 MPI collectives that have been optimized on the Blue Gene/P system

Figure 15-13 shows a comparison between the Blue Gene/L and Blue Gene/P systems for
the MPI_Allreduce() type of communication.

Figure 15-13 MPI_Allreduce () performance on 512 nodes

MPI routine Condition Network Performance

MPI_Barrier MPI_COMM_WORLD Barrier (global
interrupt) network

1.2 μs

MPI_Barrier Any communicator Torus network 30 μs

MPI_Broadcast MPI_COMM_WORLD Collective network 817 MBps

MPI_Broadcast Rectangular
communicator

Torus network 934 MBps

MPI_Allreduce MPI_COMM_WORLD
fixed-point

Collective network 778 MBps

MPI_Allreduce MPI_COMM_WORLD
floating point

Collective network 98 MBps

MPI_Alltoall[v] Any communicator Torus network 84-97% peak

MPI_Allgatherv N/A Torus network Same as broadcast

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

4 8 64 51
2

40
96

32
76

8

26
21

44

20
97

15
2

Message size in Bytes

Ti
m

e
in

s

Allreduce on BG/L
Allreduce on BG/P
260 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure 15-14 illustrates the performance of the barrier on Blue Gene/P for up to 32 nodes.

Figure 15-14 Barrier performance on the Blue Gene/P system

0

5

10

15

20

25

2 4 8 16 32

Number of Processors

Av
er

ag
e

Ti
m

e
in

se

c

Blue Gene/P
Chapter 15. Performance overview of engineering and scientific applications 261

262 IBM System Blue Gene Solution: Blue Gene/P Application Development

Part 5 Appendixes

In this part, we provide additional information about system administration for the Blue
Gene/P system. This part includes the following appendixes:

� Appendix A, “Blue Gene/P hardware naming convention” on page 265
� Appendix B, “Header files and libraries” on page 271
� Appendix C, “Files on architectural features” on page 275
� Appendix D, “Porting applications” on page 279
� Appendix E, “Mapping” on page 281
� Appendix F, “Statement of completion” on page 285

Part 5
© Copyright IBM Corp. 2007. All rights reserved. 263

264 IBM System Blue Gene Solution: Blue Gene/P Application Development

Appendix A. Blue Gene/P hardware naming
convention

In this appendix, we present an overview of how the Blue Gene/P hardware locations are
assigned. This naming is used consistently throughout both the hardware and software.

A

© Copyright IBM Corp. 2007. All rights reserved. 265

Figure A-1 shows the conventions that are used when assigning locations to all hardware
except the various cards in a Blue Gene/P system. Using the charts and diagrams that follow,
consider an example where you have an error in the fan named R23-M1-A3-0. This naming
convention tells you where to look for the error. In Figure A-1, in the upper left corner, you see
that racks use the convention Rxx. Looking at our error message, we can see that the rack
involved is R23. From the chart in Figure A-1, we see that R23 is the fourth rack in row two.
(Remember that all numbering starts with 0). The bottom midplane of any rack is 0.
Therefore, we are dealing with the top midplane (R23-M1).

In the chart, you can see in the fan assemblies description that assemblies zero through four
are on the front of the rack, bottom to top, respectively. Therefore, we check for an attention
light (Amber LED) on the fan assembly second from the top, because the front-most fan is the
one that is causing the error message to surface. Service, link, and node cards use a similar
form of addressing.

Figure A-1 Hardware naming conventions

Racks:
Rxx

Rack Column (0-F)
Rack Row (0-F)

Power Modules:
Rxx-B-Px

Midplanes:
Rxx-Mx

Clock Cards:
Rxx-K

Fan Assemblies:
Rxx-Mx-Ax

Fans:
Rxx-Mx-Ax-Fx

Power Module (0-7)
0-3 Left to right facing front
4-7 left to right facing rear

Bulk Power Supply
Rack Row (0-F)
Rack Column (0-F)

Midplane (0-1) 0=Bottom 1=Top
Rack Column (0-F)
Rack Row (0-F)

Clock
Rack Column (0-F)
Rack Row (0-F)

Fan Assembly (0-9)
0=Bottom Front, 4=Top Front
5=Bottom Rear, 9=Top Rear

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Fan (0-2) 0=Tailstock 2= Midplane
Fan Assembly (0-9)

0=Bottom Front, 4=Top Front
5=Bottom Rear, 9=Top Rear

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Bulk Power Supply:
Rxx-B

Bulk Power Supply
Rack Row (0-F)
Rack Column (0-F)

Power Cable:
Rxx-B-C

Power Cable
Bulk Power Supply
Rack Row (0-F)
Rack Column (0-F)
266 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure A-2 shows the conventions used for the various card locations.

Figure A-2 Card naming conventions

Table A-1 contains examples of various hardware conventions. The figures that follow the
table provide illustrations of the actual hardware.

Table A-1 Example of hardware name conventions

Card Element Name Example

Compute Card J04 through J35 R23-M10-N02-J09

I/O Card J00 through J01 R57-M1-N04-J00

I/O & Compute Module U00 R23-M0-N13-J08-U00

Link Module U00 through U05 (00 left most, 05
right most)

R32-M0-L2_U03

Link Port TA through TF R01-M0-L1-U02-TC

Link data cable Connector J00 through J15 (as labeled on link
card)

R21-M1-L2-J13

Node Ethernet Connector EN0, EN1 R16-M1-N14-EN1

Service Connector Control FPGA, control network,
Clock R, Clock B

R05-M0-S-Control FPGA

Clock Connector Input, Output 0 through Output 9 R13-K- Output 3

Service Cards:
Rxx-Mx-S

Service Card
Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Link Cards:
Rxx-Mx-Lx

Node Cards:
Rxx-Mx-Nxx

Compute Cards:
Rxx-Mx-Nxx-Jxx

Link Card (0-3)

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Node Card (00-15)

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Compute Card (04 through 35)
Node Card (00-15)
Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

0=Bottom Front
1=Top Front
2=Bottom Rear
3=Top Rear

00=Bottom Front
07=Top Front
08=Bottom Rear
15=Top Rear

I/O Cards:
Rxx-Mx-Nxx-Jxx

I/O Card (00-01)
Node Card (00-15)
Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Note: Master service card for
a rack is always Rxx-M0-S
Appendix A. Blue Gene/P hardware naming convention 267

Figure A-3 shows the layout of a 64-rack system.

Figure A-3 Rack numbering

Figure A-4 identifies each of the cards in a single midplane.

Figure A-4 Positions of the node, link, and service cards

Note: The fact that Figure A-3 shows numbers 00 through 77 does not imply that this is the
largest configuration possible. The largest configuration possible is 256 racks numbered 00
through FF.

Service Card Side

L1

N07

N06

N05

N04
S

N03

N02

N01

N00
L0

Note: N00-J23 is torus position 0,0,0

L3

N15

N14

N13

N12

N11

N10

N09

N08
L2
268 IBM System Blue Gene Solution: Blue Gene/P Application Development

Figure A-5 shows a diagram of a node card. On the front of the card are Ethernet ports EN0
and EN1. The first nodes behind the Ethernet ports are the I/O Nodes. In this diagram, the
node card is fully populated with I/O Nodes, meaning that it has two I/O Nodes. Behind the
I/O Nodes are the Compute Nodes.

Figure A-5 Node card diagram

Figure A-6 is an illustration of a service card.

Figure A-6 Service card

J35
J31

J27
J23

J19
J15

J11
J07

J01

J34
J30

J26
J22

J18
J14

J10
J06

J33
J29

J25
J21

J17
J13

J09
J05

J00

J32
J28

J24
J20

J16
J12

J08
J04

EN0
EN1

Control Network

Control FPGA

Clock R

Clock B

Clock Input

Rack Row Indicator (0-F)
Rack Column Indicator (0-F)
Appendix A. Blue Gene/P hardware naming convention 269

Figure A-7 shows the link card. The locations identified as J00 through J15 are the link card
connectors. The link cables are routed from one link card to another to form the torus network
between the midplanes.

Figure A-7 Link card

Figure A-8 shows the clock card. If the clock is a secondary or tertiary clock, there will be a
cable coming to the input connector on the far right. Next to the input (just to the left) is the
master and worker toggle switch. All clock cards are built with the capability of filling either
role. If the clock is a secondary or tertiary clock, this must be set to worker. Output zero
through nine can be used to send signals to midplanes throughout the system.

Figure A-8 Clock card

U00

U01

U02

U03

U04

U05

J00 J02 J04 J06 J08 J10 J12 J14
J01 J03 J05 J07 J09 J11 J13 J15

Output 9

Master

Output 8
Output 7

Output 6
Output 5

Output 4
Output 3

Output 2
Output 1

Output 0

Input

Worker
270 IBM System Blue Gene Solution: Blue Gene/P Application Development

Appendix B. Header files and libraries

In this appendix, we provide information about selected header files and libraries for the Blue
Gene/P system. Directories that contain header files and libraries for the Blue Gene/P system
are under the main system path in the /bgsys/drivers/ppcfloor directory.

B

© Copyright IBM Corp. 2007. All rights reserved. 271

Blue Gene/P applications
Blue Gene/P applications run on the Blue Gene/P compute or I/O Nodes. Table B-1 describes
the header files in the /bgsys/drivers/ppcfloor/comm/include directory.

