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PREFACE

This book contains papers presented during the International Conference on "Numeri-
cal Methods for Scientific Computations and Advanced Applications" (NMSCAA’16),
May 29–June 2, 2016, Hissarya, Bulgaria. The conference was organized by the Insti-
tute of Information and Communication Technologies, Bulgarian Academy of Sciences
in cooperation with Society for Industrial and Applied Mathematics (SIAM).

The Conference Specific topics of interest are as follows: (a) Multiscale and multi-
physics problems; (b)Robust preconditioning; (c) Monte Carlo methods; (d) Opti-
mization and control systems; (e) Scalable parallel algorithms; (f) Advanced comput-
ing for innovations.
The list of the plenary invited speakers includes: Owe Axelsson (Institute of Geonics,
ASCR, Czech Republic); Raytcho Lazarov (TA&MU, College Station, USA); Zahari
Zlatev (Aarhus University, Denmark) and Clemens Hofreither (Johannes Kepler Uni-
versity, Linz, Austria).
The Scientific Computing is one of the most prominent examples of a interdisci-
plinary area involving mathematics, computer science, engineering, physics, chem-
istry, medicine etc. The tools of Scientific Computing are usually based on mathe-
matical models and corresponding computer codes that are used to perform virtual
experiments to obtain new data or to better understand existing experimental results.
Numerical Analysis is one of the crucial elements of Scientific Computing. It de-
velops and analyzes numerical methods for discretization of continuous models and
their subsequent solution, as well as for approximation of discrete data, such as: data
interpolation and extrapolation, methods for solving linear and non-linear systems
of algebraic equations (direct and iterative solution methods, preconditioning, mul-
tilevel and multigrid methods, etc.), methods for solving systems of ordinary and
partial differential equations, methods for solving integral equations, and optimiza-
tion problems.
Next to Numerical methods and the scientific computations are the Advanced Ap-
plications – the implementation of the developed numerical methods into computer
codes and their customization for the numerous computing systems and for solving a
number of real life problems.

Krassimir Georgiev

May 2016
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Part A

Extended abstracts1

1Arranged alphabetically according to the family name of the first author.





Analysis of Numerical Approximations to
Degenerate Differential Equations

Ivanka Tr. Angelova, Lubin G. Vulkov

1 Introduction
The interest of differential equations with boundary degeneration is motivated by their
numerous applications. As a simple, but typical for our purpose, is the one-factor
short-term rate model of finance described by the stochastic differential equation

dSt = (a+ bS)dt+ σSαdWt, (1)

where W (t), t ≥ 0 is a standard Brownian motion, a, b and σ are positive constants,
and α ≥ 0 is a specified number as most often being 0, 0.5 or 1, see e.g [8]. The
corresponding to (1) PDE satisfied by the price V (S, t) takes the form

∂V

∂t
+

1

2
σ2S2α ∂

2V

∂S2
+ (a+ bS)

∂V

∂S
− rV = f(S, V ), 0 < S <∞, t > 0. (2)

It is often solved with terminal condition V (S, T ) = VT (S). The main difficulties at
numerical solution of the problem are the degeneration of equation (2) at S = 0 and
the semi-infinite interval (0,∞). In this talk we concentrate only on the degeneration.
Let use note that applying suitable transformation to (2), it can be transformed
to another one solved on the interval (0, 1) but in the new PDE appears another
degeneration at the right end, see e.g. [3]. For nonlinear models see [5,6].
We discretize the Black-Sholes operator (2) in time introducing functions
Vj(S) ≈ V (S, tj), tj = j4t, j = 0, 1, . . . , J and truncate (0,∞) to (0, Smax):

1

2
σ2S2αV ′′j + (a+ bS)V ′j −

(
r − 1

4t

)
Vj =

1

4t
Vj−1 + f(S, Vj), V0(S) = VT (S). (3)

Further we discuss the behavior of V j and its derivatives at S → 0 on two ODE
boundary value problems (BVP). The first one is as follows:

−(x2αp(x)u′)′ + q(x)u = f(x), ′ ≡ d/dx, x ∈ (0, 1), u(1) = 0. (4)

The authors of [2] prescribe appropriate (weighted) homogeneous boundary condition
at the origin and prove existence and uniqueness of H2

loc(0, 1] solutions. The case
0 < α < 0.5 is important for us and it is proved that:
limx→0 u(x) = 0, u ∈ C0,1−α[0, 1], ‖u‖C0,1−α ≤ C‖f‖L2

, xαu′ ∈ H1(0, 1),
‖xαu′‖H1 ≤ C‖f‖L2

. The constant C only depend on α. Also, there exists a function
f ∈ C∞0 (0, 1) such that near the origin

u(x) = a1x
1−2α + a2x

3−4α + a3x
5−6α + · · · , a1 6= 0, therefore u′ ∼ x−2α.
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Next, given 0.5 ≤ α < 0.75 and f ∈ L2(0, 1), there exists u ∈ H2
loc(0, 1) satisfying (4)

with the properties limx→0(1− lnx)−0.5u(x) = 0, limx→0+ x
2α−1u′(x) = 0.

Further, given α ≥ 1 and f ∈ L2(0, 1) , there exists solution of (4) u ∈ H2
loc(0, 1) with

the properties: limx→0+ x
0,5αu(x) = 0, limx→0+ x

1.5αu′(x) = 0 .
Next, we consider the following BVP with a small parameter ε (whose reduced equa-
tion, ε = 0, is our subject, so called elliptic regularization):

L[u] ≡ −(ε+x)βu′′−a(x)u′+b(x)u = f(S.V ), 0 < x < 1, u(0) = A0, u(1) = A1, (5)

where 0 < ε ≤ 1, β = 1 or β = 2 and a(x), b(x) ∈ C[0, 1], c(x) ≥ m0 > 0. The
following estimates are established in [7]. Let u(x, ε) be the solution to (5) with β = 1.
Then if a = a(0) > 0 we have

|u(k)(x, ε)| ≤M


(x+ ε)1−a−k 0 < a < 1,

1 + (ε+ x)−k ln−1 ε−1 a = 1,
1 + εa−1(ε+ x)1−a−k a > 1.

(6)

Let u(x, ε) be the solution of (5) with β = 2 and a = a(0) > 0. Then for k ≤ m

|u(k)(x, ε)| ≤M [1 + ε−2k exp(−αax/ε2)], 0 < α < 1, 0 < x < 1. (7)

The purpose of this study is to develop effective numerical methods based on ellip-
tic regularization for linear (European option) and semi-linear (American options)
degenerate parabolic equations starting from ODEs of type (3).

2 Numerical analysis of Problem (4)
Using the above estimates for behavior of the solution and its derivatives we construct
adequate approximations. Let consider on [0, 1] system of mesh points: 0 = x0 < ... <
xi < ... < xN = 1 such that xi = (ih)µ, i = 0, . . . N, µ ≥ 1, hN = 1. Let denote

Iα[g; a, b] =

∫ b

a

g(x)

x2α
dx. ξ = ξ(α; a, b) =

Iα[x; a, b]

Iα[1; a, b]
.

The finite difference scheme is:

p(ξi−1/2)
Ui − Ui−1

~iIα[1;xi−1, xi]
+ p(ξi+1/2)

Ui − Ui+1

~iIα[1;xi, xi+1]
+ qiUi = fi, (8)

~i = ξi+1/2 − ξi−1/2, ξi−1/2 = ξ(α;xi−1, xi), ξi+1/2 = ξ(α;xi, xi+1), i = 1, . . . , N − 1

Then in agrement of the above estimates, see also [2] for more details, U0 = 0 for
Dirichlet problem and

(2− 2α)p(ξ1/2)(U0 − U1)/h2 + q(0)U0 = f(0)− p(0)(2− 2α)/x1

for Neumann problem at 0 ≤ α < 0.5, p(0)(U0 − U1)/h2 + q(0)U0 = f(0), at 0.5 ≤
α < 1. We rewrite (8) in the form −aiUi−1 + ciUi− biUi+1 = fi or ANUN = fN whit
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UN = (U1, . . . , UN−1)T . It is well known that the numerical method for the original
problem, construction of the mesh domain, basic functions, etc. are chosen such that
the condition number c(AN ) = ‖A−1

N ‖‖AN‖ be as possible as small. We discuss c(AN )
for our approximations and the effect of the preconditioning on Table 1. Multiplied
AN by D = diag{c−1

i } we get BN = DAN and multiplied AN by D = diag{~i/h} we
get CN = DAN , i.e. we do diagonal preconditioning.

Table 1: Example1. : α = 0.25.

n = 1, O(h2) n = 2, O(h4)

N c(A)/N2 c(B)/N2 c(C)/N2 c(A)/N6 c(B)/N2 c(C)/N4

32 20.2645 0.3781 0.4633 0.0454 0.2468 0.0301
64 30.2193 0.3783 0.4761 0.0378 0.2467 0.0170
128 44.2661 0.3784 0.4842 0.0317 0.2467 0.0091
256 64.0575 0.3784 0.4893 0.0266 0.2467 0.0048
512 91.9496 0.3784 0.4925 0.0224 0.2467 0.0025
1024 131.2875 0.3784 0.4945 0.0181 0.2467 0.0012

The conclusion is that the preconditioning improves significantly the condition num-
bers. Different approach to problem (4) for p(x) = ε is proposed in [4].

