

Smoothing of well rates in subsurface

hydrocarbon reservoir simulators

Ognyan Kounchev, Michail Todorov, Daniela Georgieva,

Nikola Simeonov, Vassil Kolev

1. Introduction

A common problem in reservoir simulators is the history matching problem,

where a number of wells are operated at a prescribed flow rate, measured by

the operator. The data provides input to a simulator which then has to match

various other measured quantities, such as pressure drop at wells, movement of

saturation fronts, water break-out and other. A common problem is that the

input data is very rough and if input directly would cause considerable numerical

difficulties, such as excessive Newton iterations to converge or excessively small

time-steps.

2. Posing the Problem

A typical input for a well is a flow rate, specified at discrete time instances,

which is positive at every instance. The goal is to replace the “rough” flow rate

with a smoother function, which retains two properties of the original:

• It remains positive at every instance;

• The integral over the entire time range is preserved.

Different smoothing scenarios are expected to be seen.

2.1. First Scenario: Approximation by Smoothing Splines and Newton-

Raphson Method

Replace the data function f(t) by a smoothing spline Sf ∈ C2 with restrictions

T
∫

0

f(t)dt =

T
∫

0

Sfdt and Sf > 0

for 0 ≤ t ≤ T .

ESGI’104 Smoothing of Well Rates

Let us assume that the data sites {tj}
N
j=1

with t1 < t2 < · · · < tN are given

with some data fj ≥ 0, which are assumed to be the values of a function f (t) ,
i.e.

f (tj) = fj for j = 1, 2, . . . , N.

The problem is to “smoothen” those data fj, which represent a very abrupt

jump, by finding a function g (t), for which the following conditions hold

tN
∫

t1

Lf (t) dt =

tN
∫

t1

g (t) dt

g (t) ≥ 0 for t1 ≤ t ≤ tN ;

here the function Lf (t) is the linear interpolating spline, which satisfies

Lf (tj) = fj for j = 1, 2, . . . , N.

For solving this problem we propose to use approximation (smoothing) cubic

splines Sf (t), which by definition belong to C2 (t1, tN) [1, 2] (i.e., have two con-

tinuous derivatives), having a parameter λ, which provides a trade off between

the “goodness of interpolation to the data fj” and coarseness of the graph of the

spline function Sf (t) . Such a spline Sf is defined as the unique solution of the

following problem:

min
Sf

λ

N
∑

j=1

wj (S (tj) − fj)
2
+ (1 − λ)

tN
∫

t1

ϕ (t)
∣

∣S′′ (t)
∣

∣

2
dt

 . (1)

Here the parameter λ, the so-called smoothing parameter is given. We assume

also: given weights wj ≥ 0, which show how good we wish to have the size of

|S (tj) − fj| for every j, and also the function ϕ (t) ≥ 0 in the interval [t1, tN],

which shows the “roughness” of the function Sf (t) at every particular point t.
We will not use this large freedom but we will choose ϕ (t) = 1.

However we will use essentially the weights wj in order to satisfy the condition

C :=

tN
∫

t1

Sf (t) dt =

tN
∫

t1

Lf (t) dt. (2)

61

Smoothing of Well Rates ESGI’104

2.2. Second Scenario: Replace the initial piece-wise linear “rough”

curve by another piece-wise linear less “rough” curve

The new curve must be subject to the above restrictions. This is possible to

implement and to get a simple explicit relationship to some new average value

(see Figure 1):

ti-1 ti ti+1 ti+2ti-2

fx
fx

fi+1

fi

fi+2fi-1

fi-2

fx

Figure 1: Graph sketch of the moving average. The areas under the solid line

(four trapezoidals) and dashed line (two lateral trapezoidals and two congruent

rectangles) are equal.

fx =
fi−1(hi−1 + hi) + fi(hi + hi+1) + fi+1(hi+1 + hi+2)

hi−1 + 2(hi + hi+1) + hi+2

(3)

where hi = ti − ti−1, i = 1, N procedure for i = 1, . . . , N by step 4. Let us note

that it is possible to divide to groups of more trapezoidals but then one can lose

the general trend of the original empirical curve. Also, obviously fx > 0 for any

empirical data. Applying this procedure one cuts the largest deviations of the

measurements.

2.3. Other Scenarios: Approximation by Discrete Wavelet Trans-

form

One can approximate any piecewise continuous function by using a pair of

orthogonal bases containing scaling and wavelet functions ϕ(t) and ψ(t). The

62

ESGI’104 Smoothing of Well Rates

scaling function ϕ(t) =
∑

n

√
2h(n)ϕ(2t − n), where h(n) is the lowpass filter co-

efficient estimated with h(n) = 1
√

2
〈ϕ(t/2), ϕ(t − k)〉, while the wavelet function

ψ(t) =
∑

n

√
2g(n)ψ(2t − n), where g(n) is the highpass filter coefficient. Both

filter coefficients are coupled with the explicit relationship g(n) = (−1)nh(1− n)

(see, for example [3] and [4]). The wavelets expand the signals into separate fre-

quency components, and then one can study each component with a resolution

matched to its scale. The discrete wavelet transform (DWT) is a special case

of wavelet transform that provides a compact representation of a signal in time

and frequency that can be computed efficiently. The decomposition of a given

function f(t) for j-level by the above basis functions is:

f(t) =
∑

n

h(n)ϕ(t− n) +
∑

j

∑

n

g2j+n(n)ψ(2jt− n) = fa(t) +
∑

j

fdj
(t). (4)

The first term fa(t) is the approximation function, while the second term is a sum

of the so-called detail functions. An example of decomposition for level j = 3

with the orthogonal 10-taps Daubechies wavelet is shown on Figure 2.