Table B-1 Header files in /bgsys/drivers/ppcfloor/comm/include

Table B-2 describes the header files in the /bgsys/drivers/ppcfloor/arch/include/common
directory.

Table B-2 Header files in /bgsys/drivers/ppcfloor/arch/include/common

Table B-3 describes the 32-bit static and dynamic libraries in the
/bgsys/drivers/ppcfloor/comm/lib directory.

Table B-3 32-bit static and dynamic libraries in /bgsys/drivers/ppcfloor/comm/lib/

File name Description

dcmf.h Common BGP message layer interface

dcmf_collectives.h Common BGP message layer interface for general collectives

mpe_thread.h Multi-processing environment (MPE) routines

mpicxx.h MPI GCC script routine naming

mpif.h MPI Fortran parameters

mpi.h MPI C defines

mpiof.h MPI I/O Fortran programs

mpio.h MPI I/O C includes

mpix.h Blue Gene/P extensions to the MPI specifications

File name Description

bgp_personality.h Defines personality

bgp_personality_inlines.h Static inline for personality

bgp_personalityP.h Defines personality processing

File name Description

libdcmf.cnk.a,
libdcmf.cnk.so

Common BGP message layer interface in C

libdcmfcoll.cnk.a,
libdcmfcoll.cnk.so

Common BGP message layer interface for general collectives in C

libmpich.cnk.a,
libmpich.cnk.so

C bindings for MPI

libcxxmpich.cnk.a, C++ bindings for MPI

libfmpich.cnk.a,
libfmpich.cnk.so

Fortran bindings for MPI

libfmpich_.cnk.a Fortran bindings for MPI with extra underscoring
272 IBM System Blue Gene Solution: Blue Gene/P Application Development

Resource management APIs
Blue Gene/P resource management applications run on the Service Node. Table B-4
describes the header files used by resource management applications. They are located in
the /bgsys/drivers/ppcfloor/include directory.

Table B-4 Header files for resource management APIs

Table B-5 describes the 64-bit dynamic libraries that are available to resource management
applications. They are located in the /bgsys/drivers/ppcfloor/lib64 directory.

Table B-5 64-bit dynamic libraries for resource management APIs

File name Description

allocator_api.h Available for applications using the Dynamic Partition Allocator APIs

attach_bg.h The Blue Gene/P version of attach.h, which is described in the Message
Passing Interface (MPI) debug specification

rm_api.h Available for applications that use Bridge APIs

rt_api.h Available for applications that use Real-time Notification APIs

sayMessage.h Available for applications that use sayMessage APIs

sched_api.h Available for applications that use the mpirun plug-in interface

File Name Description

libbgpallocator.so Required when using the Dynamic Partition Allocator APIs

libbgrealtime.so Required when using the Real-time Notification APIs

libbgpbridge.so Required when using the Bridge APIs

libsaymessage.so Required when using the sayMessage APIs
Appendix B. Header files and libraries 273

274 IBM System Blue Gene Solution: Blue Gene/P Application Development

Appendix C. Files on architectural features

System calls that provide access to certain hardware or system features can be accessed by
applications. In this appendix, we illustrate how to obtain hardware-related information.

C

© Copyright IBM Corp. 2007. All rights reserved. 275

Personality of Blue Gene/P
The personality of a Blue Gene/P node is static data given to every Compute Node and I/O
Node at boot time by the control system. This data contains information that is specific to the
node, with respect to the block that is being booted.

The personality is a set of C language structures that contain such items as the node’s
coordinates on the torus network. This kind of information can be useful if the application
programmer wants to determine, at run time, where the tasks of the application are running. It
can also be used to tune certain aspects of the application at run time, such as determining
which set of tasks share the same I/O Node and then optimizing the network traffic from the
Compute Nodes to that I/O Node.

Example of running personality on Blue Gene/P
Example C-1 illustrates how to invoke and print selected hardware features.

Example: C-1 personali.c architectural features program

/* --- */
/* Example: architectural features */
/* Written by: Bob Walkup */
/* IBM Watson, Yorktown, NY */
/* September 17, 2007 */
/* --- */

#include <mpi.h>
#include <stdio.h>

#include <spi/kernel_interface.h>
#include <common/bgp_personality.h>
#include <common/bgp_personality_inlines.h>

int main(int argc, char * argv[])
{
 int taskid, ntasks;
 int memory_size_MBytes;
 _BGP_Personality_t personality;
 int torus_x, torus_y, torus_z;
 int pset_size, pset_rank, node_config;
 int xsize, ysize, zsize, procid;
 char location[128];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
 MPI_Comm_size(MPI_COMM_WORLD, &ntasks);

 Kernel_GetPersonality(&personality, sizeof(personality));

 if (taskid == 0)
 {
 memory_size_MBytes = personality.DDR_Config.DDRSizeMB;
 printf("Memory size = %d MBytes\n", memory_size_MBytes);

 node_config = personality.Kernel_Config.ProcessConfig;
276 IBM System Blue Gene Solution: Blue Gene/P Application Development

 if (node_config == _BGP_PERS_PROCESSCONFIG_SMP) printf("SMP mode\n");
 else if (node_config == _BGP_PERS_PROCESSCONFIG_VNM) printf("Virtual-node mode\n");
 else if (node_config == _BGP_PERS_PROCESSCONFIG_2x2) printf("Dual mode\n");
 else printf("Unknown mode\n");

 printf("number of MPI tasks = %d\n", ntasks);

 xsize = personality.Network_Config.Xnodes;
 ysize = personality.Network_Config.Ynodes;
 zsize = personality.Network_Config.Znodes;

 pset_size = personality.Network_Config.PSetSize;
 pset_rank = personality.Network_Config.RankInPSet;

 printf("number of processors in the pset = %d\n", pset_size);
 printf("torus dimensions = <%d,%d,%d>\n", xsize, ysize, zsize);
 }

 torus_x = personality.Network_Config.Xcoord;
 torus_y = personality.Network_Config.Ycoord;
 torus_z = personality.Network_Config.Zcoord;

 BGP_Personality_getLocationString(&personality, location);

 procid = Kernel_PhysicalProcessorID();

 /*---*/
 /* print torus coordinates and the node location */
 /*---*/
 printf("MPI rank %d has torus coords <%d,%d,%d> cpu = %d, location = %s\n",
 taskid, torus_x, torus_y, torus_z, procid, location);

 MPI_Finalize();
 return 0;
}

Example C-2 illustrates the makefile that is used to build personality.c. This particular file uses
the GNU compiler.

Example: C-2 Makefile to build the personality.c program

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include

CC = /bgsys/drivers/ppcfloor/comm/bin/mpicc

EXE = personality
OBJ = personality.o
SRC = personality.c
FLAGS =
FLD =

$(EXE): $(OBJ)
 ${CC} $(FLAGS) -o $(EXE) $(OBJ) $(BGP_LIBS)
$(OBJ): $(SRC)
Appendix C. Files on architectural features 277

 ${CC} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm personality.o personality

Example C-3 shows a section of the output that is generated after running personality using
TXYZ mapping. (See Appendix E, “Mapping” on page 281). Notice that the output has been
ordered by MPI rank for readability.

Example: C-3 Output generated after running personality

/bgsys/drivers/ppcfloor/bin/mpirun -partition N04_32_1 -label -env "BG_MAPPING=TXYZ" -mode VN
-np 8 -cwd `pwd` -exe personality | tee personality_VN_8_TXYZ.out

Memory size = 2048 MBytes
Virtual-node mode
number of MPI tasks = 128
number of processors in the pset = 32
torus dimensions = <4,4,2>
MPI rank 0 has torus coords <0,0,0> cpu = 0, location = R00-M0-N04-J23
MPI rank 1 has torus coords <0,0,0> cpu = 1, location = R00-M0-N04-J23
MPI rank 2 has torus coords <0,0,0> cpu = 2, location = R00-M0-N04-J23
MPI rank 3 has torus coords <0,0,0> cpu = 3, location = R00-M0-N04-J23
MPI rank 4 has torus coords <1,0,0> cpu = 0, location = R00-M0-N04-J04
MPI rank 5 has torus coords <1,0,0> cpu = 1, location = R00-M0-N04-J04
MPI rank 6 has torus coords <1,0,0> cpu = 2, location = R00-M0-N04-J04
MPI rank 7 has torus coords <1,0,0> cpu = 3, location = R00-M0-N04-J04

Example C-4 illustrates running personality with XYZT mapping for a comparison. Notice
that the output has been ordered by MPI rank for readability.