3 Numerical analysis of Problem (5)
On the base of the estimates (6) we propose the following numerical method for β = 1.
Let introduce the graded mesh 0 = x0 < ... < xi < ... < xN = 1 such that qi =
ih, i = 0, . . . N, hN = 1. xi = x(qi) = (ε1−β + pq))1/(1−β)− ε, p = 1 + ε)1−β)− ε1−β ,
β = (a+ 2)/3. Then consider the finite difference scheme:

− (ε+ xi)
β

~i

(
Ui+1 − Ui
hi+1

− Ui − Ui−1

hi

)
− a(xi)

Ui+1 − Ui
hi+1

+ c(xi)Ui = f(xi). (9)

One can prove uniform with respect to ε convergence of the discrete solution U to the
exact one u with rate of convergence O(h), h = maxi hi.
Now on the base of the estimates (7), we solve (5) at β = 2 on the Shishkin mesh:
e = 2(ε lnN)2; τ = min(1/2, e); h = 2τ/N ; H = 2(1− τ)/N , such that xi = ih, i =
0, . . . N/2, xi = τ + (i− 1)H, i = N/2 + 1, . . . , N by the finite difference scheme (9).
Again, one can prove the same convergence as in the case β = 1.
We prove that the condition numbers on graded meshes (Liseikin and Shishkin, re-
spectively) depend on the small parameter ε. But the simple diagonal preconditioning
improves the situation. The numerical experiments confirm this, see Table 2.
Acknowledgments: The research of the second author was supported by the Euro-
pean Union under Grand Agreement number 304617 (FP7 Marie Curie Action Project
Multi-ITN STRIKE- Novel Methods in Computational Finance) and the Bulgarian
National Fund of Science under Project I20/2014.
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Table 2: ε = 10−2.

β = 1 β = 2

N c(A)/N2 c(B)/N2 c(A)/N2 c(B)/N2

32 4.7944 0.3611 143.1072 0.1239
64 6.5943 0.3633 101.5252 0.1126
128 9.1688 0.3644 84.7166 0.1080
256 12.8370 0.3649 80.2668 0.1061
512 18.0496 0.3652 83.5742 0.1054
1024 25.4434 0.3653 93.1358 0.1054
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On Improving the QRN Generation Performance on
Intel MIC Architectures

Emanouil Atanassov, Mariya Durchova, Todor Gurov,
Sofiya Ivanovska, and Aneta Karaivanova

The Monte Carlo methods are an important tool used for simulating and modeling
complex processes. Due to the excellent parallelisation properties of Monte Carlo
methods they are widely used as part of workloads run on modern supercomputers.

However, the typical rate of convergence of Monte Carlo methods of
1√
N

leads to the

necessity to use large numbers of samples to achieve acceptable convergency [4]. The
so-called quasi-Monte Carlo methods attempt to replace the pseudo-random num-
bers in Monte Carlo methods with specially crafted, deterministic sequences, whose
distribution is more even [1]. The uniformity of distribution of these sequences is usu-
ally measured by their discrepancy and consequently, the sequences with convergence
rate of their discrepancy of O(N−1 logs(N)), where s is the dimension, are called
”low-discrepancy sequences”. This rate of convergence is conjectured to be the best
possible. Many such sequences have been investigated both in theory and practice.
Some of the most popular families of low-discrepancy sequences are those of Sobol
and Halton [2, 3, 5].
The increasing complexity of the supercomputers creates new challenges to the ef-
ficient use of the available hardware resources. One of the most notable tendency
today is the use of General Purpose GPU computing technologies, typically provided
by NVIDIA GPUs, or Intel MIC architecture, implemented on Intel Xeon Phi accel-
erators. The systems that employ accelerators have much better energy efficiency,
but reach huge counts of computing cores or threads that have to be managed and
introduce additional levels where parallelisation and optimisation of algorithms has to
be performed. In the NVIDIA GPGPUs there is the concept of threads that execute
simultaneously, essentially running the same code on different data, loosely following
the SIMD model.
The Intel Xeon Phi accelerators have internal organization that is more “traditional”
in the sense that they offer certain number of cores and the possibility for 4× hyper-
threading (one core may run up to 4 independent threads. However, if one tries
to simply recompile his or her code for Xeon Phi, the performance of the resulting
application will not be impressive, because the individual cores of a Xeon Phi ac-
celerator are rather slow when considered as a generic CPU. Their real computing
power can only be tapped if one uses their capability for vector processing. The In-
tel MIC architecture provides instructions that allow whole vectors of real numbers
to be processed. It is precisely this capability of Xeon Phi accelerators that allows
supercomputers built with them to achieve high results in the LINPACK benchmark
with good energy efficiency. Although the Intel compilers can make use of vector in-
structions when processing user codes, the results are far from optimal in most cases.
Monte Carlo methods have a certain logical organization that is not very amenable to
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this type of automatic vectorization. Motivated by the starting of operations of the
new Bulgarian supercomputer, deployed at the Institute of Information and Commu-
nication Technologies, which has 150 dual-socket nodes HP SL250s Gen8 with 2 Intel
Xeon E5-CPU E5-2650 v2 @ 2.60GHz and 2 Intel Xeon Phi 7120P co-processors, we
investigated various approaches for developing efficient quasi-Monte Carlo algorithms
to run on this machine.
Typically the generation of a quasi-random number sequence takes substantial part of
the whole execution time and has more complex structure than a usual pseudo-random
number generator. It is well established in theory and practice of quasi-Monte Carlo
methods that some way of introducing randomness to the sequences is beneficial.
Some of these so-called “scrambling” schemes add substantial number of operations
[6].
In our work we concentrated on the families of sequences of Sobol and Halton as they
are perhaps the most used in quasi-Monte Carlo methods and the methods used for
them can be extended to some other families that are close to them. For example, the
Niederreiter sequences are very similar to the Sobol sequences and our methods and
codes can easily be extended to them [3, 6]. For the Halton sequences it is well known
that if they are used without modification and in algorithms with high constructive
dimension, the results will be affected by a certain correlation between consecutive
dimensions [2, 5]. Unless unrealistically high number of samples is achieved, these
correlations will introduce bias.
The “scrambling” schemes avoid these problems, but the modification, introduced by
Atanassov, offers a better theoretical basis, since the rate of convergence of the mod-
ified sequence has better theoretically guaranteed value than that for the unmodified
sequence [2, 3]. Nevertheless our computer codes can deal with both cases as well as
other potential scramblings.
Our experience was the direct use of the special vector instructions is not that difficult
and achieves substantial improvement in performance. In the next listing one can
see how the (modified) Halton sequence can be generated, using the Intel compiler
intrinsics for the vector instructions.

Is32vec16 r2= * (Is32vec16*)&sequence.lastdigit[i];
r2 = Is32vec16 ( _mm512_add_epi32 ( r2, _mm512_set1_epi32(1) ));
__mmask16 somemask;
Is32vec16 p1=* (Is32vec16*)&sequence.primes[i];
somemask= _mm512_cmpge_epi32_mask(r2,p1);
r2=Is32vec16 (_mm512_mask_sub_epi32(r2, somemask, r2,p1));
* (Is32vec16*)&sequence.lastdigit[i]=r2;
r2 = * (Is32vec16*)&sequence.perturbedlastdigit[i];
Is32vec16 modif= * (Is32vec16*)&sequence.modifiers[0][i];
r2 = Is32vec16(_mm512_add_epi32(r2,modif));
__mmask16 othermask= _mm512_cmpge_epi32_mask(r2,p1);
r2=Is32vec16 (_mm512_mask_sub_epi32(r2,othermask,r2,p1));
* (Is32vec16*)&sequence.perturbedlastdigit[i]=r2;
F64vec8 iparts = *(F64vec8 *)& sequence.partsums[1][i];
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F64vec8 inveprimes = *(F64vec8 *)& sequence.inveprimes[i];;
F64vec8 pdigit = _mm512_cvtepi32lo_pd( r2);
F64vec8 oparts = _mm512_fmadd_pd ( pdigit, inveprimes ,iparts);
*(F64vec8*)&sequence.partsums[0][i]=oparts;
iparts = *(F64vec8 *)& sequence.partsums[1][i+8];
inveprimes= *(F64vec8 *)& sequence.inveprimes[i+8];
__m512i pmm=_mm512_extload_epi64(& ((__m256i *)&r2)[1],
_MM_UPCONV_EPI64_NONE ,_MM_BROADCAST_4X8 ,_MM_HINT_NONE );
pdigit = _mm512_cvtepi32lo_pd( pmm);
oparts = _mm512_fmadd_pd ( pdigit, inveprimes ,iparts);
*(F64vec8*)&sequence.partsums[0][i+8]=oparts;
if (somemask){
int dd=1;
for (int k=0;k<FLOATSINWORD;k++,dd+=dd){
if (somemask & dd ){
sequence.blastdigit[i+k]++;
if (sequence.blastdigit[i+k]==sequence.primes[i+k]){
sequence.blastdigit[i+k]=0;
}

This admittedly complicated code is in the innermost cycle of the generation routine.
Operations that are done on all terms of the sequence are done in the first part of
the code, while some masks are also formed that allow operations that are to affect
only part of terms to be applied using these masks. Although the code becomes very
difficult to read, its users do not need to understand the details.
Our comparizons of vectorized vs non-vectorized versions of this code show important
improvement from using the vector instructions. For example, on one core of the Intel
Xeon Phi 5110P accerator, available on our older servers, the non-vectorized version
generates 10 million terms of the sequence with dimensionality 160 for 4m25s = 265s,
while the vector versions does that in 48s or approximately 5 times faster.
If all the cores of Intel Xeon Phi are used, the same computation is done by the vector
version for 1.2s, if 120 threads are used. Here we note that there are some peculiarities
of the Intel MIC architecture, which make it a requirement to use hyper-threading if
one wants to use the maximum performance of the vector units of Intel Xeon Phi. If
only 60 threads are used instead of 120, the same computation requires 1.5s.
The main consideration when developing our vectorized generation routines has been
to avoid logical statements and you can see in the above code snipped how the masks
are used to this effect.