Two approaches are possible to be considered:

a) For uniform mesh (UM) on the time segment [0, T] the integral of the function

f(t) can be approximated for a given j-level by the discrete wavelet decomposition

fa(t) with error ε0:
T

∫

0

f(t) =

T
∫

0

fa(t) + ε0;

b) For non-uniform mesh (NUM) on the time segment [0, T] the integral of the

function f(t) can be approximated also with fa(t) but with another error ε1:

T
∫

0

f(t) =

T
∫

0

fa(t) + ε1.

Simpson’s integration rule [5] for smooth functions is preferable compared to

the trapezoidal rule [5, 6] since the error is roughly proportional to 10−4 and it

does not require a dense mesh to attain a priori desired accuracy. Although the

trapezoidal rule is inefficient in general, it can be shockingly efficient for very

jagged and periodic functions fast approaching zero. This simplest numerical

integration technique can be extraordinarily efficient when it is skilfully applied

for getting reliable approximations of empirical data and relationships.

63

Smoothing of Well Rates ESGI’104

50 100 150 200 250 300 350 400 450 500 550

0.5

0

-0.5

-1

-1.5

1

0.5

0

-0.5

-1

1

0

-5

4

3

2

1

5

3

2

1

0

x10
-3

4

f (t)d

f (t)d

f(t)

3

f (t)d

f (t)a

2

1

Figure 2: DWT of the customer function for level j = 3 with the orthogonal

‘db10’

3. Numerical Results

In the particular set of data we have N = 585 and the area under the empirical

curve is given by the integral

C =

tN
∫

t1

Sf (t) dt = 1.316303598725274.

For solving the system (1) and (2) we need one more free parameter: we

64

ESGI’104 Smoothing of Well Rates

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Figure 3: First scenario: original empirical data (dashed line), approximating

curve with restriction for smoothing parameter λ = 0.08 (solid line).

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Figure 4: First scenario: original empirical data (dashed line), approximating

curve with restriction for smoothing parameter λ = 0.01 (solid line).

consider the unknown weights (with unknown parameter x):

w1 = · · · = w10 = w576 = · · · = w585 = x

wj = 1 for 11 ≤ j ≤ 575

and we solve the system by using a Newton-Raphson solver.

65

Smoothing of Well Rates ESGI’104

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Figure 5: First scenario: original empirical data (dashed line), approximating

curve with restriction for smoothing parameter λ = 0.001 (solid line).

0.0045
0.004

0.0035
0.003

0.0025
0.002

0.0015
0.001

0.0005
0

6506005004003002001000

first smoothing
original measurement

Figure 6: Second scenario: original empirical data (dashed line), piece-wise linear

curve with restriction from Figure 1 (solid line).

For different values of the parameter λ we obtain solutions Sf (t), which satisfy

condition (2) with precision 10−16.

To demonstrate how does the procedure work we provide some experimental

results with different values of the smoothing parameter λ. It is clearly seen on

Figures 3, 4, 5 that the smaller values of the parameter λ smooth more the

spline Sf (t) . Also, condition Sf (t) ≥ 0 is satisfied. The latter is attained by

manipulation of the weights wj and the function ϕ (t).

For the first scenario – smoothing splines with restrictions and sequential

Newton-Raphson technique we get the results: OldArea = 1.316303598725274

and NewArea = 1.316303598725274. They are practically identical because the

66

ESGI’104 Smoothing of Well Rates

error reaches the machine epsilon, i.e., Err ∼ 10−17

For the second scenario based on the explicit formula (3) – replacement of one

piece-wise linear curve by another one the numerical results cover fully the pre-

diction given by the first scenario of smoothing: OldArea = 1.31630359872527,

NewArea = 1.31630359872527, with Er ∼ 10−17 (Figure 6).

Since the customer data form a jagged function with fast approaching zero

parts the trapezoidal rule for integration in the third scenario is used. The cal-

culated integral value is

T
∫

0

f(t) = 1.311518426300291 with T = 585.

The minimal-approximation absolute errors for UM and NUM are tabulated in

Tables I and II. Obviously, the accuracy of the approximating integrals depend on

the uniform mesh and the levels of DWT. From the level decompositions for UM

when j = 1, . . . , 5 and NUM of j = 1, 2, 3 we conclude that the increase of j-level
leads to both a decrease of the accuracy, and an increase of the approximation

errors ε0 and ε1 (see Figures 7 and 8). The higher levels of DWT, however,

provide smoother functions, which is the customer preference. The magnitudes

of errors of the both methods vary as follows: ε0 ∈ (10−6, 10−4), ε1 ∈ (10−4, 10−2).

Table I: The minimal approximation

errors for UM

level wavelet |ε0| ∗ 10−4

1 ‘sym2’ 0.025

2 ‘db15’ 0.890

3 ‘db2’ 3.941

4 ‘bior3.1’ 0.243

5 ‘db41’ 1.105

Table II: The minimal approximation

errors for NUM

level wavelet |ε1| ∗ 10−4

1 ‘db42’ 0.4668

2 ‘sym9’ 6.9017

3 ‘db42’ 35.44

Conclusion

Which scenario to choose? Actually the developed scenarios are equivalent as

a prediction and an order of approximation of the quadratures. Their advantage

consists in the fast computer realization provided the output results as input data

for the further computer processing and simulations. These procedures are not

unique – they can be varied depending on the needs of the user.