Example: C-4 Output generated after running personality

/bgsys/drivers/ppcfloor/bin/mpirun -partition N04_32_1 -label -env "BG_MAPPING=XYZT" -mode VN
-np 8 -cwd `pwd` -exe personality | tee personality_VN_8_XYZT.out

Memory size = 2048 MBytes
Virtual-node mode
number of MPI tasks = 128
number of processors in the pset = 32
torus dimensions = <4,4,2>
MPI rank 0 has torus coords <0,0,0> cpu = 0, location = R00-M0-N04-J23
MPI rank 1 has torus coords <1,0,0> cpu = 0, location = R00-M0-N04-J04
MPI rank 2 has torus coords <2,0,0> cpu = 0, location = R00-M0-N04-J12
MPI rank 3 has torus coords <3,0,0> cpu = 0, location = R00-M0-N04-J31
MPI rank 4 has torus coords <0,1,0> cpu = 0, location = R00-M0-N04-J22
MPI rank 5 has torus coords <1,1,0> cpu = 0, location = R00-M0-N04-J05
MPI rank 6 has torus coords <2,1,0> cpu = 0, location = R00-M0-N04-J13
MPI rank 7 has torus coords <3,1,0> cpu = 0, location = R00-M0-N04-J30
278 IBM System Blue Gene Solution: Blue Gene/P Application Development

Appendix D. Porting applications

In this appendix, we summarize Appendix A, “BG/L prior to porting code,” in Unfolding the
IBM eServer Blue Gene Solution, SG24-6686. Porting applications to massively parallel
systems requires special considerations to take full advantage of this specialized
architectures. Never underestimate the effort that is required to port a code to any new
hardware. The amount of effort depends on the nature of the way in which the code has been
implemented.

Answer the following questions to help you in the decision process of porting applications:

1. Is the code already running in parallel?

2. Is the application addressing 32-bit?

3. Does the application relies on system calls, for example, system?

4. Does the code use the Message Passing Interface (MPI), specifically MPICH? Although
there are several parallel programming application programming interfaces (APIs), the
only one supported on the Blue Gene/P system that is portable is MPICH. OpenMP is
supported only on individual nodes.

5. Is the code Single Process, Multiple Data (SPMD) and not multiple process, multiple data
(MPMD)? The Blue Gene/P system only supports SPMD, same program everywhere,
style of parallel programming.

6. Is the memory requirement per MPI task less than 1 GB?

7. Is the code computational-intensive? That is, is there a small amount of I/O compared to
computation?

8. Is the code floating point-intensive? This allows the double floating-point capability of the
Blue Gene/P system to be exploited.

9. Does the algorithm allow for distributing the work to a large number of nodes?

10.Have you ensured that the code does not use flex_lm licensing? At present, there is no
flex_lm library support for Linux on System p™.

D

© Copyright IBM Corp. 2007. All rights reserved. 279

If you have answered “yes” to all of these questions, then you must answer the following
questions:

� Has the code been ported to Linux on System p?

� Is the code Open Source Software (OSS)? This type of applications require the use of the
GNU standard configure and special considerations are required.84

� Can the problem size be increased with increased numbers of processors?

� Do you use standard input? If yes, can this be changed to single file input?
280 IBM System Blue Gene Solution: Blue Gene/P Application Development

Appendix E. Mapping

Mapping Message Passing Interface (MPI) tasks to Blue Gene/L nodes are discussed in
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. In this appendix, we summarize
and discuss mapping of these tasks with respect to the Blue Gene/P system.

In general, mapping is the process of assigning tasks to processors.85 In this appendix, we
define mapping as an assignment of MPI ranks onto Blue Gene processors. For both the Blue
Gene/L and Blue Gene/P systems, the network topology is a three-dimensional (3D) torus or
mesh, with direct links between the nearest neighbors in the +/-x, +/-y, and +/-z directions.
When communication involves the nearest neighbors on the torus network, you can obtain a
large fraction of the theoretical peak bandwidth. However, when MPI ranks communicate with
many hops between the neighbors, the effective bandwidth is reduced by a factor that is equal
to the average number of hops that messages take on the torus network. In a number of
cases, it is possible to control the placement of MPI ranks so that communication remains
local. This can significantly improve scaling for a number of applications, particularly at large
processor counts.

The default mapping is to place MPI ranks on the system in XYZT order, where <X,Y,Z> are
torus coordinates and T is the processor number within each node (T=0,1,2,3). If the job uses
symmetrical multiprocessing (SMP) Node Mode on the Blue Gene/P system, only one MPI
rank is assigned to each node that is using processor 0. For SMP Node Mode and the default
mapping, we get the following results:

� MPI rank 0 is assigned to <X,Y,Z,T> coordinates <0,0,0,0>.
� MPI rank 1 is assigned to <X,Y,Z,T> coordinates <1,0,0,0>.
� MPI rank 2 is assigned to <X,Y,Z,T> coordinates <2,0,0,0>.

The results continue like this, first incrementing the X coordinate, then the Y coordinate, and
then the Z coordinate. In Virtual Node Mode and in Dual Node Mode, the same XYZT order
remains the default.

For example, in Virtual Node Mode, the system first places one MPI rank using processor 0
on each of the nodes in XYZ order. The next MPI ranks are assigned to processor 1, again in
XYZ order, and so forth. In many cases, it might be better to change this assignment so that
the first four MPI ranks use processors 0,1,2,3 on the first node, then the next four ranks use
processors 0,1,2,3 on the second node, where the nodes are populated in XYZ order. This
ordering is called TXYZ order (first increment T, then X, then Y, and then Z).

E

© Copyright IBM Corp. 2007. All rights reserved. 281

Table E-1 illustrates this type of mapping using the output from the personality program
presented in Appendix C, “Files on architectural features” on page 275.

Table E-1 Topology mapping 4x4x2 with TXYZ and XYZT

The way to specify a mapping depends on the method that is used for job submission. The
mpirun command for the Blue Gene/P system includes two methods to specify the mapping.
You can add -mapfile TXYZ to request TXYZ order. Other permutations of XYZT are also
permitted. You can also create a map file, and use -mapfile my.map, where my.map is the
name of your map file. Alternatively, you can specify the environment variable -env
BG_MAPPING=TXYZ to obtain one of the predefined non-default mappings.

The use of a customized map file provides the most flexibility. The syntax for the map file is
simple. It must contain one line for each MPI rank in the Blue Gene partition, with four
integers on each line separated by spaces, where the four integers specify the <X,Y,Z,T>
coordinates for each MPI rank. The first line in the map file assigns MPI rank 0, the second
line assigns MPI rank 1, and so forth. It is important to ensure that your map file is consistent,
with a unique relationship between MPI rank and <X,Y,Z,T> location.

General guidance
For applications that use a 1D, 2D, 3D, or 4D (D for dimensional) logical decomposition
scheme, it is often possible to map MPI ranks onto the Blue Gene torus network in a way that
preserves locality for nearest-neighbor communication. For example, in a one-dimensional
processor topology, where each MPI rank communicates with its rank +/- 1, the default XYZT
mapping is sufficient at least for partitions that are large enough to use torus wrap-around.

Mapping option Topology Coordinates Processor

TXYZ 4x4x2 0,0,0 0

0,0,0 1

0,0,0 2

0,0,0 3

1,0,0 0

1,0,0 1

1,0,0 2

1,0,0 3

XYZT 4x4x2 0,0,0 0

1,0,0 0

2,0,0 0

3,0,0 0

0,1,0 0

1,1,0 0

2,1,0 0

3,1,0 0
282 IBM System Blue Gene Solution: Blue Gene/P Application Development

Torus wrap-around is enabled for partitions that are one midplane = 8x8x8 512 nodes, or
multiples of one midplane. With torus wrap-around, the XYZT order keeps communication
local, except for one extra hop at the torus edges. For smaller partitions, such as a 64-node
partition with a 4x4x4 mesh topology, it is better to create a map file that assigns ranks that go
down the X-axis in the +x direction and then for the next Y-value, fold the line to return in the
-x direction, making a snake-like pattern that winds back and forth, filling out the 4x4x4 mesh.
It is worthwhile to note that, for a random placement of MPI ranks onto a 3D torus network,
the average number of hops is one-quarter of the torus length, in each of the three
dimensions. Thus mapping is generally more important for large or elongated torus
configurations.

Two-dimensional logical processes topologies are more challenging. In some cases, it is
possible to choose the dimensions of the logical 2D process mesh so that one can fold the
logical 2D mesh to fit perfectly in the 3D Blue Gene torus network. For example, if you want to
use one midplane (8x8x8 nodes) in virtual-node mode, a total of 2048 CPUs are available. A
2D process mesh is 32x64 for this problem. The 32 dimension can be lined up along one
edge of the torus, say the X-axis, using TX order to fill up processors (0,1,2,3) on each of the
eight nodes going down the X-axis, resulting in 32 MPI ranks going down the X-axis.

The simplest good mapping, in this case is to specify -mapfile TXYZ. This keeps
nearest-neighbor communication local on the torus, except for one extra hop at the torus
edges. You can do slightly better by taking the 32x64 logical 2D process mesh, aligning one
edge along the X-axis with TX order and then folding the 64 dimension back and forth to fill
the 3D torus in a seamless manner. It is straightforward to construct small scripts or programs
to generate the appropriate map file. Not all 2D process topologies can be neatly folded onto
the 3D torus.

For 3D logical process topologies, it is best to choose a decomposition or mapping that fits
perfectly onto the 3D torus if possible. For example, if your application uses SMP Node Mode
on one Blue Gene rack (8x8x16 torus), then it is best to choose a 3D decomposition with 8
ranks in the X-direction, 8 ranks in the Y-direction, and 16 ranks in the Z-direction. If the
application requires a different decomposition, for example 16x8x8, you might be able to use
mapping to maintain locality for nearest-neighbor communication. In this case, ZXY order
works.