Acknowledgments
This work was supported by the National Science Fund of Bulgaria under Grant
#DFNI-I02/8 and by the European Commission under H2020 project VI-SEEM (Con-
tract Number 675121).
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Arbitrarily Accurate Preconditioners by Low Rank
Approximations of Inverse Schur Complement

Matrices

Owe Axelsson

Many important problems involve an unfeasibly high degree of computational com-
plexity unless properly handled to allow an acceptable computer time. Examples are
optimal control problems constrained by partial differential equations (PDEs) and
time dependent problems on a long time frame. In such problems one must solve the
PDE s many times. Due to the large size of the problems, iterative solution meth-
ods must be used. Thereby it is crucial to construct preconditioner that leads to a
small condition number that holds uniformly with respect to all problem parameters,
including discretization mesh sizes.
In this work we consider symmetric and positive definite PDEs split in two-by-two
block matrix from correspondingly to some splitting of the mesh nodes. The precon-
ditioner involves inverses of the Schur complement matrices. We show that they can
be arbitrarily accurately approximated by low rank correction terms to the inverses
of block-diagonal matrices. The method involves computation of some eigenvectors
to the Schur complement matrix, preconditioned by the inverses of the block-diagonal
matrices. Computing a sufficient number of such eigenvectors, that can be done adap-
tively, enables reaching a uniformly bounded condition number, arbitrarily close to
unity. Since the PDE problem must be solved many times, the initial cost to compute
such eigenvectors can be small related to the total cost.
In this talk we first present the basic idea of the low rank corrections to the inverses of
the Schur complement matrices, when using exact eigenvectors. Then it is shown that
it suffices to compute vectors that span a subspace, sufficiently close to the subspace
spanned by the exact eigenvectors. Methods to compute the approximate eigenvectors
are given,
Finally, it is commented on various ways to split the mesh nodes to get a proper
two-by-two block form of the matrix. The method is applicable for both coarse-fine
mesh splitting and for domain decomposition splittings. The basic idea of the method
is as follows.
Given A =

[
AI AIC
ACI AC

]
, an spd matrix, where AI , AC have orders m×m and n×n,

respectively, and m > n. In our applications, AC is a coarse mesh matrix and m� n.
Consider first a block-triangular matrix preconditioner on inverse matrix form,[

A−1
I 0

−S̃−1ACIA
−1
I S̃−1

] [
AI AIC
ACI AC

]
=

[
I A−1

I AIC
0 S̃−1S

]
(1)

where S = AC − ACIA−1
I AIC is the Schur complement matrix and its inverse is ap-

proximated by S̃−1 = A−1
C + σqV S

−1
V V T , σq > 0, SV = V TSV , V = [v1,v2, · · · ,vq],

1 ≤ q < m0 = m− rank(AIC).
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Let {γ2
i ,vi}ni=1 be the eigensolutions of the generalized eigenvalue problem

γ2ACv = ACIA
−1
I AICv, (2)

vTi vj = δij , i.e., the eigenvectors are orthogonal and normalized. Assume also that
the eigenvalues are ordered in a decreasing order as 1 > γ2

1 ≥ γ2
2 · · · ≥ γ2

k, where
γk = 0 for k = m0, · · · , n.
It holds that Svi = (1− γ2

i )ACvi, so S1/2vi = (1− γ2
i )S1/2ACS

1/2vi. Further,

S1/2S̃−1S1/2 = S1/2A−1
C S1/2 + σqS

1/2V S−1
V V TS1/2 = S1/2A−1

C S1/2 + σqP,

where P = Ṽ (Ṽ T Ṽ )−1Ṽ T , Ṽ = S1/2V is a projection matrix,

P ṽi =

{
ṽi, 1 ≤ i ≤ q
0, q + 1 ≤ i ≤ n,

with ṽi = S1/2vi. It follows that the eigenvalues of S̃−1S equal

λi(S̃
−1S) =

{
1− γ2

i + σq, 1 ≤ i ≤ q
1− γ2

i , q + 1 ≤ i ≤ n.

To make the lower bounds equal, we let σq = γ2
i − γ2

q+1. Then

1− γ2
q+1 ≤ λi(S̃−1S) ≤

{
1, if γ2

q + γ2
q+1 ≥ γ2

1 ,

1− γ2
q + γ2

1 − γ2
q+1, if γ2

q + γ2
q+1 < γ2

1 .

Hence, for the condition number of S̃−1S it holds

κ(S̃−1S) ≤


1

1−γ2
q+1

, if γ2
q + γ2

q+1 ≥ γ2
1 ,

1 +
γ2
1−γ

2
q

1−γ2
q+1

, if γ2
q + γ2

q+1 < γ2
1 .

It is seen that we have reduced the condition number from κ(A−1
C S) = 1

1−γ2
1

to
max{ 1

1−γ2
q+1

, 2}, by moving the smallest eigenvalues 1 − γ2
i , i = 1, 2, · · · , q to the

upper part of the spectrum, near the unit value.
The matrix SV , of order q × q, takes the form

SV = V TSV =
[
vi(1− γ2

j )ACvj
]q
i,j=1

.

Its computation requires matrix-vector multiplications with AC and q2 inner products
of vectors of order n. Hence, in practice, q cannot be very large and the correction is
of low rank.
By use of an adaptive method we show also that we can in fact reduce the condition
number to become arbitrarily close to unity and that the method can be applied to
approximate the whole inverse of A.
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Reduced Order Modelling of a Coupled
Chemotaxis–Haptotaxis Model for Cancer Invasion

Gabriel Dimitriu

There exists a vast literature concerning mathematical analysis of different reaction-
diffusion-taxis that have been applied to describe the cancer invasion, angiogenesis,
cancer chemotherapy treatments, etc. (see for example [2],[3] and references therein).
In this work, we carry out an application of DEIM reduced order method (a Dis-
crete version of “Empirical Interpolation Method”, introduced by Barrault et al. in
[1]) combined with Proper Orthogonal Decomposition (POD) to provide dimension
reduction of a model introduced in [3]. This model describes a process of cancer
cell invasion of tissue (extracellular matrix – ECM), taking into account the role of
the generic matrix degrading enzyme such as urokinase-type plasminogen activator
(uPA), chemotaxis and haptotaxis. This DEIM method applied to this model elimi-
nates the major disadvantage of POD, where the nonlinear reduced terms still have to
be evaluated on the original state space making the simulation of the reduced-order
system too expensive.
The model governing the interactions between the tumour cells, extracellular matrix
and uPA is defined by the following 2D system of reaction-diffusion-taxis equations:

ct = Dc∇2c︸ ︷︷ ︸
dispersion

−∇ · (χcc∇u)︸ ︷︷ ︸
chemotaxis

−∇ · (ξcc∇v)︸ ︷︷ ︸
haptotaxis

+µ1c(1− c− v)︸ ︷︷ ︸
proliferation

,

vt = −δuv︸ ︷︷ ︸
proteolysis

+µ2v(1− c− v)︸ ︷︷ ︸
renewal

,

ut = Du∇2u︸ ︷︷ ︸
Diffusion

+ αc︸︷︷︸
production

− βu︸︷︷︸
decay

.

(1)

The state variables in (1) have the following significance: c(x, y, t) represents the den-
sity of cancer cells, v(x, y, t) is the density of extracellular matrix macromolecules, and
u(x, y, t) is the concentration of uPA protease. The positive constants Dc and Du are
the diffusion coeficients, the positive parameters χc and ξc represent the chemotactic
and haptotactic sensitivities, and µ1, µ2, α, β, δ are positive rate constants.
In order to close the system (1) boundary and initial conditions for c, u and v are
required. According to an in vitro experimental protocol in which invasion takes place
within an isolated system, one assumes that there is no-flux of tumour cells or uPA
protease accross the boundary of the domain. The initial conditions are mathemat-
ically defined by negative exponential functions, initially assuming that there is a
cluster of cancer cells already present, and that they penetrated a short distance into
the extracellular matrix, while the remaining space is accupied by the matrix alone.
For the uPA protease initial concentration, we assume that it is proportional to the
initial tumour density ([3]).
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Using the notations c, v, u ∈ Rn with n = nxny being the number of mesh points,
the system (1) in matrix form after discretization of the space variables becomes

ċ(t) = DcGc(t)−N1(c(t),u(t))−N2(c(t),v(t)) + N3(c(t),v(t)),

v̇(t) = −N4(u(t),v(t)) + N5(c(t),v(t)),

u̇(t) = DuGu(t) + F1(c(t)) + F2(u(t)).

(2)

In (2), F1, F2 : Rn → Rn and N1, N2, N3, N4, N5 : Rn × Rn → Rn are

N1(c,u) = χc(c. ∗Gu + Gxc. ∗Gxu + Gyc. ∗Gyu),

N2(c,v) = ξc(c. ∗Gv + Gxc. ∗Gxv + Gyc. ∗Gyv),

N3(c,v) = µ1. ∗ c(1− c− v), N4(u,v) = δu. ∗ v, N5(c,v) = µ2c. ∗ (1− c− v),

F1(c) = αc, F2(u) = −βu .