67

Smoothing of Well Rates ESGI’104

Figure 7: The approximation function for UM with ε0 for: (a) j = 5 with the

orthogonal wavelet ‘db41’; (b) j = 4 with the biorthogonal wavelet ‘bior3.1’;

(c) j = 3 with the orthogonal wavelet ‘db2’; (d) j = 2 with the orthogonal

wavelet ‘db15’; (e) j = 2 with the symmlet ‘sym15’. Empirical data (dashed

line), approximation function (solid line)

68

ESGI’104 Smoothing of Well Rates

Figure 8: The approximation function for NUM with ε1 for: (a) j = 3 with the

orthogonal wavelet ‘db42’; (b) j = 2 with the symmlet ‘sym9’; j = 1 with the

orthogonal wavelet ‘db42’. Empirical data (dashed line), approximation function

(solid line)

References

[1] C. De Boor, A Practical Guide to Splines, Revised Edn., Springer, 2001, pp.

207–214.

[2] R. E. Smith Jr., J. M. Price and L. M. Howser, “A Smoothing Algorithm

Using Cubic Spline Functions”, NASA TN D-7397, Feb. 1974, Retrieved

May 2011.

[3] K. Shukla, A. Tiwari, Efficient Algorithms for Discrete Wavelet Transform

With Applications to Denoising and Fuzzy Inference Systems, Springer Briefs

in Computer Science, 2013.

69

Smoothing of Well Rates ESGI’104

[4] O. Christensen and K. Christensen, Approximation Theory: From Taylor

Polynomials to Wavelets, Birkhauser Verlag AG, 2004.

[5] J. Epperson, An Introduction to Numerical Methods and Analysis, Willey,

2007.

[6] A. Gilat and V. Subramaniam, Numerical Methods for Engineers and Scien-

tists: An Introduction with Applications using MATLAB, 3rd edn., Willey,

2013.

70

Finding an effective metric used for bijective

S-Box generation by genetic algorithms

Tsonka Baicheva, Dusan Bikov, Yuri Borissov, Limonka Lazarova,

Aleksandra Stojanova, Liliya Stoykova, Stela Zhelezova

Introduction

In cryptography, S-box is a basic component of symmetric key algorithms

which performs nonlinear substitution. S-boxes need to be highly nonlinear, so

that the cipher can resist linear cryptanalysis.

Let B = {0, 1} and Bn = {0, 1}n. Every function f : Bn → B is called Boolean

function of n variables:

Bn = {f : Bn → B}, |Bn| = 22
n

.

Let f1, f2, . . ., fm ∈ Bn. Mapping F : Bn → Bm defined by the rule:

F (x) = (f1(x), f2(x), . . . , fm(x)),

is called vectorial Boolean function and f1, f2, . . ., fm are its coordinate functions.

S-boxes transform n-binary input into m-binary output. Let S be the sub-

stitution table of an n-binary input into m-binary output mapping, that is, if

B = {0, 1},

S : Bn → Bm, x = (x1, x2, . . . , xn) → y = (y1, y2 . . . , ym) = S(x)

S can be considered as a vectorial Boolean function, consisting of m individual

n-variable Boolean functions f1, f2, . . ., fm, referred to as coordinate Boolean

functions, where fk : Bn → B and fk(x) = yk ∈ B, k = 1, 2, . . . ,m.

The main cryptographic interest has been with reversible, or bijective, S-boxes.

An (n × n) S-box S is called bijective, if S is an invertible mapping over Bn.

Bijective S-boxes represent permutations of their 2n inputs.

For cryptographic Boolean functions, nl(f) must be close to the maximum to

prevent the system from attacks by linear approximations, correlation attacks,

fast correlation attacks.

A Boolean function f on Bn
2

is also uniquely determined by its Walsh-Hadamard

transform. The Walsh-Hadamard transform fW of f is an integer valued function

defined by:

fW (a) =
∑

x∈Bn

2

(−1)
f(x)+〈a,x〉,

Finding an effective metric used for bijective S-Box ESGI’104

where 〈a, x〉 is scalar product.

Linearity Lin(f) of the Boolean function f is defined by using Walsh-Hadamard

transform with the following:

Lin (f) = max
a∈Bn

2

|fW | ≥ 2n/2.

Linearity and nonlinearity of a Boolean function are connected by the relation:

nl (f) = 2n−1 −
1

2
Lin(f).

Walsh-Hadamard Transform spectrum of f(x) is the set of all 2n spectral

coefficients for the elements in Bn.

WHT Spectrum Matrix is the matrix of WHT spectrum of all coordinate

Boolean functions.

An S-box S is referred as a Bent S-box, if its WHT Spectrum Matrix is entirely

flat. Bent S-box has the highest possible nonlinearity. It itself is not suitable for

our purposes – it is not balanced and exists only for even n ≥ 2m. From now on

we will talk about bijective S-boxes.

The main criteria for cryptographically strong (n × n) S-box are:

• High nonlinearity;

• High algebraic degree;

• Balanced structure;

• Good autocorrelation properties.

Our task was to give some suggestions for finding an effective metric used for

generation bijective optimal S-Box. Because of the given problem’s complexity,

our group considered different approaches and we gave a few suggestions for

problem solving.