Quantum chromodynamics (QCD) applications often use a 4D process topology. This can fit
perfectly onto Blue Gene/P using Virtual Node Mode. For example, with one full rack, there
are 4096 CPUs in Virtual Node Mode, with a natural layout of 8x8x16x4 (X, Y, Z, T order). By
choosing a decomposition of 8x8x16x4, communication remains entirely local for nearest
neighbors in the logical 4D process mesh. In contrast, a more balanced decomposition of
8x8x8x8 results in a significant amount of link sharing, and thus degraded bandwidth in one of
the dimensions.

In summary, it is often possible to choose a mapping that keeps communication local on the
Blue Gene torus network. This is recommended for cases where a natural mapping can be
identified based on the parallel decomposition strategy used by the application. The mapping
can be specified using the -mapfile argument for the mpirun command.
Appendix E. Mapping 283

284 IBM System Blue Gene Solution: Blue Gene/P Application Development

Appendix F. Statement of completion

IBM considers installation to be complete when the following activities have taken place:

� The Blue Gene/P rack or racks have been physically placed in position.
� The cabling is complete, including power, Ethernet, and torus cables.
� The Blue Gene/P racks can be powered on.
� All hardware is displayed in the Navigator and is available.

F

© Copyright IBM Corp. 2007. All rights reserved. 285

286 IBM System Blue Gene Solution: Blue Gene/P Application Development

References

1. TOP500 Supercomputer Sites

http://www.top500.org/

2. The MPI Forum. The MPI message-passing interface standard. May 1995

http://www.mcs.anl.gov/mpi/standard.html

3. OpenMP application program interface (API):

http://www.openmp.org

4. IBM XL family of compilers

– XL C/C++

http://www-306.ibm.com/software/awdtools/xlcpp/

– XL Fortran

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/

5. GCC, the GNU Compiler Collection

http://gcc.gnu.org/

6. IBM System Blue Gene Solution: Configuring and Maintaining Your Environment,
SG24-7352

7. GPFS Multicluster with the IBM System Blue Gene Solution and eHPS Clusters,
REDP-4168

8. Engineering and Scientific Subroutine Library (ESSL)

http://www-03.ibm.com/systems/p/software/essl.html

9. See note 2 above.

10.See note 3 above.

11.See note 4 above.

12.See note 5 above.

13.See note 6 above.

14.See note 7 above.

15.See note 8 above.

16.Gropp, W. and Lusk, E. “Dynamic Process Management in an MPI Setting.” 7th IEEE
Symposium on Parallel and Distributed Processing. p. 530, 1995.

http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf

17.See note 2 above.

18.See note 3 above.

19.See note 5 above.

20.See note 8 above.

21.Ganier, CJ. “What is Direct Memory Access (DMA)?”

http://cnx.org/content/m11867/latest/

22.See note 2 above.
© Copyright IBM Corp. 2007. All rights reserved. 287

http://www.top500.org/
http://cnx.org/content/m11867/latest/
http://www.mcs.anl.gov/mpi/standard.html
http://www.openmp.org
http://www-306.ibm.com/software/awdtools/xlcpp/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/
http://gcc.gnu.org/
http://www-03.ibm.com/systems/p/software/essl.html
http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf

23.See note 3 on page 287.

24.Quinn, Michael J. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New
York, 2004. ISBN 0-072-82256-2.

25.Snir, Marc; Otto, Steve; Huss-Lederman, Steven; Walker, David; Dongarra, Jack. MPI: The
Complete Reference, 2nd Edition, Volume 1. MIT Press, Cambridge, Massachusetts,
1998. ISBN 0-262-69215-5.

26.Gropp, William; Huss-Lederman, Steven; Lumsdaine, Andrew; Lusk, Ewing; Nitzberg, Bill;
Saphir, William; Snir, Marc. MPI: The Complete Reference, Volume 2 - The MPI-2
Extensions. MIT Press, Cambridge, Massachusetts, 1998. ISBN 0-262-69216-3.

27.See note 3 on page 287.

28.See note 24 on page 288.

29.Ibid.

30.Ibid.

31.See note 3 on page 287.

32.Flynn’s taxonomy in Wikipedia

http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy

33.Rennie, Gabriele. “Keeping an Eye on the Prize.” Science and Technology Review,
July/August 2006.

http://www.llnl.gov/str/JulAug06/pdfs/07_06.3.pdf

34.Rennie, Gabriele. “ Simulating Materials for Nanostructural Designs.” Science and
Technology Review, January/February 2006.

http://www.llnl.gov/str/JanFeb06/Schwegler.html

35.SC06 Supercomputing Web site, press release from 16 November 2006.

http://sc06.supercomputing.org/news/press_release.php?id=14

36.Unfolding the IBM eServer Blue Gene Solution, SG24-6686

37.Sebastiani, D. and Rothlisberger, U. “Advances in Density-functional-based Modeling
Techniques of the Car-Parinello Approach,” chapter in Quantum Medicinal Chemistry, ed.
by P. Carloni and F. Alber. Wiley-VCH, Germany, 2003. ISBN 9-783-52730-456-1.

38.Car, R. and Parrinello, Mi. “Unified Approach for Molecular Dynamics and
Density-Functional Theory.” Physical Review Letter 55, 2471 (1985).

http://prola.aps.org/abstract/PRL/v55/i22/p2471_1

39.See note 33 above.

40.Suits, F., et al. Overview of Molecular Dynamics Techniques and Early Scientific Results
from the Blue Gene Project. IBM Research & Development, 2005. 49, 475 (2005).

http://www.research.ibm.com/journal/rd/492/suits.pdf

41.Ibid.

42.Case, D. A., et al. “The Amber biomolecular simulation programs.” Journal of
Computational Chemistry. 26, 1668 (2005).

43.Fitch, B. G., et al. “Blue Matter, an application framework for molecular simulation on Blue
Gene.” Journal of Parallel and Distributed Computing. 63, 759 (2003).

http://portal.acm.org/citation.cfm?id=952903.952912&dl=GUIDE&dl=ACM

44.Plimpton, S. “Fast parallel algorithms for short-range molecular dynamics.” Journal of
Computational Physics. 117, 1 (1995).
288 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www.llnl.gov/str/JulAug06/pdfs/07_06.3.pdf
http://www.llnl.gov/str/JanFeb06/Schwegler.html
http://sc06.supercomputing.org/news/press_release.php?id=14
http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy
http://prola.aps.org/abstract/PRL/v55/i22/p2471_1
http://www.research.ibm.com/journal/rd/492/suits.pdf
http://portal.acm.org/citation.cfm?id=952903.952912&dl=GUIDE&dl=ACM

45.Phillips, J., et al. “Scalable molecular dynamics with NAMD.” Journal of Computational
Chemistry. 26, 1781 (2005).

46.See note 42 on page 288.

47.See note 43 on page 288.

48.Ibid.

49.Ibid.

50.Ibid.

51.Ibid.

52.See note 44 on page 288.

53.LAMMPS Molecular Dynamics Simulator:

http://lammps.sandia.gov/

54.See note 45 on page 289.

55.Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M.
“CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics
Calculations.” Journal of Computational Chemistry. 4, 187 (1983).

56.Brünger, A. I. “X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR.” 1992:
The Howard Hughes Medical Institute and Department of Molecular Biophysics and
Biochemistry, Yale University. 405.

57.Kumar, S., et al. “Achieving Strong Scaling with NAMD on Blue Gene/L.” Proceedings of
IEEE International Parallel & Distributed Processing Symposium, 2006.

58.Waszkowycz, B., et al. “Large-scale Virtual Screening for Discovering Leads in the
Postgenomic Era.” IBM Systems Journal. 40, 360 (2001).

59.Patrick, G. L. An Introduction to Medicinal Chemistry, 3rd Edition. Oxford University Press,
Oxford, UK, 2005. ISBN 0-199-27500-9.

60.Kontoyianni, M., et al. “Evaluation of Docking Performance: Comparative Data on Docking
Algorithms.” Journal of Medical Chemistry. 47, 558 (2004).

61.Kuntz, D., et al. “A Geometric Approach to Macromolecule-ligand Interactions.” Journal of
Molecular Biology. 161, 269 (1982); Morris, G. M., et al. “Automated Docking Using a
Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function.” Journal of
Computational Chemistry. 19, 1639 (1998); Jones, G., et al. “Development and Validation
of a Genetic Algorithm to Flexible Docking.” Journal of Molecular Biology. 267, 904 (1997);
Rarey, M., et al. “A Fast Flexible Docking Method Using an Incremental Construction
Algorithm.” Journal of Molecular Biology. 261, 470 (1996), Scrödinger, Portland, OR
972001; Pang, Y. P., et al. “EUDOC: A Computer Program for Identification of Drug
Interaction Sites in Macromolecules and Drug Leads from Chemical Databases.” Journal
of Computational Chemistry. 22, 1750 (2001).

62.(a) http://dock.compbio.ucsf.edu (b) Moustakas, D. T., et al. “Development and
Validation of a Modular, Extensible Docking Program: DOCK5. ” Journal of Computational
Aided Molecular Design. 20, 601 (2006).