POD-reduced system. We consider the following snapshot matrices for the con-
struction of POD-reduced system: Ĉ = [c1, . . . , cns ], V̂ = [v1, . . . ,vns ], and Û =
[u1, . . . ,uns ] ∈ Rn×ns . Here, cj , corresponds to the solution of the FD discretized
system at time tj and similarly for vj , and uj . Let rc = rank(Ĉ), rv = rank(V̂),
ru = rank(Û). Let k ≤ min{rc, rv, ru}. The POD basis of dimension k of the snap-
shots {cj}nsj=1 is the set of left singular values and likewise for the snapshots {vj}nsj=1,
{uj}nsj=1. Hence, the POD basis of the snapshots {cj}nsj=1 denoted by A consists of the
leading k orthonormal columns of Â, A = Â(:, 1 : k) ∈ Rn×k, where Ĉ = ÂΣc(Zc)T

is the SVD of Ĉ with Â ∈ Rn×n, Σc ∈ Rn×ns and Zc ∈ Rns×ns . The diagonal entries
of Σc are the singular values of Ĉ. Similarly, let B, D ∈ Rn×k be matrices whose
columns corresponding to the POD basis of dimension k of the snapshots {vj}nsj=1,
and {uj}nsj=1.
The POD reduced-order system is constructed by applying Galerkin projection me-
thod on the equations in (2). In particular, replacing the discrete state variables by
their truncated POD expansions c← Ac̃, v← Bṽ, u← Dũ with reduced variables
c̃, ṽ, ũ ∈ Rk, and then forcing the Galerkin orthogonality condition of the residuals
by pre-multiplying the four equations in (2) by AT , BT , and DT , respectively, we
obtain the following reduced-order system

˙̃c(t) = DcATGA︸ ︷︷ ︸
Gc

c̃(t)−AT Ñ1(c̃(t), ũ(t))

−AT Ñ2(c̃(t), ṽ(t)) + AT Ñ3(c̃(t), ṽ(t)),

˙̃v(t) = −BT Ñ4(ũ(t), ṽ(t)) + BT Ñ5(c̃(t), ṽ(t)),

˙̃u(t) = DuDTGD︸ ︷︷ ︸
Gu

ũ(t) + DTF1(Ac̃(t)) + DTF3(Dũ(t)),

(3)
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where Ñ1, Ñ2, Ñ3, Ñ4, Ñ5 : Rk × Rk → Rn are

Ñ1(c̃, ũ) = χc(c̃. ∗ATGBũ + ATGxAc̃. ∗ATGxBũ + ATGyAc̃. ∗ATGyBũ),

Ñ2(c̃, ṽ) = ξc(c̃. ∗ATGBṽ + ATGxAc̃. ∗ATGxBṽ + ATGyAc̃. ∗ATGyBṽ),

Ñ3(c̃, ṽ) = µ1c̃. ∗ (1− c̃− ṽ), Ñ4(ũ, ṽ) = δũ. ∗ ṽ,
Ñ5(c̃, ṽ) = µ2ṽ. ∗ (1− c̃− ṽ).

Let f : D 7→ Rn be o nonlinear vector-valued function with D ⊂ Rd, for some positive
integer d. Let {S}m`=1 ⊂ Rn be a linearly independent set, form = 1, . . . , n. For τ ∈ D,
the DEIM approximation of order m for f(τ) in the space spanned by {S}m`=1 is given
(see [4]) by f̂(τ) := S(PTS)−1PT f(τ), where S = [S1, . . . ,Sm] ∈ Rn×m collects the
first m POD basis modes of nonlinear function f and P = [e%1 , . . . , e%m ] ∈ Rn×m
is the DEIM interpolation selection matrix. The DEIM procedure employs a greedy
technique and iteratively constructs a set of indices {%1, . . ., %m} using the input basis
{Si}mi=1, in such a way that, at each iteration, the current selected index captures the
maximum variation of the input basis vectors (see [1],[4]).
POD-DEIM reduced system. Let SN1 , SN2 , SN3 , SN4 , SN5 ∈ Rn×m, m ≤ n be the
matrices whose columns containing the POD basis of the nonlinear functions Ñ1, Ñ2,
Ñ3, Ñ4, and Ñ5 respectively, defined in (3). These POD bases are used to select
the sets of m interpolation indices from DEIM algorithm. Let ~%N1 , ~%N2 , ~%N3 , ~%N4 ,
~%N5 be the DEIM interpolation indices of the nonlinear functions defined in (3). Let
PN1 ∈ Rn×m be the matrix whose j-th column is the %N1

j -th column of the identity
matrix, i.e., it is the vector [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn, having all zeros entries except
one at the entry %N1

j , for j = 1, . . . ,m. Define PN2
, PN3

, PN4
, PN5

∈ Rn×m in a
similar way as PN1

. The DEIM approximation of the nonlinear functions in (3) is

Ñ1 ≈ SN1(PTN1
SN1)−1Ñ

m

1 , Ñ2 ≈ SN2(PTN2
SN2)−1Ñ

m

2 ,

Ñ3 ≈ SN3(PTN3
SN3)−1Ñ

m

3 , Ñ4 ≈ SN4(PTN4
SN4)−1Ñ

m

4 ,

Ñ5 ≈ SN5(PTN5
SN5)−1Ñ

m

5 ,

(4)

and the nonlinear terms for the POD reduced system can be approximated as

AT Ñ1(c̃, ṽ) ≈ ATSN1(SN1

~% )−1︸ ︷︷ ︸
E1

Ñ
m

1 , AT Ñ2(ũ, w̃) ≈ ATSN2(SN2

~% )−1︸ ︷︷ ︸
E2

Ñ
m

2 ,

AT Ñ3(ṽ, h̃) ≈ ATSN3(SN3

~% )−1︸ ︷︷ ︸
E3

Ñ
m

3 , BT Ñ4(ũ, w̃) ≈ BTSN4(SN4

~% )−1︸ ︷︷ ︸
E4

Ñ
m

4 ,

BT Ñ5(c̃, ṽ) ≈ BTSN5(SN5

~% )−1︸ ︷︷ ︸
E5

Ñ
m

5 ,
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where the nonlinear functions Ñ
m

1 , Ñ
m

2 , Ñ
m

3 , Ñ
m

4 , Ñ
m

5 : Rk × Rk → Rm are defined
as:

Ñ
m

1 (c̃, ũ) = PTN1
Ñ1(c̃, ũ) Ñ

m

2 (c̃, ṽ) = PTN2
Ñ2(c̃, ṽ),

Ñ
m

3 (c̃, ṽ) = PTN3
Ñ3(c̃, ṽ), Ñ

m

4 (ũ, ṽ) = PTN4
Ñ4(ũ, ṽ),

Ñ
m

5 (c̃, ṽ) = PTN5
Ñ5(c̃, ṽ).

(5)

The explicit form of Ñ
m

1 (c̃, ũ) is given by

= χc[(PTN1
A︸ ︷︷ ︸ c̃). ∗ (PTN1

GD︸ ︷︷ ︸ ũ) + (PTN1
GxA︸ ︷︷ ︸ c̃). ∗ (PTN1

GxD︸ ︷︷ ︸ ũ)

+ (PTN1
GyA︸ ︷︷ ︸ c̃). ∗ (PTN1

GyD︸ ︷︷ ︸ ũ)]
(6)

and similarly for Ñ
m

2 , Ñ
m

3 , Ñ
m

4 , Ñ
m

5 . We remark that the k-by-m matrices

E1 = ATSN1(SN1

~% )−1, E2 = ATSN2(SN2

~% )−1, E3 = ATSN3(SN3

~% )−1,

E4 = BTSN4(SN4

~% )−1, E5 = BTSN5(SN5

~% )−1

can be precomputed and reused at each time step. Also, each of the m-by-k coef-
ficient matrices in (6) grouped by the curly brackets are precomputed so that the
computational complexity of each nonlinear function is independent of the dimension
n of the original full-order system. Using the coefficient matrices in (3) the form of
the POD-DEIM reduced system becomes

˙̃c(t) = DcGuc̃(t)−E1Ñ
m

1 (c̃(t), ũ(t))−E2Ñ
m

2 (c̃(t), ṽ(t)) + E3Ñ
m

3 (c̃(t), ṽ(t)),
˙̃v(t) = −E4Ñ

m

4 (ũ(t), ṽ(t)) + E5Ñ
m

5 (c̃(t), ṽ(t)),
˙̃u(t) = DuGwũ(t) + DTF1(Cc̃(t)) + DTF2(Dũ(t)).

Numerical simulations indicate that DEIM improves the efficiency of the POD ap-
proximation and achieves a complexity reduction of the nonlinear terms.
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Analysis and Realization of Compact Difference
Schemes for Semilinear Parabolic Systems

I. Dimov, J. Kandilarov, V. Todorov, L. Vulkov

1 Introduction
In this work we construct compact finite high-order difference schemes (CFDS) for
parabolic systems and propose fast algorithms for solution of the nonlinear algebraic
equations. Problems of air pollution transport with coupling in the nonlinear reactions
terms are of our main consideration, namely,

∂us/∂t−K4us + bs.∇us +Rs(x, y, u1, . . . , uS) = 0, us|∂Ω×R+ = 0, (1)

where us = us(x, y, t) are the concentrations of S chemical species (pollutants) and
K > 0 is the diffusion coefficient. The assumption of constant K := Kx = Ky is not
a restriction, but just corresponds to the physical model described in [1, 2, 3]. The
error estimate shows the fourth order accuracy of the proposed CFDS when two spatial
mesh sizes are proportional. For time discretization θ-weight method combined with
inexact Newton iterations is implemented. Also, three implicit-explicit (IMEX) time
discrete methods, namely IMEX-BDF1, IMEX-BDF2 and CN-LF are developed for
the ODE-s systems arising after the space discretization. Another possible approach
is discussed in ([4]). We illustrate a high efficiency of the computational algorithms
when they are used to model air pollution transport.