Group suggestions

Bear in mind given problem we focus on achieving good performance according

to the nonlinearity criterion finding S-box close to Bent one.

• Change the initial parent pool

Genetic algorithms represent the heuristic approaches for S-box generation.

Each genetic algorithm start with an initial parent pool of bijective S-

boxes, P1, P2, . . ., Pt,. Till now it is used as Pi random or AES S-boxes.

72

ESGI’104 Finding an effective metric used for bijective S-Box

b0,0 b0,1 b0,2n
−1

b1,0 b1,1 b1,2n
−1

...
... . . .

...

b2n
−1,0 b2n

−1,1 b2n
−1,2n

−1

Figure 1: S-box – a vectorial Boolean function

w0,0 w0,1 w0,2n
−1

w1,0 w1,1 w1,2n
−1

...
... . . .

...

w2n
−1,0 w2n

−1,1 w2n
−1,2n

−1

Figure 2: WHT Spectrum Matrix of S

We propose exponential S-boxes as the initial parent pool. Exponential

S-boxes are proven to have good cryptographic properties [1].

• Change the cost function

In genetic algorithms it’s necessary to be able to evaluate how good a po-

tential solution is relative to other potential solutions. The fitness function

is responsible for performing this evaluation and returning a fitness value,

that reflects how optimal the solution is. In the considered algorithm fitness

value is based on two functions: fitness – measuring S-box nonlinearity and

cost – measuring flatness of WHT Spectrum Matrix, i.e. how close is it to

Bent one. For now cost function is evaluated by:

p

√

√

√

√

2n
−1

∑

j=0

|wi,j − wi,j+1|
p

for p ≥ 1. The lower its value is the better the solution is.

◦ The cost function can be computed by using the maximum of the dif-

ferences between the spectral coefficients of each coordinate function.

Let ∆i be the maximal difference of i−th coordinate:

∆i = {|wi,j − wi,j+k| : j ∈ (0, 2n
− 1), j + k ≤ 2n

− 1} .

We can calculate the maximal difference for given S-box as:

73

Finding an effective metric used for bijective S-Box ESGI’104

∆S = max ∆i, i ∈ (1, 2n − 1).

WHT Spectrum Matrix of Bent S-box is entirely flat, so ∆Bent = 0. If

∆S1
≈ ∆S2

then the second condition can be used. The vectors of maximal

differences for two S-boxes (∆1, ∆2,. . ., ∆2n
−1) of S1 and (∆1, ∆2,. . .,

∆2n
−1) of S2 are considered and the ∆i = 0 values are counted and the

S-box which has more ∆i = 0 is chosen as a good one.

◦ Another cost function can be computed by using the dispersion of the

WHT spectrum of each coordinate function. Statistical dispersion is zero

if all the data are the same and increases as the data become more diverse.

Let a0, a1,. . ., a2k be possible values of the WHT spectrum matrix and pi,j

be the probability of appearing aj in the i−th column. Then the mathemat-

ical expectation is

E(wi) =

2k
∑

j=0

ajpi,j.

The dispersion of the i−th column of the WHT matrix with respect to the

bent WHT Spectrum (2
n

2) is:

D(wi) = E(w2

i) − (2
n

2) =

2k
∑

j=0

a2

jpi,j − 2n.

The dispersion of the S-Box is:

D(S) =
1

2n − 1

2
n
−1

∑

i=1

D(wi).

Smaller dispersion means flatter spectrum and better S-box.

• Examine smaller S-Boxes

Natural requirement for 4 bit S-boxes is an optimal resistance against lin-

earity and differential cryptoanalysis.The optimal values for Lin(S) and

Diff (S) are known for dimension n = 4, but they aren’t determined for

higher dimension. More precisely, for any bijective mapping S : B4
2
→ B4

2

we have Lin(S) ≥ 8 and Diff (S) ≥ 4.

Our suggestion is to examine the behavior of the genetic algorithm on 4×4

S-boxes and compare the results with the already known optimal ones [3].

74

ESGI’104 Finding an effective metric used for bijective S-Box

This can give verification of the method and some suggestions for the cost

function.

• New approach

It is considered Quasigroups as a tool for construction of optimal S-boxes.

Let (Q, ∗) be a finite binary groupoid, i.e. an algebra with one binary

operation ∗ on the non-empty set Q and a, b ∈ Q. A finite binary groupoid

(Q, ∗) is called a quasigroup if for all ordered pairs (a, b) ∈ Q there exist

unique solutions x, y ∈ Q of the equations x ∗ a = b and a ∗ y = b. This

implies the cancellation laws for quasigroup i.e. x ∗a = x′ ∗a ⇒ x = x′ and

a ∗ y = a ∗ y′ ⇒ y = y′.

Any quasigroup is possible to be presented as a multiplication table known

as Cayley table. Removing the topmost row and the leftmost column of the

Cayley table of a quasigroup, results in a Latin square.

Assuming that (Q, ∗) is a given quasigroup, for a fixed element l ∈ Q, called

leader, the transformation el : Qr → Qr is as follows:

el (a0, a1, . . . , ar−1) = (b0, b1, . . . , br−1) ⇔

{

b0 = l ∗ a0

bi = bi−1 ∗ ai, 1 ≤ i ≤ r − 1
.