63.Ibid.

64.Ibid.

65.Ibid.

66.Ibid.

67.Peters, A., et al., “High Throughput Computing Validation for Drug Discovery using the
DOCK Program on a Massively Parallel System.” 1st Annual MSCBB - Location:
Northwestern University - Evanston, IL, September, 2007.
 References 289

http://dock.compbio.ucsf.edu
http://lammps.sandia.gov/

68.Irwin, J. J. and Shoichet, B. K. “ZINC - A Free Database of Commercially Available
Compounds for Virtual Screening.” Journal of Chemical Information and Modeling. 45, 177
(2005).

69.Ibid.

70.Pople, J. A. Approximate Molecular Orbital Theory (Advanced Chemistry). McGraw-Hill,
NY. June 1970. ISBN 0-070-50512-8.

71.See note 38 on page 288.

72.(a) CPMD V3.9, Copyright IBM Corp. 1990-2003, Copyright MPI fur Festkorperforschung,
Stuttgart, 1997-2001. (b) See also http://www.cpmd.org

73.Marx, D. and Hutter, J. Ab-initio molecular dynamics: Theory and implementation, in:
Modern Methods and Algorithms of Quantum Chemistry. J. Grotendorst (Ed.), NIC Series,
1, FZ Julich, Germany, 2000; see also http://www.fz-juelich.de/nic-series/Volume
and references therein.

74.Vanderbilt, D. “Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism.” Physical Review B. 1990, 41, 7892 (1990).

http://prola.aps.org/abstract/PRB/v41/i11/p7892_1

75.See note 72 above.

76.Eddy, S. R., HMMER User's Guide. Biological Sequence Analysis Using Profile Hidden
Markov Models, Version 2.3.2, October 1998.

77.Ibid.

78.Ibid.

79.Jiang, K., et al. “An Efficient Parallel Implementation of the Hidden Markov Methods for
Genomic Sequence Search on a Massively Parallel System.” IEEE Transactions On
Parallel and Distributed Systems. 19, 1 (2008).

80.Bateman, A., et al. “The Pfam Protein Families Database.” Nucleic Acids Research. 30,
276 (2002).

81.Ibid.

82.Darling, A., et al. “The Design, Implementation, and Evaluation of mpiBLAST.”
Proceedings of 4th International Conference on Linux Clusters (in conjunction with
ClusterWorld Conference & Expo), 2003.

83.Thorsen, O., et al. “Parallel genomic sequence-search on a massively parallel system.”
Conference On Computing Frontiers: Proceedings of the 4th international conference on
Computing frontiers. ACM, 2007, pp. 59-68.

84.Heyman, J. Porting Open Source Software (OSS) to Blue Gene/P, white paper
WP101152.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152

85.See note 24 on page 288.
290 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www.fz-juelich.de/nic-series/Volume
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152
http://www.cpmd.org
http://prola.aps.org/abstract/PRB/v41/i11/p7892_1

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 294. Note that some of the documents referenced here might be available in softcopy
only.

� Blue Gene Safety Considerations, REDP-4257

� Blue Gene/L: Hardware Overview and Planning, SG24-6796

� Blue Gene/L: Performance Analysis Tools, SG24-7278

� Evolution of the IBM System Blue Gene Solution, REDP-4247

� GPFS Multicluster with the IBM System Blue Gene Solution and eHPS Clusters,
REDP-4168

� IBM System Blue Gene Solution: Application Development, SG24-7179

� IBM System Blue Gene Solution: Configuring and Maintaining Your Environment,
SG24-7352

� IBM System Blue Gene Solution: Hardware Installation and Serviceability, SG24-6743

� IBM System Blue Gene Solution Problem Determination Guide, SG24-7211

� IBM System Blue Gene Solution: System Administration, SG24-7178

� Unfolding the IBM eServer Blue Gene Solution, SG24-6686

Other publications
These publications are also relevant as further information sources:

� Bateman, A., et al. “The Pfam Protein Families Database.” Nucleic Acids Research. 30,
276 (2002).

� Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M.
“CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics
Calculations.” Journal of Computational Chemistry. 4, 187 (1983).

� Brünger, A. I. “X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR.” 1992:
The Howard Hughes Medical Institute and Department of Molecular Biophysics and
Biochemistry, Yale University. 405.

� Car, R. and Parrinello, Mi. “Unified Approach for Molecular Dynamics and
Density-Functional Theory.” Physical Review Letter 55, 2471 (1985).

� Case, D. A., et al. “The Amber biomolecular simulation programs.” Journal of
Computational Chemistry. 26, 1668 (2005).

� Darling, A., et al. “The Design, Implementation, and Evaluation of mpiBLAST.”
Proceedings of 4th International Conference on Linux Clusters (in conjunction with
ClusterWorld Conference & Expo), 2003.
© Copyright IBM Corp. 2007. All rights reserved. 291

� Eddy, S. R., HMMER User's Guide. Biological Sequence Analysis Using Profile Hidden
Markov Models, Version 2.3.2, October 1998.

� Fitch, B. G., et al. “Blue Matter, an application framework for molecular simulation on Blue
Gene.” Journal of Parallel and Distributed Computing. 63, 759 (2003).

� Gropp, W. and Lusk, E. “Dynamic Process Management in an MPI Setting.” 7th IEEE
Symposium on Parallel and Distributed Processing. p. 530, 1995.

� Gropp, William; Huss-Lederman, Steven; Lumsdaine, Andrew; Lusk, Ewing; Nitzberg, Bill;
Saphir, William; Snir, Marc. MPI: The Complete Reference, Volume 2 - The MPI-2
Extensions. MIT Press, Cambridge, Massachusetts, 1998. ISBN 0-262-69216-3.

� Heyman, J. Porting Open Source Software (OSS) to Blue Gene/P, white paper
WP101152.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152

� Irwin, J. J. and Shoichet, B. K. “ZINC - A Free Database of Commercially Available
Compounds for Virtual Screening.” Journal of Chemical Information and Modeling. 45, 177
(2005).

� Jiang, K., et al. “An Efficient Parallel Implementation of the Hidden Markov Methods for
Genomic Sequence Search on a Massively Parallel System.” IEEE Transactions On
Parallel and Distributed Systems. 19, 1 (2008).

� Jones, G., et al. “Development and Validation of a Genetic Algorithm to Flexible Docking.”
Journal of Molecular Biology. 267, 904 (1997).

� Kontoyianni, M., et al. “Evaluation of Docking Performance: Comparative Data on Docking
Algorithms.” Journal of Medical Chemistry. 47, 558 (2004).

� Kumar, S., et al. “Achieving Strong Scaling with NAMD on Blue Gene/L.” Proceedings of
IEEE International Parallel & Distributed Processing Symposium, 2006.

� Kuntz, D., et al. “A Geometric Approach to Macromolecule-ligand Interactions.” Journal of
Molecular Biology. 161, 269 (1982).

� Marx, D. and Hutter, J. Ab-initio molecular dynamics: Theory and implementation, in:
Modern Methods and Algorithms of Quantum Chemistry. J. Grotendorst (Ed.), NIC Series,
1, FZ Julich, Germany, 2000

� Mendell, Mark, “Exploiting the Dual Floating Point Units in Blue Gene/L”:

http://www-1.ibm.com/support/docview.wss?uid=swg27007511

� Morris, G. M., et al. “Automated Docking Using a Lamarckian Genetic Algorithm and
Empirical Binding Free Energy Function.” Journal of Computational Chemistry. 19, 1639
(1998).

� Pang, Y. P., et al. “EUDOC: A Computer Program for Identification of Drug Interaction Sites
in Macromolecules and Drug Leads from Chemical Databases.” Journal of Computational
Chemistry. 22, 1750 (2001).

� Patrick, G. L. An Introduction to Medicinal Chemistry, 3rd Edition. Oxford University Press,
Oxford, UK, 2005. ISBN 0-199-27500-9.

� Peters, A., et al., “High Throughput Computing Validation for Drug Discovery using the
DOCK Program on a Massively Parallel System.” 1st Annual MSCBB - Location:
Northwestern University - Evanston, IL, September, 2007.

� Phillips, J., et al. “Scalable molecular dynamics with NAMD.” Journal of Computational
Chemistry. 26, 1781 (2005).

� Plimpton, S. “Fast parallel algorithms for short-range molecular dynamics.” Journal of
Computational Physics. 117, 1 (1995).
292 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://www-1.ibm.com/support/docview.wss?uid=swg27007511
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152

� Pople, J. A. Approximate Molecular Orbital Theory (Advanced Chemistry). McGraw-Hill,
NY. June 1970. ISBN 0-070-50512-8.

� Quinn, Michael J. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New
York, 2004. ISBN 0-072-82256-2.

� Rarey, M., et al. “A Fast Flexible Docking Method Using an Incremental Construction
Algorithm.” Journal of Molecular Biology. 261, 470 (1996), Scrödinger, Portland, OR
972001.

� Sebastiani, D. and Rothlisberger, U. “Advances in Density-functional-based Modeling
Techniques of the Car-Parinello Approach,” chapter in Quantum Medicinal Chemistry,
edited by P. Carloni and F. Alber. Wiley-VCH, Germany, 2003. ISBN 9-783-52730-456-1.