2 Difference schemes
We start with presenting CFDS on the 1D system of the following two equations:

∂u

∂t
− a(x)

∂2u

∂x2
+ b(x)

∂u

∂x
= f(x, t, u, v),

∂v

∂t
− c(x)

∂2u

∂x2
+ d(x)

∂u

∂x
= g(x, t, u, v) . (2)

We introduce a standard mesh: Ωh = {xi = ih, i = 0, 1, . . . ,M, h = 1/M} and
the difference operators δxϕi = (ϕi+1 − ϕi−1)/2h, δ2

xϕi = (ϕi+1 − 2ϕi + ϕi−1)/h2 for
some mesh function ϕi, i = 0, 1, . . . ,M . Applying these operators to the elliptic part
of the system one may obtain

−aiδ2
xui + biδxui − e1,i = f(xi, t, ui, vi)−

∂ui
∂t
≡ Fi (3a)

−ciδ2
xvi + diδxvi − e2,i = g(xi, t, ui, vi)−

∂vi
∂t
≡ Gi, (3b)

where the truncation errors may be expressed in the following form:

e1,i =
h2

12

(
2b
∂3u

∂x3
− a∂

2u

∂x2

)∣∣∣∣
i

+O(h4) e2,i =
h2

12

(
2d
∂3v

∂x3
− c∂

2u

∂x2

)
i

+O(h4).
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Differentiating (2) twice with respect to x we obtain{
a∂

3u
∂x3 =

(
b− da

dx

)
∂2u
∂x2 − db

dx .
∂u
∂x −

∂F
∂x

a∂
4u
∂x4 − 2b∂

3u
∂x3 =

(
2 dbdx −

d2a
dx2

)
∂2u
∂x2 + d2b

∂x2
∂u
∂x −

(
b+ 2 dadx

)
∂3u
∂x3 − ∂2F

∂x2 .

To increase the order of the error to O(h4) in (3a) we have used the fact that(
a
∂4u

∂x4
− 2b

∂3u

∂x3

)
i

= − (δ2
xai − ãi(δxai − bi)− 2δxbi)δ

2
xui

+ (δxbi − ãi.δxci)δxui − δ2
xFi + ãiFi +O(h2),

where ãi = (bi + 2δxai)/ai i = 1, . . . ,M − 1. Let αi = (δ2
xai − ãi(δxai − bi)− 2δxbi),

α̃i = ai + h2

12αi,
≈
αi= bi + h2

12 (δ2
xbi − ãiδibi). Now, let us define the following difference

operators:

lhi = −α̃iδ2
x+
≈
αi δx, νhi = 1 +

h2

12
(δ2
x − ãiδx), Phi = 6h2lhi , Qhi = 6h2νhi .

Let also P1 = tridiag(pi,i−1, pi,i, pi,i+1) and Q1 = tridiag(qi,i−1, qi,i, qi,i+1) be three-
diagonal matrix corresponding to P, Q with elements pi,i = 12ai + h2α, pi,i±1 =
−6ai± α̃i−0.5h2α, qii = 5h2 qi,i±1 = 0.25h2(2∓ α̃ih). Finally, if Ui ≈ u(xi, t), then
the semidiscretization of (3a) to order O(h4) is as follows:

Phi Ui = QhFi i = 1, . . . ,M − 1 and U0 = Ψ(x0) UM = Ψ(xM ). (4)

In a similar way we treat (3b). Analoguous to ãi, αi, α̃i,
≈
αi, P1 and Q1 we define c̃i,

βi, β̃i,
≈
βi, P2 and Q2, replacing a↔ c and b↔ d.

3 Time discretization
The ODE system (4) is rewritten in a canonical form

∂U

∂t
= L1U + f(U, V )

∂V

∂t
= L2U + g(U, V ) , (5)

where L1 = Q−1
1 P1, L2 = Q−1

2 P2 and U = (U0, U1, . . . , UM )T , V = (V0, V1, . . . , VM )T ,
f(U, V ) = (f(U0, V0), f(U1, V1), . . . f(UM+1, VM+1))T . In this section we study the
stability, consistency and convergence of implicit-explicit (IMEX) time discretization
methods. Let Ωτ = {tj = jτ, j = 0, 1, . . . , N, τ = T/N} be uniform mesh in time.
For the full discretization we consider the following cases:

1. Weight θ-discretization

U j+1 − U j

τ
= (L1U)j,θ + (f(U, V ))j,θ,

V j+1 − V j

τ
= (L2V )j,θ + (g(U, V ))j,θ,

(6)
where W j,θ = θW j+1 + (1− θ)W j , 0 ≤ θ ≤ 1.
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2. IMEX - BDF1 (IMEX backward difference method of order one)

U0(x) = ϕ(x), V 0(x) = ψ(x) ϕ(x), ψ(x)-given,
U j+1 − U j

τ
= L1U

j+1 + f(U j , V j),
V j+1 − V j

τ
= L2V

j+1 + g(U j , V j).

3. IMEX - BDF2 (IMEX backward difference method of second order)

U j(x), V j(x) for j = 0, 1 equal to these computed by IMEX - BDF1 and

3/2U j+1 − 2U j + 1/2U j−1

2τ
= L1(

U j+1 + U j−1

2
) + f(U j , V j) ,

3/2V j+1 − 2V j + 1/2V j−1

2τ
= L2(

V j+1 + V j−1

2
) + g(U j , V j) .

4. CN-LF (Crank-Nicolson Leap Frog)

U j+1 − U j−1

2τ
= L1(

U j+1 + U j−1

2
) + f(U j , V j) ,

V j+1 − V j−1

2τ
= L2(

V j+1 + V j−1

2
) + g(U j , V j) .

We have shown that IMEX-BDF2 and CN-LF are stable and second order accurate
in time, whereas IMEX-BDF1 is stable but only first order accurate.

4 Algorithms for solution of difference equations
This section is concerned with the computational algorithms for the finite difference
systems that arise after the discretizations described in Sections 2,3. The methods
2-4 are easy for implementation (one only have to solve three-diagonal system of
algebraic equations), while the method 1 for θ > 0 requires solving of nonlinear
algebraic systems. We briefly discuss the application of the Newton method on the
problem (2). To apply the classical Newton method the system (5) is rewritten in the
form Φ(Ŵ ) = 0, where Ŵ = [Û , V̂ ] is a vector of length 2(M + 1) . We set Ŵ 0 to be
the numerical solution on the previous time layer t = tj . Then to find the solution on
t = tj+1 we use the iterative process with appropriate stopping rule:

Φ′(Ŵ k)sk = −Φ(Ŵ k), Ŵ k+1 = Ŵ k + sk, k = 0, 1, ... .

We consider problem (2) with parameters a = b = c = d = 1, f(x, t, u, v) = u(1− u−
v) + ξ1(x, t), g = (x, t, u, v) = v(1 − u − v) + ξ2(x, t), where functions ξ1 and ξ2 are
chosen so that the exact solutions is u = e−t sin(πx) and v = e−tx(1−x). The implicit
Euler method gives an error of order O(h4 + τ) and this leads to increasing of the
number of the time layers. So we use also Crank-Nicolson method for the standard
O(h2+τ2) scheme and compact scheme which is O(h4+τ2). The results are presented
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in Table 1. With errN we denote the error in maximum norm on the last time layer
tj = T errN = maxi |UNi − u(xi, T )| . The ratio = errN/err2N and corresponding
CPU time are also produced. The results confirm convergence of fourth order of the
CFDS and the theoretical investigations. The advantage of the proposed numerical
method is clearly seen from the higher accuracy and the shorter CPU time.

Table 1: The errors in maximum norm for the numerical example

Standard scheme O(h2 + τ2) Compact scheme O(h4 + τ2)

M N errN ratio CPU M N error ratio CPU
10 10 3.82 e-03 0.36 10 40 1.36 e-05 - 0.473
20 20 9.11 e-04 4.19 0.94 20 160 8.34 e-07 18.5 1.503
40 40 2.23 e-04 4.08 3.49 40 640 5.19 e-08 16.1 5.354
80 80 5.51 e-05 4.05 8.71 80 2560 3.24 e-09 16.02 25.98
160 160 1.37 e-05 4.02 25
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InterCriteria Analysis of Different Metaheuristics
Applied to E.coli Cultivation Process