The representation of finite quasigroups (Q, ∗), of order n, where n ≥ 2 and

n = 2d as vector valued Boolean functions, can be used. Every Boolean

function f : Fm
2

→ F2, can be uniquely written in its Algebraic Nor-

mal Form (ANF), by which the algebraic degree can be immediately read

off. According to their algebraic degree quasigroups can be divided in two

classes, class of linear quasigroups and class of non-linear quasigroups. The

class of linear quasigroups has a maximal algebraic degree 1, and all other

quasigroups (which maximal algebraic degree is bigger than 1) belong to

the class of non-linear.

Our suggestion is to consider quasigroups as a tool for construction of opti-

mal S-boxes. An algorithm for construction of optimal 4× 4 S-box already

exists [2]. Cryptographically strong 6× 4, 8 × 8 and other types of S-boxes

could be produced by extending the above algorithm. First, the number

of rounds and leaders which are necessary to produce Q-S-boxes with the

same quality as already known ones, should be obtained and then, should

be determined which of them belong to the class of optimal ones regarding

to linear and differential characteristics of S-boxes.

75

Finding an effective metric used for bijective S-Box ESGI’104

Conclusions

S-boxes play a fundamental role for the security of nearly all modern block

ciphers. They are basically used to hide the relationship between the plain text

and the cipher text. The S-boxes form the only non-linear part of a block ci-

pher. Therefore, S-boxes have to be chosen carefully to make the cipher resistant

against all kinds of attacks. In particular there are well studied criteria that a

good S-box has to fullfill to make the cipher resistant against diferential, linear

and algebraic cryptoanalyses.

An open problem in cryptography is finding an (n × n) bijective S-box with

nonlinearity nl bounded above by 2n−1 − 2
n

2
−1, where n is even, to prevent the

system from attacks by linear approximations, correlation attacks, fast correlation

attacks etc. The proposed problem is in close relation with this, so it is also very

difficult problem for solving (AES have n = 8 and it is not clear that this kind

S-box can be optimal in this dimension). We hope our work helps for moving

things a little bit forward.

References

[1] S. Agievich, A. Afonenko, Exponential S-boxes, Cryptology ePrint Archive,

Report 2004/024 (2004).

[2] D.Gligoroski, H.Mihajloska, Construction of Optimal 4-bit S-boxes by Qua-

sigroups of Order 4, SECURWARE 2012, The Sixth International Confer-

ence on Emerging Security Information, Systems and Technologies (2012),

163–168.

[3] G. Leander, A. Poschmann, On the Classification of 4 Bit S-Boxes, In: Arith-

metic of Finite Fields, Lecture Notes in Computer Science Volume 4547

(2007), 159–176.

76

Effect of The Precipitation of Acid Soap ESGI’104

Second case – with NaCl

• C
A

= 0.01 M and C
B

= 0M

First and second case – first interval

• solution with fatty acid precipitates

• C
HZ

= S
HZ

= 5.25 × 10−7 M

• m
M

= 0

⇒ fit K
CO2

⇒ comparison between the obtained K
CO2

values in the two cases.

First and second case – second interval

• solution with precipitate of j : n acid soap

•
m

M

n
=

m
Z

n + j

• Cj
H
Cn

M
Cj+n

Z γ2j+2n
±

= Kjn, if j = 4 and n = 1

• Cj
H
Cn

M
Cj+n

Z
γ2j+2n
±

= Kjn, if j = 3 and n = 2

⇒ fit K41

⇒ fit K32

86

ESGI’104 Effect of The Precipitation of Acid Soap

First and second case – third interval

• solution with precipitate of j : n acid soap

•
m

M

n
=

m
Z

n + j

• Cj
H
Cn

M
Cj+n

Z
γ2j+2n
±

= Kjn, if j = 1 and n = 1

⇒ fit K11

⇒ comparison between the obtained K11 values in the two cases.

Solution

In order to fit the theoretically evaluated data with the experimentally ob-

tained one, we minimize the following functional:

P (K
CO2

) =
1

n

n
∑

k=1

[

1 −
pHth(k)

pHexp(k)

]

2

by numerical variation of K
CO2

. Here pHth are the values for pH obtained from

(1)–(3) and pHexp are the measured experimental data. Using software for sym-

bolic computations (like Mathematica) one can find a good initial approximation

for the parameter KCO2
.

First case (first interval) – values of P (K
CO2

), n = 20

87

Effect of The Precipitation of Acid Soap ESGI’104

First Case (first interval) – fit of the theoretically evaluated data
for pH with the experimentally obtained one (K

CO2
≈ 1.8 × 10−10)

Second Case (first interval) – values of P (K
CO2

), n = 20

88

ESGI’104 Effect of The Precipitation of Acid Soap

Second Case (first interval) – fit of the theoretically evaluated data
for pH with the experimentally obtained ones (K

CO2
≈ 2 × 10−10)

Using the obtained value of K
CO2

and the same technique one can fit the

parameters K32 and K11 for the second and respectively the third interval.

Fast algorithm for finding the positive solution

So far we have talked about solving the system of equations we have and

fitting the theoretically evaluated data for pH with the experimentally obtained

one. However, a very important step of the problem solving is to detect quickly

the positive solution aomung the whole set of the system’s solutions.

The problem now is the following:

• we have a system of no more than 20 polynomial equations;

• there is no estimation for the number of the solutions that such a system

can have, because this number depends on the type of the crystals that are

used;

• the components of the solutions could be complex numbers;

• according to a hypothesis from the practice the system can have only one

positive solution.

The aim is a fast algorithm to detect the positive solution.

We are going to show two different algorithms, each of them was implemented

both in C++ and Matlab. In order to compare the two algorithms, we have been

given an example – system, which consists of 16 equations with 16 variables.