� Snir, Marc; Otto, Steve; Huss-Lederman, Steven; Walker, David; Dongarra, Jack. MPI: The
Complete Reference, 2nd Edition, Volume 1. MIT Press, Cambridge, Massachusetts,
1998. ISBN 0-262-69215-5.

� Suits, F., et al. Overview of Molecular Dynamics Techniques and Early Scientific Results
from the Blue Gene Project. IBM Research & Development, 2005. 49, 475 (2005).

� Thorsen, O., et al. “Parallel genomic sequence-search on a massively parallel system.”
Conference On Computing Frontiers: Proceedings of the 4th international conference on
Computing frontiers. ACM, 2007, pp. 59-68.

� Vanderbilt, D. “Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism.” Physical Review B. 1990, 41, 7892 (1990).

� Waszkowycz, B., et al. “Large-scale Virtual Screening for Discovering Leads in the
Postgenomic Era.” IBM Systems Journal. 40, 360 (2001).

Online resources
These Web sites are also relevant as further information sources:

� Compiler Related topics:

– XL C/C++:

http://www-306.ibm.com/software/awdtools/xlcpp/

– XL C/C++ library

http://www.ibm.com/software/awdtools/xlcpp/library/

– XL Fortran Advanced Edition for Blue Gene

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/

– XL Fortran library

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

� Debugger-related topics:

– The GNU Project Debugger

http://www.gnu.org/software/gdb/gdb.html

– GDB documentation:

http://www.gnu.org/software/gdb/documentation/

� Engineering and Scientific Subroutine Library (ESSL)

http://www-03.ibm.com/systems/p/software/essl.html
 Related publications 293

http://www-03.ibm.com/systems/p/software/essl.html
http://www-306.ibm.com/software/awdtools/xlcpp/
http://www.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/documentation/

� GCC, the GNU Compiler Collection

http://gcc.gnu.org/

� Intel MPI Benchmarks is formerly known as "Pallas MPI Benchmarks" - PMB-MPI1?

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

� Mathematical Acceleration Subsystem (MASS)

http://www-306.ibm.com/software/awdtools/mass/index.html

� The MPI Forum

http://www.mpi-forum.org/

� MPI Performance Topics

http://www.llnl.gov/computing/tutorials/mpi_performance/

� OpenMP application program interface (API):

http://www.openmp.org

� Danier, CJ, “What is Direct Memory Access (DMA)?”

http://cnx.org/content/m11867/latest/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
294 IBM System Blue Gene Solution: Blue Gene/P Application Development

http://cnx.org/content/m11867/latest/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.openmp.org
http://gcc.gnu.org/
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi_performance/
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
http://www-306.ibm.com/software/awdtools/mass/index.html

Index

Numerics
10 Gb Ethernet network 11
32-bit static link files 273
3D torus network 10

A
Ab Initio method 247
adaptive routing 68
address space 22
allocate block 130
AMBER 249
ANSI-C 59
Argonne National Labs 18
arithmetic functions 114
asynchronous API 163
asynchronous file I/O 22

B
base partition 191

definitions 192
BG_CHKPT_ENABLED 158
BG_SHAREDMEMPOOLSIZE 40
bgpmaster daemon 26
binary functions 116
binutils 92
block 130
blrts_xlc 94
blrts_xlc++ 94
blrts_xlf 94
Blue Gene specifications 12
Blue Gene XL compilers 91
Blue Gene/L PowerPC 440d processor 91
Blue Gene/P

environment 6
hardware 3
memory considerations 18
MPI 18
programs 11
software 16
system architecture 4
threading support 18

Blue Matter 250
Bridge API 160

asynchronous API 163
deprecated APIs 163
examples 192
first and next calls 161
invalid pointers 161
library files 198, 238
memory allocation and deallocation 161
requirements 160, 198
return codes 163, 207
sample makefile 198
© Copyright IBM Corp. 2007. All rights reserved.
bss 19
built-in floating-point functions 106

C
cache

L1 44–45, 72
L2 44, 46
L3 44, 46

Car-Parrinello Molecuar Dynamics (CPMD) 248
Cartesian communicator functions 74
checkpoint and restart

API 155
BG_CHKPT_ENABLED 158
BGLAtCheckpoint 156
BGLAtContinue 156
BGLAtRestart 156
BGLCheckpoint 155
BGLCheckpointExcludeRegion 156
BGLCheckpointInit 155
BGLCheckpointRestart 156
directory and file naming conventions 157
I/O considerations 153
restarting application 157
signal considerations 153
technical overview 152

checkpoint library 152
checkpoint write complete flag 157
chip 4
CIOD (control and I/O daemon) 31, 33

threading 35
Classical Molecular Mechanics/Molecular Dynamics
(MM/MD) 247
collective 11
collective MPI 81, 260
collective network 68
Common Node Services 32
Communication Coprocessor Mode 17, 37–38, 47
compilers

GNU 23
IBM XL 24

complex type manipulation functions 109
compute card 4
Compute Node 5–6, 9

card 4
Compute Node Kernel 6, 17, 22, 30, 52

socket services 25
control and I/O daemon (CIOD) 31, 33, 35
control network 6, 11
control system 25

bgpmaster 26
Bridge API 25
ciodb 26
MMCS 25
mpirun 25
 295

Control System APIs
jm_attach_job 172
jm_begin_job 172
jm_cancel_job 172
jm_debug_job 172
jm_load_job 173
jm_signal_job 174
jm_start_job 174
job state flags 173
message types 190
messaging API 190
partition state flags 168
pm_create_partition 167
pm_destroy_partition 167
requirements 160, 238
rm_add_job 171
rm_add_part_user 166, 200, 208
rm_add_partition 166, 200, 208
rm_assign_job 166
rm_free_BGL 189
rm_free_BP 189
rm_free_job 189
rm_free_job_list 189
rm_free_nodecard 189
rm_free_nodecard_list 190
rm_free_partition 190
rm_free_partition_list 190
rm_free_switch 190
rm_get_BGL 164
rm_get_data 162, 164
rm_get_job 173
rm_get_jobs 173
rm_get_partitions 167–168, 200, 208–209
rm_get_partitions_info 168, 200, 209
rm_get_serial 165
rm_new_BP 189
rm_new_job 189
rm_new_nodecard 189
rm_new_partition 189
rm_new_switch 189
rm_query_job 174
rm_release_partition 169
rm_remove_job 174
rm_remove_part_user 170, 200, 208
rm_remove_partition 170
rm_set_data 162, 165
rm_set_part_owner 170
rm_set_serial 165

copy-primary operations 107
copy-secondary operations 108
core files 146
Core Processor tool 138
cores, computation of 5
CPMD (Car-Parrinello Molecuar Dynamics) 248
critical pragma 87
cross operations 107
cross-copy operations 108

D
data 19

DB_PROPERTY 198
DCMF_EAGER 68
DDR (double data RAM) 46
debug client 133
debug server 133
debugging applications 132
deterministic routing 68
DOCK6 253
double data RAM (DDR) 46
Double Hummer FPU 94
double precision square matrix multiply example 125
DUAL mode (2X2) 39
Dual Node Mode 39, 49
dynamic linking 23
Dynamic Partition Allocator API 237

requirements 238
return codes 240
sample program 241

E
eager protocol 68, 71
electronic correlation 254
electronic structure method 247
Engineering and Scientific Subroutine Library (ESSL) 96
entities 25
ESSL (Engineering and Scientific Subroutine Library) 96
Ewald sums 248
extended basic blocks 101

F
fault recovery 152

see checkpoint and restart
file I/O 22
flood of messages 70
freepartition 218
Front End Node 6, 13
functional Ethernet (10 Gigabit) 11
functional network 6

G
GDB (GNU Project debugger) 133
gdbserver 133
General Parallel File System (GPFS) 13
gid 52
global collective network 11
global interrupt network 11
GNU

3.2 C 23
C++ 23
Fortran77 23
GDB 133

GNU Project debugger (GDB) 133
GPFS (General Parallel File System) 13

H
heap 19
HMMER 254
host system 13
296 IBM System Blue Gene Solution: Blue Gene/P Application Development

host system software 14

I
I/O (input/output) 22
I/O Node 5–6, 10, 24, 32

daemons 25
file system services 24
Kernel boot 24
software 24

IBM XL compiler 24, 91
inline functions 101
inlining 101
input/output (I/O) 22

file 22
sockets calls 22

installation 285
Intel MPI Benchmarks 79

L
LAMMPS 251
libbgrealtime.so 198
ligand atoms 253
load and store functions 111
LoadLeveler 131

cluster 131

M
mapping 281
MASS (Mathematical Acceleration Subsystem) 96
Mathematical Acceleration Subsystem (MASS) 96
mcServer daemon 26
memory 18

address space 22
addressing 19
considerations 9
distributed 44, 66
leaks 21
management 22
model 22
virtual 44

message layer 39
Message Passing Interface (MPI) 18, 66

bandwidth 79
collective 81, 260
eager protocol 68
latency 79
point-to-point 80
rendezvous protocol 68
short protocol 68
too much memory 69

microprocessor 8
midplane 7
Midplane Management Control System (MMCS) 25–26
Midplane Management Control System APIs 237
MM/MD (Classical Molecular Mechanics/Molecular Dy-
namics) 247
mmap 40
MMCS (Midplane Management Control System) 25–26