Stefka Fidanova,Olympia Roeva

1 Introduction
The InterCriteria Analysis (ICrA) is developed with the goal to receive additional
insight into the nature of the criteria involved and discover on this basis existing
relations between the criteria themselves [2]. It is based on the apparatus of the In-
dex Matrices (IM) [3, 4], and the Intuitionistic Fuzzy Sets [5] and can be applied for
decision making in different areas of knowledge. The approach has been discussed
in a number of papers considering parameter estimation problems. In [7] ICrA has
been applied for the first time in the field of parameter identification of fermentation
processes (FP) models. The ICrA implementation allowed to establish relations and
dependencies between two of the main genetic algorithms (GA) parameters âĂŞ num-
bers of individuals and number of generations, and convergence time, model accuracy
and model parameters. In [6] ICrA is applied to find fundamental correlation between
the kinetic variables of fed-batch processes for E. coli fermentation. In [12] ICrA is
applied to determine relations and dependencies between different model parameters.
FP of bacteria E. coli and yeast S. cerevisiae are examined and six different GA
are applied for the parameter identification. Further, ICrA is applied to explore the
existing relations and dependencies of defined model parameters and GA outcomes
âĂŞ- execution time and objective function value âĂŞ- in case of S. cerevisiae FP
[1] and E. coli FP [10]. Moreover, ICrA is applied for establishing the relations and
dependencies between GAs parameter generation gap and convergence time, model
accuracy and model parameters in case of E. coli FP [11] and S. cerevisiae FP [8].
Finally ICrA is applied to define the relations and dependencies of considered param-
eters based on different criteria referred to various metaheuristic algorithms, namely
hybrid schemes using GA and Ant Colony Optimization (ACO) [9].
Results of these applications of the ICrA proved that in the case of modelling FP
ICrA approach could be very useful. FP are characterized with intricate, non-linear
dynamic and their modelling is a hard combinatorial optimization problem. The
parameter identification is of high importance for modelling process and additional
knowledge about the model parameters relations will be extremely useful to improve
the model accuracy. The information may be used to improve the performance of
the used optimization algorithms. Thus, the relations between model parameters and
optimization algorithm performance will be established.
Encouraging results of these first applications of the ICrA provoke us to use the
method for identifying the relations between parameters of the mathematical model of
an E. coli fed-batch cultivation process. The model parameters are further considered
as criteria in terms of ICrA.
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In this paper we applied the ICrA to establish the basic relations between the parame-
ters in the model of an E. coli fed-batch FP. The existing relations are identified based
on results of a series of parameters identification procedures. The use of meta-heuristic
techniques such as ACO, GA, Bat Algorithm (BA), Fire Fly algorithm (FF), Tabue
Search (TS) and Simulated Annealing (SA), has received more and more attention,
therefore our research is focused on them.
Based on ICrA the obtained results are examined and discussion and conclusions
about existing relations and dependences between model parameters of the E.coli
process and algorithm parameters will be done.

2 Problem Formulation
Let us use the following non-linear differential equation system to describe the E. coli
fed-batch FP [13]:

dX

dt
= µX − Fin

V
X, (1)

dS

dt
= −qSX +

Fin
V

(Sin − S), (2)

dV

dt
= Fin, (3)

where
µ = µmax

S

kS + S
, qS =

1

YS/X
µ (4)

and X is the biomass concentration, [g/l]; S is the substrate concentration, [g/l];
Fin is the feeding rate, [l/h]; V is the bioreactor volume, [l]; Sin is the substrate
concentration in the feeding solution, [g/l]; µ and qS are the specific rate functions,
[1/h]; µmax is the maximum value of the µ, [1/h]; kS is the saturation constant, [g/l];
YS/X is the yield coefficient, [-].
For the model (Eq. (1)-Eq. (4)) the parameters that will be identified are µmax, kS
and YS/X .

Let Zmod
def
= [Xmod Smod] (model predictions for biomass and substrate) and Zexp

def
=

[Xexp Sexp] (known experimental data for biomass and substrate). Then putting
Z = Zmod − Zexp, the objective function is defined as:

J = ‖Z‖2 → min, (5)

where ‖‖ denotes the `2-vector norm [11].
For the model parameters identification we use experimental data for biomass and
glucose concentration of an E. coli MC4110 fed-batch fermentation process.
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3 InterCriteria Analysis
Following [2] and [5] we will obtain an Intuitionistic Fuzzy Pair (IFP) [5] as the degrees
of “agreement” and “disagreement” between two criteria applied on different objects.
We remind briefly that an IFP is an ordered pair of real non-negative numbers 〈a, b〉
such that:

a+ b ≤ 1.

Let us be given an Index Matrix (IM )(see [3]) whose index sets consist of the names of
the criteria (for rows) and objects (for columns). The elements of this IM are further
supposed to be real numbers. We will obtain an IM with index sets consisting of the
names of the criteria (for rows and for columns) with elements IFPs corresponding to
the “agreement” and “disagreement” of the respective criteria.
Two things are further supposed:

1. All criteria provide an evaluation for all objects (i.e. there are no inapplicable
criteria for a given object) and all these evaluations are available (no missing
evaluations).

2. All the evaluations of a given criteria can be compared amongst themselves.

Then when comparing two criteria we determine the “degree of agreement” between
the two as the number of matching components (divided by the length of the vector
for normalization purposes). This can be done in several ways, e.g. by counting
the matches or by taking the complement of the Hamming distance. The “degree
of disagreement” is the number of components of opposing signs in the two vectors
(again normalized by the length). This also may be done in various ways.
In our study there are 5 criteria, the value of the three problem parameters (µmax, kS ,
YS/X), the value of the objective function and the execution time. The objects are the
six proposed methods to solve the problem, ACO, GA, BA, FF, TS, SA. With this
study we find relations between the algorithms performance and their correctness.
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Some numerical experiments about
advection-diffusion problems using finite differences

Mihail Galabov

1 Introduction
This work contains numerical experiment about advection–diffusion problem due to
the problem of groundwater flow and contaminant transport. The main function in-
vestigated here is the concentration of some pollutant distributed in the groundwater.
The transformation to a finite differences model using central differences is presented.
The partial derivative by time in the mathematical model gives us the opportunity to
make steps by the time. The process is non-stationary. The numerical results show
the evolution of the process in time starting from some initial distribution.
The specific task reported in this paper is on a numerical model for a dispersion prob-
lem with constant tensor of the coefficient of hydrodynamic dispersion and constant
number of porosity.

2 The Mathematical Problem
For the range, defined of the two independent variables, time (t ∈ b0, Tcc) and
spacex ∈ b0, Lcc), we have the following model:

∂c

∂t
=

∂

∂x

(
D
∂c

∂x

)
c(x, 0) = f(x) (1)
∂c

∂x
(0, t) =

∂c

∂x
(Lc, t) = 0,

where c(ct) is the concentration of the substantion [c] = M
L2 , and [D] = L2

T is the
coefficient of hydrodynamic dispersion.

3 Dimensionless variables
From now on we will use the following constants and variables:

• Lc – the length of space interval;

• Tc – the characteristic time;

• Sc – the face of the cylindrical surrounding around the x–axis;
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• Qc – the sum of the mass of the substance, whose concentration c we investigate,
and

• Vc – the characteristic velocity, which has an influence over the coefficient of
hydrodynamic dispersion.

For the independent variables x and t we have the following dimensionless equivalents:

•

x =
∂x

Lc
x ∈ [0, 1];

(2)

t =
∂t

Tc
t ∈ [0, 1];

•
c =

∂c

Qc
.Sc.Lc, (3)

where Qc =
∫ Lc

0
c.Sc doverlinex is the whole mass of the substance, whose

concentration is being investigated.

•
D =

D

Vc.Lc
.Sc.Lc (4)

(D is the dimensionless coefficient of hydrodynamic dispersion )

After the appropriate transformations in (1), we have the following dimensionless
model:

∂c

∂t
= k1

∂2c

∂x2
, (5)

where
k1 = D.V.

Tc
Lc

= D
Tc
L2
c

=
1

Pe

is dimensionless constant; x ∈ [0, 1] and t ∈ [0, 1] are the two dimensionless inde-
pendent variables, and c(x, t) is the dimensionless concentration of the investigated
substance, which is the quotient between the concentration at a certain point and the
mean concentration for the whole volume. The corresponding boundary conditions of
(1) are transformed to

∂c

∂x
(0, t) =

∂c

∂x
(1, t) = 0, (6)

and the corresponding initial condition of (1) is transformed to

c(x, 0) = f(x). (7)
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Moreover, the following formulas are true:

c =
Qc
Sc.Lc

;

∫ Lc

0

c(x) =
Qc
Sc

;∫ 1

0

c(x)dx = 1. (8)

4 Finite Differences Problem
Let us introduced the usual equidistant two dimensional grid in Ω = [0, 1] × [0, 1],
where:

• (i, k) = (i.∆x, k.∆t);

• i = 0, 1, . . . , N ; k = 0, 1, . . . , P ;

• ∆x = 1/N ∆t = 1/P ;

• N is the number of the space intervals and P is the number of the time intervals.

Let us ck1 = c(i.∆x, k∆t), where c(x, t) is the dimensionless function of the concen-
tration.
Having the introduced grid of points and using (5), (6) and (7), we have the following
finite differences problem:

cki − c
k−1
i

∆t
= k1.

cki−1 − 2cki + cki+1

(∆x)2
i = 1, 2, . . . , N − 1, k > 0. (9)

The following four–point pattern is used:

(i− 1, k) (i, k) (i+ 1, k)
(i, k − 1)

For i = 0, k > 0, taking into account (6), assuming that c(i− 1)k = cki and applying
(9), we get:

cki − c
k−1
i

∆t
= k1.

−cki + cki+1

(∆x)2
i = 0, k > 0. (10)

The following pattern with not existing left point is used:
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(−1, k) (0, k) (1, k)
(0, k − 1)

Similarly for the case i = N, k > 0, we have:

cki − c
k−1
i

∆t
= k1.

cki−1 − cki
(∆x)2

i = 0, k > 0. (11)

The following pattern with not existing right point is used:

(N − 1, k) (N, k) (N + 1, k)
(N, k − 1)
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Denoising 2D CT Radiographic Images

Stanislav Harizanov, Ivan Lirkov, and Ivan Georgiev

1 Introduction
Accurate 3D Computed Tomography (CT) reconstruction of microstructures has nu-
merous applications and is crucial for future realistic numerical simulations of the
material’s macro characteristics. It is also a quite complicated task, due to the pres-
ence of noise in the image. For example, directly segmenting the noisy 3D CT image is
not reliable for porous data where standard algorithms may not be able to reconstruct
even up to 50% of the material voxel data, thus important quantities (e.g., absolute
porosity, average pore size, size and shape of individual pores) which determine its
properties are completely miscomputed.
In this short communication, we focus on a single 2D radiographic projection of a CT
data. We experimentally verify that Poisson noise indeed appears, has a dominant
role in the image noise distribution, and we use the algorithm from [1] for denoising.