89

Effect of The Precipitation of Acid Soap ESGI’104

The solutions obtained with Mathematica are 9, only one of which is positive.

For the needs of the computer programs we have written, we assume that each

component of each solution is a complex number.

First approach

The first approach is to compare each component of each solution with 0:

So, the algorithm is the following: we take the first component of the first

solution. If the real part of this component is not negative, then we compare

the imaginary part of this component with 0. If this part is also not negative,

we take the second component of the current solution and continue in the same

manner. If we find a negative part in a component, we reject the current solution

and continue with the next one. Because of the fact that existence of only one

positive solution is just a hypothesis, our algorithm does not stop if it finds a

solution, which consists of only positive components, but continues searching for

other positive solutions.

This way, the complexity of the first algorithm is O(n ∗ m), where n is the

number of the solutions of the system and m is the number of the components

in each solution.

Second approach

In order to garantee the needed precision of the solution, we represent the real

and the imaginary part of each component of each solution as a double-precision

floating-point number. The benefit is that each double-precision floating-point

number has 15 decimal digits in the decimal part of the mantis and the absolute

value of such a number is between 10−308 and 10308.

Each double-precision floating-point number is represented in the computer’s

memory as 8B = 64 bits (according to the standard IEEE). In the picture below

you can see what each of these 64 bits is used for. The most important bit for

90

ESGI’104 Effect of The Precipitation of Acid Soap

our second approach is the sign bit. It contains 0 if the number is ≥ 0 and 1, if

it is negative.

Thus, the second approach is the following: instead of comparing lexicograph-

ically all the bits in the binary representation of a number with the binary rep-

resentation of 0, as we did in our first approach, we compare only the sign bit of

the current number with the sign bit of 0, which is 0. The remaining part of the

first algorithm is not changed.

Then:

• the complexity of the algorithm comparison with 0 is: O(l ∗ n ∗ m);

• the complexity of the algorithm bit comparison is: O(n ∗ m),

where l is the number of the bits in the binary representation of the numbers,

which we consider. In our case it is 64.

In the worst case scenario, the second algorithm works as fast as the first one.

It depends on the optimizations that the processor makes.

Comparison between the two algorithms

C++/Fortran vs. Matlab/Mathematica

• C++ and Fortran are compiled programming languages, which means that

the source code of the program is transformed into a machine code before

the execution of the program;

• Matlab and Mathematica are interpreted programming languages, which

means that the programs are executed directly, which usually makes them

slower because of the overhead of the processor.

⇒ C++ and Fortran are better for scientific computations.

91

Effect of The Precipitation of Acid Soap ESGI’104

Implementation with MATLAB – time (in seconds)

A number of tests (∼ 50) were made. Only two of them show that the al-

gorithm bit comparison is faster than the algorithm comparison with 0 (these

are the results in the last two rows at the table below). According to all of the

other tests (such results are shown in the first three rows at the table below) we

conclude that the algorithm bit comparison is slower than the algorithm compar-

ison with 0. The reason is that the function, which Matlab uses for finding the

sign bit, probably has the following implementation (with some optimizations):

sign v = −(v < 0). We cannot be sure, because the function is build-in. The same

situation is observed in Mathematica. So, using of Matlab (and Mathematica, too)

for solving this problem cannot give us satisfying results.

Implementation with C++ – time

As an example we consider a system having 9 solutions, each with 16 compo-

nents:

• the average time of the algorithm comparison with 0 : 1 µs;

• the average time of the algorithm bit comparison: 0 µs.

92

ESGI’104 Effect of The Precipitation of Acid Soap

This means that the average time of the algorithm bit comparison is in nanosec-

onds. In order to compare the average time for the execution of both implemen-

tations of the two algorithms, we test them for bigger number of solutions. In the

table above one can see that for 8001 solutions within which only one is positive

the algorithm comparison with 0 is slower than the algorithm bit comparison and

the difference in times is 50 µs.

References

[1] Peter Kralchevsky, Krassimir Danov, Cenka Pishmanova, Stefka

Kralchevska, Nikolay Christov, Kavssery Ananthapadmanabhan, Alex

Lips. Effect of the Precipitation of Neutral-Soap, Acid-Soap, and Alkanoic

Acid Crystallites on the Bulk pH and Surface Tension of Soap Solution.

Langmuir (2007), 23, 3538–3553.

[2] Mariana Boneva, Krassimir Danov, Peter Kralchevsky, Stefka Kralchevska,

Kavssery Ananthapadmanabhanb, Alex Lipsc. Coexistance of micelles and

crystallites in solutions of potassium myristate: Soft matter vs. solid matter.

Colloids and Surfaces A: Physicochem. Eng. Aspects 354 (2010) 172–187.

[3] Krassimir Danov, Peter Kralchevsky, Kavssery Ananthapadmanabhan.

Miccele-monomer equilibra in solutions of ionic surfactants and in ionic-

nonionic mixtures: A generalized phase separation model. Advances in Col-

loid and Interface Science 206 (2014) 17–45.

[4] K. Birdi. Surface and Colloid Chemistry: Principles and Applications (2009),

244 pages.

[5] Peter Atkins, Julio de Paula. Physical Chemistry. 9th Edition (2009), 972

pages.

[6] Preslav Nakov, Panayot Dobrikov. Programirane=++Algoritmi. 3rd Edition

(2005), 703 pages.