MMCS console 130
MMCS daemon 26
MPI (Message Passing Interface) 18, 66

bandwidth 79
collective 81, 260
communications 74
eager protocol 68
latency 79
point-to-point 80
rendezvous protocol 68
short protocol 68
too much memory 69

MPI_Barrier 73
MPI_COMM_WORLD 75
MPI_Irecv 69
MPI_Isend 69
MPI_SUCCESS 74
MPI_Test 70
MPI_Wait 71
MPI-2 18
mpiBLAST-PIO 256
MPICH2 18, 67
mpiexec 219
mpirun 25, 131, 217

challenge protocol 220
-env 229
freepartition 218
get_parameters() 234
mpirun_done() 235
multiple program, multiple data (MPMD) 219
-psets_per_bp 228
SIGINT 233

mpirun.cfg 219
mpix.h file 74
MPMD (multiple program, multiple data) 66
multiple program, multiple data (MPMD) 66, 219
multiply-add functions 117

N
NAMD 252
natural alignment 97
network 10

10 Gb Ethernet 11
3D torus 10
collective 11, 68
control 11
functional Ethernet 11
global collective 11
global interrupt 11
torus 10, 68

Node
Front End 13
I/O 24
Service 13
Storage 13

O
OpenMP 83, 94, 134
other system calls 57
 Index 297

P
parallel operations 106
particle mesh Ewald (PME) method 248
personality 31
PingPong 257
PME (particle mesh Ewald) method 248
pmemd 249
PMI_Cart_comm_create() 74
PMI_Pset_diff_comm_create() 75
PMI_Pset_same_comm_create() 75
pointer aliasing 102
pointers, uninitialized 22
point-to-point MPI 80
PowerPC 440d Double Hummer dual FPU 106
PowerPC 440d processor 91
PowerPC 450 microprocessor 8
processor set (pset) 74
pset (processor set) 74

Q
q64 94
qaltivec 94
qarch 93
qcache 93
qflttrap 94
qinline 102
qipa 102
QM/MM (Quantum Mechanical/Molecular Mechanical)
248
qmkshrobj 94
qnoautoconfig 93
qpic 94
qtune 93
Quantum Mechanical/Molecular Mechanical (QM/MM)
248

R
rack 4
raw state 201
real-time application code 209
Real-time Notification API 197

blocking or non-blocking 199
libbgrealtime.so 198
rt_api.h 198
RT_CALLBACK_CONTINUE 201
RT_CALLBACK_QUIT 201
RT_CALLBACK_VERSION_0 201
rt_callbacks_t 201
RT_CONNECTION_ERROR 199, 209
RT_DB_PROPERTY_ERROR 208
rt_get_msgs 199
RT_HANDLE_CLOSE 209
rt_handle_t 199
rt_init 198
RT_INVALID_INPUT_ERROR 208–209
rt_set_blocking 199
rt_set_filter 200
rt_set_nonblocking 199
RT_STATUS_OK 201

RT_WOULD_BLOCK 209
real-time server 199
Redbooks Web site 294

Contact us xiii
reduction clause 87
rendezvous protocol 68, 71
rm_modify_partition 169
running applications 130

S
segfaults 47
service actions 26
Service Node 6, 13
shared memory 40
shm_open 40
SIMD (single-instruction, multiple-data) 7, 46, 96
SIMD computation 106
single program, multiple data (SPMD) 66
single-instruction, multiple-data (SIMD) 7, 46, 96
size command 19
small partition

allocation 191, 194, 209
query 195

SMP mode (1X4) 38
SMP Node Mode 47
socket support 57
sockets calls 22
specifications, deprecated 163
SPI (System Programming Interface) 57
SPMD (single program, multiple data) 66
stack 19
standard input 22
stdin 22
Storage Node 13
structure alignment 100
Symmetrical Multi-Processing (SMP) Node Mode 38, 47
system 4
system architecture 4
system calls 51

other 57
return codes 52

System Programming Interface (SPI) 57

T
threading support 18
TLB (translation look-aside buffer) 47
torus communications 74
torus network 68
torus wrap-around 283
translation look-aside buffer (TLB) 47
TXYZ order 281

U
uid 52
unary functions 114
uninitialized pointers 22
unsupported system calls 57
298 IBM System Blue Gene Solution: Blue Gene/P Application Development

V
vectorizable basic blocks 101
virtual FIFO 39
virtual memory 44
Virtual Node Mode 17, 37–38, 48
virtual paging 21
VN mode (4X1) 38

X
XL

#pragma disjoint directive 103
__alignx function 104
__attribute__(always_inline) extension 102
__cimag 110
__cimagf 110
__cimagl 110
__cmplx 109
__cmplxf 109
__cmplxl 109
__creal 110
__crealf 110
__creall 110
__fpabs 115
__fpadd 116
__fpctiw 114
__fpctiwz 114
__fpmadd 117
__fpmsub 118
__fpmul 116
__fpnabs 116
__fpneg 115
__fpnmadd 118
__fpnmsub 118
__fpre 115
__fprsp 114
__fprsqrte 115
__fpsel 123
__fpsub 116
__fxcpmadd 120
__fxcpmsub 121
__fxcpnmadd 120
__fxcpnmsub 121
__fxcpnpma 121
__fxcpnsma 122
__fxcsmadd 120
__fxcsmsub 121
__fxcsnmadd 120
__fxcsnmsub 121
__fxcsnpma 121
__fxcsnsma 122
__fxcxma 122
__fxcxnms 122
__fxcxnpma 123
__fxcxnsma 123
__fxmadd 119
__fxmr 113
__fxmsub 119
__fxmul 117
__fxnmadd 119

__fxnmsub 120
__fxpmul 117
__fxsmul 117
__lfpd 111
__lfps 111
__lfxd 112
__lfxs 111
__stfpd 112
__stfpiw 113
__stfps 112
__stfxd 113
__stfxs 112
ALIGNX 104
arithmetic functions 114
basic blocks 101
batching computations 103
binary functions 116
built-in floating-point functions 106
built-in functions usage 124
CIMAG 110
CIMAGF 110
CIMAGL 110
CMPLX 109
CMPLXF 109
compiling and linking 92
complex type manipulation functions 109
copy-primary operations 107
copy-secondary operations 108
CREAL 110
CREALF 110
CREALL 110
cross operations 107
cross-copy operations 108
data alignment 104
defining data objects 100
FPABS 115
FPADD 116
FPCTIW 114
FPCTIWZ 114
FPMADD 118
FPMSUB 118
FPMUL 117
FPNABS 116
FPNEG 115
FPNMADD 118
FPNMSUB 118
FPRE 115
FPRSP 114
FPRSQRTE 115
FPSEL 124
FPSUB 116
FXCPMADD 120
FXCPMSUB 121
FXCPNMADD 120
FXCPNMSUB 121
FXCPNPMA 121
FXCSMADD 120
FXCSMSUB 121
FXCSNMADD 120
FXCSNMSUB 121
 Index 299

FXCSNPMA 121
FXCXMA 122
FXCXNMS 122
FXCXNPMA 123
FXCXNSMA 123
FXMADD 119
FXMR 113
FXMSUB 119
FXMUL 117
FXNMADD 119
FXNMSUB 120
FXPMUL 117
FXSMUL 117
inline functions 101
load and store functions 111
LOADFP 111
LOADFX 111–112
move functions 113
multiply-add functions 117
optimization 96
parallel operations 106
pointer aliasing 102
scripts 93
select functions 123
SIMD 106
STOREFP 112–113
STOREFX 112
unary functions 114
using complex types 101
vectorizable basic blocks 101

XL C/C++ Advanced Edition V8.0 for Blue Gene 91
XL compiler options 93
XL compilers 24, 91

developing applications 91
XL Fortran Advanced Edition V10.1 for Blue Gene 91
XL linker 95
300 IBM System Blue Gene Solution: Blue Gene/P Application Development

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 System

 Blue Gene Solution: Blue Gene/P Application Developm
ent

IBM
 System

 Blue Gene Solution: Blue
Gene/P Application Developm

ent

IBM
 System

 Blue Gene Solution:
Blue Gene/P Application
Developm

ent

IBM
 System

 Blue Gene Solution: Blue Gene/P Application Developm
ent

IBM
 System

 Blue Gene Solution:
Blue Gene/P Application
Developm

ent

IBM
 System

 Blue Gene Solution:
Blue Gene/P Application
Developm

ent

®

SG24-7287-00 ISBN 0738488674

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

IBM System Blue Gene
Solution: Blue Gene/P
Application Development

Understand the Blue
Gene/P programming
environment

Learn how to run and
debug MPI programs

Learn about Bridge
and Real-time APIs

This IBM Redbooks publication is one in a series of IBM books
written specifically for the IBM System Blue Gene/P Solution. The
Blue Gene/P system is the second generation of a massively
parallel supercomputer from IBM in the IBM System Blue Gene
Solution series. This book provides an overview of the application
development environment for the Blue Gene/P system. It is
intended to help programmers understand the requirements to
develop applications on this high-performance massively parallel
supercomputer.