2 Poisson-Gaussian noise
To create a radiographic image, the tomograph projects a heterogeneous beam of X-
rays towards the object of interest, which is partially absorbed by the object, while the
rest is captured behind by a flat panel detector. The gray-scale intensity of each image
pixel is proportional to the calculated X-ray amount at the corresponding part of the
detector. In such particles-counting processes, errors due to detector’s miscalculations
inevitably occur. They are statistically modeled by Poisson distribution. If ūi ∈
N ∪ {0} is the exact X-ray amount that should be detected at pixel i, the truly
detected amount is a realization of a Poisson random variable fi = P(ūi)

Pr(fi = k) = e−ūi
ūki
k!
,

with expected value ūi. On the top of that, there is an additive Gaussian read-out
noise ηi ∼ N (0, σ2) with zero mean and standard deviation σ, independent of the
intensity ūi. Therefore, the recorded radiographic image u is usually corrupted by a
mixed Poisson-Gaussian noise

u ∼ P(ū) +N (0, σ2). (1)

3 Experimental results
We considered a porous geopolymer of cubical shape and, using the industrial tomo-
graph Nikon XT H 225, we recorded a series of radiographic images of fixed position
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of the specimen, namely eight single-frame u(1)
n (n = 1, . . . , 8), and one (averaged)

2n-frame u(2)
n (n = 1, . . . , 11) images. The images are in 8-bit gray-scale bitmap

format, meaning that the pixels intensities are integers between 0 and 255. If we
assume σ2 � 255 and that Poisson and Gaussian noise components are independent,
we estimate the expected value and variance of (1)

E
(
P(ū) +N (0, σ2)

)
= ū; V ar

(
P(ū) +N (0, σ2)

)
= ū+ σ2 ≤ 256.

Then, the Gaussian noise contribution is negligible and we can use the least-squares
Anscombe Transformed algorithm from [1] for image reconstruction. Moreover, ap-
plying the Central Limit Theorem (CLT) to the 2048-frame image u(2)

11 we deduct
√

211
(
u

(2)
11 (i)− ūi

)
∼ N (0, ūi + σ2) =⇒

Pr

(∣∣∣u(2)
11 (i)− ūi

∣∣∣ < 1

2

)
≥ Pr

(
32
√

2
∣∣∣u(2)

11 (i)− ūi
∣∣∣ < √2

√
ūi + σ2

)
≈ 84.2%

for every pixel i = 1, . . . , N in the image domain. Due to the 8-bit formatting,
the entries of u(2)

11 are rounded to the closest integer, thus more than 84% of them
are expected to coincide with those of ū, while more than 99.73% are expected to
be within a unit margin from them. These statistical results were experimentally
confirmed, since when two different 2048-frame images were compared we got 76.2%

exactness, and 99.85% unit-margin-closeness, respectively. Therefore, u(2)
11 is a close

approximation of the original image ū and we can use it for quantifying the quality
of our denoising process.
In the experiments, we used the constraint∥∥∥∥2

√
v + 3/8− 2

√
u

(1)
n + 3/8

∥∥∥∥2

2

= #of pixels =: N

for the mathematical model, and we measured PSNR and MAE of the denoised images
v

(1)
n , n = 1, . . . , 8 via

PSNR = 10 log10

∣∣maxu
(2)
11 −minu

(2)
11

∣∣2
1
N ‖v − u

(2)
11 ‖22

, MAE =
1

255N

∥∥∥u(2)
11 − v

∥∥∥
1
.

Results are summarized in Table 1. For all the single-frame images u(1)
n we witness

similar PSNR and MAE values. Moreover, the least-squares (LSQ) ratio∥∥∥∥2

√
u

(1)
n + 3/8− 2

√
u

(2)
11 + 3/8

∥∥∥∥2

2

N
≈ 1, ∀n = 1, . . . , 8,

is also very stable with values almost 1. Both the results strongly support the validity
of our assumption on the dominant role of the Poisson noise in the noise distribution
and its corollary u

(2)
11 ≈ ū. Since P(λ) + P(λ) ∼ P(2λ) and LSQ is practically 1-

homogeneous (the fraction 3/8 plays no role for large enough gray-scale intensities),
as long as the Poisson noise remains dominant, the LSQ ratios for the averaged 2n-
frame images should be in vicinity of 2−n. This is indeed the case for n ≤ 5, so we
can experimentally conclude that in our CT setup σ2 ≈ 256

26 = 4.
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PSNR MAE LSQ ratio
u

(1)
n v

(1)
n u

(2)
n u

(1)
n v

(1)
n u

(2)
n u

(1)
n u

(2)
n

31.7054 38.1831 34.6291 0.0192 0.0080 0.0136 0.9970 0.4824
31.7314 37.8224 37.5529 0.0191 0.0082 0.0097 0.9881 0.2439
31.7171 38.1628 40.3758 0.0191 0.0079 0.0069 0.9900 0.1263
31.7126 38.1696 43.0911 0.0192 0.0080 0.0050 0.9923 0.0670
31.7370 38.1945 45.5668 0.0191 0.0078 0.0036 0.9854 0.0375
31.7340 38.2373 47.7526 0.0191 0.0079 0.0027 0.9895 0.0227
31.7288 37.5848 49.5081 0.0191 0.0081 0.0021 0.9787 0.0152
31.7212 38.1566 50.9980 0.0191 0.0079 0.0016 0.9919 0.0111

Table 1: Summary of the quantitative characteristics of the experiments.

An illustration that Poisson pdf is the right statistical tool for modeling noise dis-
tribution in particle-counting processes is given in Fig. 1. In the middle we plot the
intensity distribution of the true image background. We see, that in practice the
background is not constant, as one expects but still most of the intensities are around
235, which we take as default value. The right histogram, together with the difference
image in Fig. 2 confirm the observation in [2] that our denoising method tends to over-
smooth the image and that around sharp edges high-intensity pixels gave away part
of their intensity to the neighboring low-intensity pixels. The maximal background
intensity of v(1)

n is only 230, the second peek in the histogram as well as the con-
trasted edges in the difference image correspond to the “intensity transfer”. Around
the upper vertices of the cube, additional artifacts (probably due to illumination or
sensor noise) appear, resulting in highly unstable intensity measuring for those two
pixels (even the two 2048-frame images differ there with 10 units). Finally, the pores
of the material are visible on the difference image, unlike on all the other images.
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Figure 1: Histograms of: Left: ∪u(1)
n

∣∣
u
(2)
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; Middle: u
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11 (i) > 128; Right:
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n
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u
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.
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Figure 2: Left: Single-frame image u
(1)
1 (top), Denoised image v

(1)
1 (bottom).

Right: 2048-frame image u(2)
11 (top), Difference image v(1)

1 − u(2)
11 (bottom).
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Metadynamics of Large Proteins with Collective
Variables Preselection by a Spatiotemporal

Multistage Consensus Clustering

Nevena Ilieva, Elena Lilkova, Peicho Petkov, and Leandar
Litov

1 Introduction
Protein-protein interactions play a fundamental role in many biochemical processes.
The development of different analytical tools for their investigation is a central prob-
lem in proteomics. Molecular dynamics (MD) [1] provides often experimentally unac-
cessible information for the equilibrium and transport properties of such biocomplexes
that justifies the MD simulations status as in silico experiments. Despite the rapid
increase in the computation power in last years, the attainable time range for large
biosystems remains limited to microseconds on dedicated powerful supercomputers,
which rises the question for the adequacy of the conformation space sampling, needed
in turn for obtaining reliable macro parameters and observable quantities from the
microscopic MD data.

2 Materials and Methods
Metadynamics
In many long time-scale processes involving transitions with high free energy barriers
or large-scale molecular rearrangements conventional MD sampling techniques ren-
der inefficient [2], thus necessitating the development of various enhanced sampling
techniques. Metadynamics [3] is such a powerful advanced technique for studying
multidimensional free energy surfaces (FES) of complex systems by a non-Markovian
dynamics in the collective variables (CVs) space. The key to its success is the exis-
tence of a mapping of the history-dependent dynamics into a Markovian process in
the original variables, at least for evolutions of the Langevin type [4].

hIFNγ Mutated Forms
Interferon gamma (IFNγ) (Fig.1) is an important cytokine, which plays a key role
in the formation and modulation of immune response (for a review, see, e.g. [5]).
Its abnormal expression is associated with the etiology of many autoimmune dis-
eases (multiple sclerosis, alopecia areata, autoimmune uveitis, myasthenia gravis,
post-transplant arteriosclerosis, etc.). hIFNγ is recognized by its own species-specific
receptor (hIFNγR). Introduction of stable inactive analogies of the cytokine with mu-
tations in the residues, which do not take part in receptor recognition, but are involved
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in the signaling pathway — residues from the NLS, i.e. residues Lys86-Lys-Lys88,
might help blocking the hIFNγ excessive biological activity.

Spatiotemporal Multistage Consensus Clustering

Figure 1: Secondary structure of hIFNγ,
with indicated binding (green) and muta-
tion (yellow) sites.