93

Circular arc spline approximation

of pointwise curves for use

in NC programing

Ana Avdzhieva, Dragomir Aleksov, Ivan Hristov, Nikolai Shegunov,

Pencho Marinov

1. Introduction

We consider a numerical control (NC) cutting machine which can cut only

line segments and circular arcs. Thermal cutting processes require constant tool

velocity because

• too slow velocity leads to overheating and melting,

• too fast velocity interrupts the cutting process.

The inputs with which the machine works are sets of points in a particular order

which are in Cartesian plane.

From a set of points (inputs) we must create a sequence of line segments and

circular arcs that pass through some of the points and are ”sufficiently close” to

the others – ǫ error condition. The case in which the points can be approximated

with straight line segments is well investigated. We are interested in the sets

of points which can only be approximated by arcs. Below we formulate this

particular task.

2. The problem

A sequence of N points is given. A curve must be created, composed of circular

arcs, such that:

– it passes through/nearby the given points in the same sequence;

– the Hausdorff distance between the points and the curve does not exceed a

certain value ǫ;

– it is composed of minimal number of arcs;

– the output should consist of sets of the type:

{(x1, y1), (x2, y2), (xc, yc), E},

where (x1, y1) and (x2, y2) are respectively the initial and the final points of a

certain arc, (xc, yc) is its center and E = +1 if the direction of the arc is counter

ESGI’104 Circular Arc Spline Approximation

clockwise or E = −1 if the direction of the arc is clockwise.

Remark. Local minimum – fitting an arc to each set of 3 points – is not a

solution of the task.

2.1. Summary of the approach

• We begin with a program for finding the center and the radius of a circle

that passes through three fixed points.

• Having such a program we make another one for finding the ”best” arc that

connects two fixed points (which have at least two inner points between

them). This arc passes through the two fixed points and through one of the

points between them.

• Next we find the ”best” arc between any two points (that have at least two

inner points) of the set of points we are given.

• From the set of arcs that we have created, we exclude those that do not

satisfy our error condition.

• From the arcs that are left we may choose different ways to get from the

initial point to the last. We chose such a path that contains minimal num-

ber of arcs. Usually the connecting points are spread almost uniformly

throughout the set we are given.

2.2. An arc through three fixed points

Let us have the points P1(x1, y1), P2(x2, y2), P3(x3, y3), Fig. 1. The midpoints

A and B of the line segments connecting (x1, y1) and (x2, y2) and (x2, y2) and

(x3, y3) have coordinates (xA, yA), (xB , yB). Obviously

xA =
x2 + x1

2
, xB =

x3 + x2

2

and

yA =
y2 + y1

2
, yB =

y3 + y2

2
.

The equations of the lines that pass through the points P1(x1, y1), P2(x2, y2) and

P2(x2, y2), P3(x3, y3) are respectively

l1 : A1x + B1y + C1 = 0

and

l2 : A2x + B2y + C2 = 0,

95

Circular Arc Spline Approximation ESGI’104

Figure 1: The center C of the circle through P1, P2, P3

where A1 = y2−y1, B1 = x2−x1, C1 = −x1(y2−y1)+y1(x2−x1), A2 = y3−y2,

B2 = x3−x2, C2 = −x2(y3−y2)+y2(x3−x2). Now, since the vectors p1(A1, B1)

and p2(A2, B2) are orthogonal respectively to the lines l1 and l2 and we have the

coordinates of A and B, we can easily find the equations of the line bisectors of

the arcs that are orthogonal to l1 and l2 and pass respectively through (xA, yA)

and (xB , yB). We have

b1 : B1x − A1y + (−B1xA + A1yA) = 0,

b2 : B2x − A2y + (−B2xB + A2yB) = 0.

The center C(p, q) of the circle is where the two line bisectors intersect. Its

coordinates are the solution of the system

B1x − A1y + (−B1xA + A1yA) = 0,

B2x − A2y + (−B2xB + A2yB) = 0.

So we have that

p = −
−A2B1xA + A1B2xB + A1A2yA − A1A2yB

A2B1 − A1B2

,

q = −
−B1B2xA + B1B2xB + A1B2yA − A2B1yB

A2B1 − A1B2

As for the radius of the circle, it is equal to the distance between the center and

any point on it. We can use the point P1(x1, y1). We have that

r =
√

(x1 − p)2 + (y1 − q)2.

96

ESGI’104 Circular Arc Spline Approximation

The direction of the arc is positive (negative) exactly when the orientation of the

triangle
−−−−−→
P1P2P3 is positive (negative). This orientation is equal to the sign of the

determinant
∣

∣

∣

∣

x2 − x1 y2 − y1

x3 − x2 y3 − y2

∣

∣

∣

∣

.

2.3. “Best” arc

Let us consider the task for connecting two fixed points P0(x0, y0) and

Pn+1(xn+1, yn+1) (which have n inner points, n ≥ 2) of our input set. First

we build all the arcs that connect the two end points and pass through an inner

one - that makes n arcs. Let ri and Ci(pi, qi), i = 1, . . . , n be respectively the

radii and the centers of these arcs. For every arc with a center (pi, qi) and ra-

dius ri, (i = 1, . . . , n) we calculate its Hausdorff distance to the inner points Pj ,

j = 1, . . . , n.

di,j =
∣

∣

∣

√

(xj − pi)2 + (yj − qi)2 − ri

∣

∣

∣
.

We now denote

di := max{di,1, . . . , di,n}.