In this book, we explain instances where the Blue Gene/P system
is unique in its programming environment. We also attempt to
look at the differences between the IBM System Blue Gene/L
Solution and the Blue Gene/P Solution. This book does not delve
into great depth about the technologies that are commonly used
in the supercomputing industry, such as Message Passing
Interface (MPI) and Open Multi-Processing (OpenMP) nor tries to
teach parallel programming. References are provided in those
instances for you to find more information if desired.

Prior to reading this book, you must have a strong background in
high-performance computing (HPC) programming. The high-level
programming languages that are used throughout this book are
C/C++ and Fortran95.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Blue Gene/P: System and environment overview
	Chapter 1. Hardware overview
	1.1 System architecture overview
	1.1.1 System buildup
	1.1.2 Compute and I/O Nodes
	1.1.3 Blue Gene/P environment

	1.2 What is new on Blue Gene/P
	1.3 Microprocessor
	1.4 Compute Nodes
	1.5 I/O Nodes
	1.6 Networks
	1.7 Blue Gene/P programs
	1.8 Blue Gene specifications
	1.9 Host system
	1.9.1 Service Node
	1.9.2 Front End Nodes
	1.9.3 Storage Nodes

	1.10 Host system software

	Chapter 2. Software overview
	2.1 Blue Gene/P software at a glance
	2.2 Compute Node Kernel
	2.2.1 Threading support on Blue Gene/P

	2.3 Message Passing Interface on Blue Gene/P
	2.4 Memory considerations
	2.4.1 Memory leaks
	2.4.2 Memory management
	2.4.3 Uninitialized pointers

	2.5 Other considerations
	2.5.1 Input/output
	2.5.2 Linking

	2.6 Compilers overview
	2.6.1 Programming environment overview
	2.6.2 GNU Compiler Collection
	2.6.3 IBM XL compilers

	2.7 I/O Node software
	2.7.1 I/O Node Kernel boot considerations
	2.7.2 I/O Node file system services
	2.7.3 Socket services for the Compute Node Kernel
	2.7.4 I/O Node daemons
	2.7.5 Control system

	2.8 Management software
	2.8.1 Midplane Management Control System

	Part 2 Kernel overview
	Chapter 3. Kernel functionality
	3.1 System software overview
	3.2 Compute Node Kernel
	3.2.1 Boot sequence of a Compute Node
	3.2.2 Common Node Services

	3.3 I/O Node Kernel
	3.3.1 Control and I/O daemon

	Chapter 4. Execution process modes
	4.1 Symmetrical Multiprocessing Node Mode
	4.2 Virtual Node Mode
	4.3 Dual Node Mode
	4.4 Shared memory support
	4.5 Deciding which mode to use
	4.6 Specifying a mode

	Chapter 5. Memory
	5.1 Memory overview
	5.2 Memory management
	5.2.1 L1 cache
	5.2.2 L2 cache
	5.2.3 L3 cache
	5.2.4 Double data RAM

	5.3 Memory protection

	Chapter 6. System calls
	6.1 Introduction to the Compute Node Kernel
	6.2 System calls
	6.2.1 Return codes
	6.2.2 Supported system calls
	6.2.3 Other system calls

	6.3 System programming interfaces
	6.4 Socket support
	6.5 Signal support
	6.6 Unsupported system calls

	Part 3 Applications environment
	Chapter 7. Parallel paradigms
	7.1 Programming model
	7.2 Blue Gene/P MPI implementation
	7.2.1 High performance network for efficient parallel execution
	7.2.2 Forcing MPI to allocate too much memory
	7.2.3 Not waiting for MPI_Test
	7.2.4 Flooding of messages
	7.2.5 Deadlock the system
	7.2.6 Violating MPI buffer ownership rules
	7.2.7 Interlocking collectives with point-to-point calls

	7.3 MPI communications
	7.3.1 Blue Gene/P MPI extensions

	7.4 MPI functions
	7.5 Compiling MPI programs on Blue Gene/P
	7.6 MPI communications performance
	7.6.1 MPI point-to-point
	7.6.2 MPI collective

	7.7 OpenMP
	7.7.1 OpenMP implementation for Blue Gene/P
	7.7.2 Selected OpenMP compiler directives
	7.7.3 Selected OpenMP compiler functions
	7.7.4 Performance

	Chapter 8. Developing applications with IBM XL compilers
	8.1 What is new
	8.2 Compiling and linking applications on Blue Gene/P
	8.3 Default compiler options
	8.4 Unsupported options
	8.5 Support for threads, OpenMP, and SMP
	8.6 XL runtime libraries
	8.7 Mathematical Acceleration Subsystem libraries
	8.8 Engineering and Scientific Subroutine Library libraries
	8.9 Tuning your code for Blue Gene/P
	8.9.1 Using the compiler optimization options
	8.9.2 PowerPC 450 processor parallel double-precision floating point multiply add unit
	8.9.3 Using Single Instruction Multiple Data instructions in applications

	8.10 Tips for optimizing constructs
	8.10.1 Structuring data in adjacent pairs
	8.10.2 Using vectorizable basic blocks
	8.10.3 Using inline functions
	8.10.4 Removing possibilities for aliasing (C/C++)
	8.10.5 Structure computations in batches
	8.10.6 Checking for data alignment
	8.10.7 Using XL built-in floating-point functions for Blue Gene/P
	8.10.8 Complex type manipulation functions
	8.10.9 Load and store functions
	8.10.10 Move functions
	8.10.11 Arithmetic functions
	8.10.12 Select functions
	8.10.13 Examples of built-in functions usage

	Chapter 9. Running and debugging applications
	9.1 Running applications
	9.1.1 MMCS console
	9.1.2 mpirun
	9.1.3 LoadLeveler
	9.1.4 Other scheduler products

	9.2 Debugging applications
	9.2.1 General debugging architecture
	9.2.2 GNU Project debugger
	9.2.3 Core Processor debugger
	9.2.4 Starting the Core Processor tool
	9.2.5 Attaching running applications
	9.2.6 Saving your information
	9.2.7 Debugging live I/O Node problems
	9.2.8 Debugging core files
	9.2.9 The addr2line utility

	Chapter 10. Checkpoint and restart support for applications
	10.1 Checkpoint and restart
	10.2 Technical overview
	10.2.1 Input/output considerations
	10.2.2 Signal considerations

	10.3 Checkpoint API
	10.3.1 Checkpoint library API

	10.4 Directory and file naming conventions
	10.5 Restart
	10.5.1 Determining the latest consistent global checkpoint
	10.5.2 Checkpoint and restart functionality

	Chapter 11. Control system (Bridge) APIs
	11.1 API requirements
	11.1.1 Configuring environment variables
	11.1.2 General comments

	11.2 APIs
	11.2.1 API to the Midplane Management Control System
	11.2.2 Asynchronous APIs
	11.2.3 State sequence IDs
	11.2.4 Bridge API return codes
	11.2.5 Blue Gene hardware resource APIs
	11.2.6 Partition-related APIs
	11.2.7 Job-related APIs
	11.2.8 Field specifications for the rm_get_data() and rm_set_data() APIs
	11.2.9 Object allocator APIs
	11.2.10 Object deallocator APIs
	11.2.11 Messaging APIs

	11.3 Small partition allocation
	11.3.1 Subdivided busy base partitions

	11.4 API examples
	11.4.1 Retrieving base partition information
	11.4.2 Retrieving node card information
	11.4.3 Defining a new small partition
	11.4.4 Querying a small partition

	Chapter 12. Real-time Notification APIs
	12.1 API support overview
	12.1.1 Requirements
	12.1.2 General comments

	12.2 Real-time Notification APIs
	12.3 Real-time callback functions
	12.4 Real-time Notification API status codes
	12.4.1 Status code specification

	12.5 Sample real-time application code

	Chapter 13. mpirun
	13.1 mpirun implementation on Blue Gene/P
	13.2 mpirun setup
	13.2.1 User setup
	13.2.2 System administrator setup

	13.3 Invoking mpirun
	13.4 Environmental variables
	13.5 Return codes
	13.6 Examples
	13.7 mpirun application program interfaces

	Chapter 14. Dynamic Partition Allocator APIs
	14.1 Overview of API support
	14.1.1 Requirements

	14.2 API details
	14.2.1 APIs
	14.2.2 Return codes

	14.3 Sample program

	Part 4 Applications
	Chapter 15. Performance overview of engineering and scientific applications
	15.1 Blue Gene/P system from an applications perspective
	15.2 Selected Chemistry and Life Sciences applications
	15.2.1 Classical Molecular Mechanics and Molecular Dynamics applications
	15.2.2 Molecular Docking applications
	15.2.3 Electronic structure (Ab Initio) applications
	15.2.4 Bioinformatics applications
	15.2.5 Performance kernel benchmarks
	15.2.6 MPI point-to-point

	Part 5 Appendixes
	Appendix A. Blue Gene/P hardware naming convention
	Appendix B. Header files and libraries
	Blue Gene/P applications
	Resource management APIs

	Appendix C. Files on architectural features
	Personality of Blue Gene/P
	Example of running personality on Blue Gene/P

	Appendix D. Porting applications
	Appendix E. Mapping
	Appendix F. Statement of completion
	References
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