For the i-th arc di is its greatest Hausdorff distance to an inner point. We remind

that we now consider all the arcs that connect two fixed points and pass through

a third between them. For the “best” arc of such kind we chose the k-th arc for

which

dk = min{d1, . . . , dn}.

“Best” arc – new suggestions.

The input set is the same: two fixed points P0(x0, y0) and Pn+1(xn+1, yn+1)

(which have n inner points, n ≥ 2). The midpoint M of the segment P0Pn+1 has

coordinates (xM , yM). Obviously

xM =
x0 + xn+1

2
, yM =

y0 + yn+1

2
.

The equations of the line that passes through the point M and is perpendicular

to the segment P0Pn+1 are:

c :

{

xC = xM + d ∗ y10/w

yC = yM + d ∗ x01/w

where: x01 = x0 − xn+1 , y10 = yn+1 − y0 , w2 = (x01)2 + (y10)2.

97

Circular Arc Spline Approximation ESGI’104

For i = 1, . . . , n we calculate the oriented distance di from M to the Ci-center

of the circle through the points P0, Pi, Pn+1

di =
((xi − xM)2 + (yi − yM)2 − w2/4).w

2((xi − xM).y10 + (yi − yM).x01)
, d =

1

n

n
∑

i=1

di.

Next we define the center C of the optimal arc: C is at distance d from M . The

radius of the arc is r =
√

d2 + w2/4. We calculate the errors ei for the points Pi.

Note that ei =
√

(xi − xM)2 + (yi − yM)2 − r is the Euclidean distance between

Pi and the point Qi, which lies on this circle and on the radius through the point

Pi. At the same time ei is the Hausdorff distance between Pi and the optimal

arc. More precisely this is one-side Hausdorff distance from given points to the

found arc.

2.4. Next stages

Now we consider all the combinations of two points from our input set that

have at least two inner points. For all such pairs of points we take the best

(according to one of the ways previously described) arc that connects them. Since

not all these arcs are close enough to all of their inner points (for an example we

can rarely connect the first and last point with only one arc) we exclude those for

which the distance between them and their inner points (at least one of them) is

more than ǫ. Now we have a set of suitable arcs.

We may consider the problem for constructing a curve (made of arcs) from the

first to the last point as a question for finding a path in a graph. We consider

each point of the input set as a node and the arcs (connecting some of them and

satisfying the error condition) as ribs.

For construction of the adjacency matrix A = (aij)
j=0,...,N
i=1,...,N we first set A to

have only zeros. For i = 1, . . . , N − 3 (N is the number of the input points)

we consider the best arc (rib) connecting the i-th and the j-th points (j = i +

3, . . . , N). If this arc satisfies the error condition we predefine aij = 1.

We compare different paths by the length of their shortest arc (according to the

number of inner points). One approach is to find all the paths in the graph

we have derived and then chose the one in which the shortest arc is as long as

possible. However, we have adapted an algorithm for finding a path with smallest

amount of ribs. Usually the nodes we get are spread uniformly.

98

ESGI’104 Circular Arc Spline Approximation

3. Numerical experiments

We have applied our approach to real examples. On Figure 2 the black curve

consists of 200 points, that lie on the parabolic curve y = 300−200∗ (1−x/500)2

and the white inner segments are the arcs (6 is their number), approximate the

points.

Figure 2: Approximation of the data by 6 arcs

Figure 3: Approximation by 7 arcs (above) and the error of approximation (be-

low)

99

Circular Arc Spline Approximation ESGI’104

On Figure 3 we show the approximation of the same data by 7 arcs and below

we demonstrate how the error of approximation changes. The maximal error with

5 arcs is about 0.0183, but with 7 arcs – less than 0.0085. The output data for

these two cases are:

Number of arcs is Narc = 5

A (500.000,300.000) (370.000,286.480) (500.58361, -337.37167) 1

A (370.000,286.480) (270.000,257.680) (514.73312, -404.07667) 1

A (270.000,257.680) (177.500,216.795) (553.71037, -509.27917) 1

A (177.500,216.795) (85.000,162.220) (628.01623, -652.46917) 1

A (85.000,162.220) (0.000,100.000) (744.77653, -828.28417) 1

Number of arcs is Narc = 7

A (500.000,300.000) (407.500,293.155) (500.20991, -331.25917) 1

A (407.500,293.155) (320.000,274.080) (506.36069, -370.56000) 1

A (320.000,274.080) (250.000,250.000) (525.32585, -436.58167) 1

A (250.000,250.000) (190.000,223.120) (556.08512, -513.63000) 1

A (190.000,223.120) (125.000,187.500) (602.69383, -607.08750) 1

A (125.000,187.500) (65.000,148.620) (669.89912, -719.13000) 1

A (65.000,148.620) (0.000,100.000) (761.34933, -850.08750) 1

4. Summary

To recap, the problem was how to create a sequence of arcs

• passing through some of the given points and being sufficiently close to the

others points,

• arcs must be as long as possible.

We did the following activities:

• examined the problem in the literature,

• developed an algorithm for constructing a sequence of arcs,

• tested our approach with a real data,

• improved the method,

• compared the results.

100

ESGI’104 Circular Arc Spline Approximation

References

[1] Kazimierz Jakubczyk. Approximation of Smooth Planar Curves by Circular

Arc Splines. May 30, 2010 (rev. January 28, 2012)

[2] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jüttler, M. Oberneder, and

Z. Śır. Computational and structural advantages of circular boundary rep-

resentation.

101