The MD-data analysis is based on ini-
tial fitting procedures, aiming at sepa-
ration of the global movements of the
biomolecules from the relative move-
ments and deformations of their con-
stituents, which are relevant for the in-
vestigated molecular features, processes
or mechanisms. The results of this anal-
ysis strongly depend on the fitting proce-
dure, the reference conformation and the
fitting domain. The presence therein of
even small very flexible parts can con-
tribute significantly to the RMSD val-
ues and thus compromise the fitting.
For identifying of semi-rigid domains we
use a multistage consensus clustering
(MCC) algorithm [6], based on the vari-
ation of distances between pairs of Cα-atoms as the target function

q(c) =

k∑
m=1

N∑
i=1

N∑
j=1

cimcjmSij → min (1)

Here cim is the claster-membership coefficient of atom i in cluser m, for N atoms and
k clusters. The standard deviations of distances dij between atom pairs (i, j) along a
given trajectory are contained in the STDDV matrix

Sij =

√
L

L− 1
〈(dij − 〈dij〉)2〉 , (2)

where L is the number of frames (conformations) considered and the average is taken
over the whole or a part of the trajectory.

3 Proof-of-Concept Protocol
The reliability of metadynamics strongly depends on the choice of the CVs, which
should meet a number of important criteria, in particular, the set of CVs should be
able to clearly distinguish between the initial and the final state and preferably the
intermediates. Ideally, the CVs should describe all the slow events that are relevant to
the investigated process. The CVs must be explicit functions of the coordinates of the
particles of the system and their number should be small. In most cases, finding a good
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Figure 2: Free energy surface of the calibration proteins.

set of CVs is a complicated task. There is no a priori prescription for identification of
a suitable set of CVs and the trials-and-errors remains the most common approach,
which is computationally very expensive, especially for large biomolecular systems.
We aim at developing a CV selection protocol based on the rigidity of the protein
conformation in the most sensitive for the investigated process domains. The struc-
ture identification is performed by means of multistage consensus clustering 2, with
adequate selection of the cluster size and rigidity/flexibility parameters.

Table 1: Parameters of the calibration proteins.

Amino acid Local RMSD ∆G Antiproliferative
sequence in secondary [kCal/mol] [kCal/mol] activity
aa 86–88 structure [IU/mg]

Lys-Lys-Lys α-helix 0.00 16.3 5 ×107

Val-Leu-Leu α-helix 0.12167 > 20 1.1 ×105

Asp-Leu-Leu unfolded 0.16 > 20 none

For the selection protocol development and calibration, we have chosen three protein
structures — the hIFNγ wild type and two derivative proteins out of 100 random
mutations between amino aids 86-88. These were taken as representative examples
for preserved, resp. destroyed structure and activity, compared to the wild type. Con-
clusions were based on unguided metadynamics analysis of the FES in the parameter
space of Lys 86 backbone twist angles and antiproliferative activity competition bioas-
says [7, 8], the corresponding data being shown in Table 1. RMSD refers to the root
mean square deviation between the mutant and the wild-type FES in the α-helical
region of the plot and ∆G characterizes the height of the FES barrier between the
α-helical and the extended-conformation regions.

2https://snowball1108@bitbucket.org/BioSimVienna/multistage-clustering.git
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4 Discussion
Biomolecular processes having long characteristic times and involving large-scale spe-
cial rearrangement of many atoms are still challenging to simulate. Advanced sam-
pling techniques as metadynamics now allow such phenomena to be studied more
efficiently, but their successful application depends strongly on the choice of the
collective variables. We base our CV choise on the rigidity of the relevant for the
investigated process domains of the biomolecule, identified by optimized multistage
consensus clustering. In the calibration examples, this turns out to be the lowest-
rigidity cluster in the binding-site domain, with an attempted CV choice (compare
Fig.2) — dihedral angles of its central amino acid. The protocol will be applied in
studying the hIFNγ binding to its receptos, where all intuitive CV choices are known
to have failed simulating the process.
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Multistage Techniques for Protein Folding
Disentanglement and Analysis

Nevena Ilieva, Jiaojiao Liu, Peicho Petkov, Jianfeng He, Antti
Niemi

1 Introduction
The protein folding problem endures as one of the most important unresolved prob-
lems in science. Despite the Anfinsen’s dogma, it is still not possible to predict the
3D structure of an arbitrary protein from its primary structure (aminoacid sequence).
We aim at developing a next generation, computationally effective precision multi-
scale approach to predict the structure and to model the dynamics of proteins from
their amino acid sequence. To this end, we intertwine stochastic and determinis-
tic steps, substantiated in MCMC (Markov chain Monte Carlo) and MD (molecular
dynamics) approaches.

2 Combined MCMC/MD Approach

By far the most ambitious computational approach to the protein folding problem is
based on classical molecular dynamics (MD) [1]. With a solid conceptual foundation
in established laws of physics, MD is a very powerful method for de novo and even
ab initio modeling of protein folding, able to deliver the physical evolution of the
protein configurations. Due to the various energy barriers in the energy landscape
the system tends to explore a vicinity of the initial-state region and might get trapped
in a potential well.
Prior to MD, computer simulations of many-body systems with a very large number
of accessible states were carried out within the Monte Carlo approach. The MC-based
methods (e.g., the MCMC Metropolis method [2]) are stochastic in nature and rely on
importance-weighted random walk in the configuration space. MC methods are not
suitable for studying time-dependent phenomena or momentum-dependent properties
but give better coverage through tunneling between energetically separated regions.
The approach we propose for modeling protein folding and dynamics, builds on com-
plementarity of these two methods. We monitor the evolution of the protein geometry
using Frenet frames at the positions of protein Cα atoms. In our model, the protein
geometry is described in terms of virtual bond and torsion angles κi and τi, as the
complete set of structural order parameters

κi+1,i ≡ κi = arccos(ti+1 · ti) (1)
τi+1,i ≡ τi = sign[(bi−1 × bi) · ti] arccos(bi+1 · bi), (2)
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where (ti,bi,ni) are the unit backbone tangent, binormal and normal vectors.
The modular building blocks of a folded protein can be described in terms of the
kink solution of a generalized discrete non-linear Schrödinger equation (DNLS), en-
coding the minimum energy configuration of an effective free energy that models the
thermodynamics of the protein (for details, see [3]).

F =

N∑
i=1

{
λ (κ2

i −m2)2 +
q

2
κ2
i τ

2
i − p τi +

r

2
τ2
i + . . .

}
+

N−1∑
i=1

(κi+1 − κi)2 + . . . (3)

Eq.(3) represents the most general Landau free energy in terms of the chosen angular
variables, which is consistent with the invariance of the backbone geometry under
local rotations in the (ni,bi)-plane. The kink is non-perturbative and is stable against
small perturbations. Thus this concept provides an effective tool for exploration of
complicated free-energy surfaces. The formation of super-secondary structures during
the protein folding then can be understood in terms of a Bloch domain wall that forms
along a Heisenberg spin chain, or along a closely related XY spin chain [4].
Based on these observations, we stage the folding simulation as follows:

1. A set of conformations is obtained by initial Markovian Monte Carlo time evo-
lution with the standard, universal heat bath probability distribution [5];

2. The originating structures are clustered acording to the modular parameters;

3. Cluster representatives are subjected to all-atom MD simulations;

4. Resulting structures are investigated for stability, soliton content and certain
patterns in the conformational changes;

5. If certain convergence requirements are met, the folding is completed; otherwise
the whole procedure is repeated.

3 Example: Myc protein
Myc is a multifunctional nuclear phosphoprotein that can drive cell cycle progression,
apoptosis and cellular transformation. Deregulation of Myc has been implicated in
the development of many human cancers, including BurkittâĂŹs lymphoma, neurob-
lastomas, and small cell lung cancers. The structure in Protein Data Bank has a PDB
ID 1NKP [6]. We shall focus on chain A, the segment Val901 – Glu979.
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Figure 1: (a) Curvature (red) and torsion (black), of 1NKP
chain A; (b) Experimental (grey) vs. modelling (red) 4-
kink segment in trace representation, RMSD = 1.5628Å.

The energy function (3)
was trained with the X-
ray data for 1NKP and
then subjected to heat-
ing and cooling simula-
tions, the whole cycle
encompassing 107 MC
steps. The simulations
and the structure model-
ing were performed with
the packages ProPro and CurveUI 3. The (κ, τ) spectrum of the X-ray structure and
the comparison with the 4-kink solution are shown in Fig. 1.

Figure 2: (a) Distribution of the final conformations in a 3D parameter space; (b)
Clustering according to end-to-end distance and gyration radius; (c) Superimposition
of X-ray structure (red) and the representatives of clusters [1] (blue) and [5] (green).

We selected the centroids of the biggest cluster [5] (with 161 structures) and third
biggest, but furthest cluster [1] (47 structures) as initial structures for 50ns MD simu-
lations performed with the GROMACS 4.6.3 package [7], with Gromos53a6 force field,
with a time step of 2 fs. We used periodic boundary conditions at salt concentration
of 0.15 mol/l and temperature 290 K, supported with Berendsen thermostat in the
equilibration phase and v-rescale thermostat in the production run. The pressure
was kept constant with Berendsen barostat, changed to Parrinello-Rahman in the
production run, both changes aiming to ensure the generation of a proper canonical
ensemble. The coordinates were recorded every 2 ps, giving rise to 2500 frames. The
snapshots in Fig. 3(a) demonstrate the coherence of the three different samplings.

4 Discussion
The Myc-protein example can be considered as a proof-of-concept study for the en-
visaged multi-scale protocol for simualtion and analysis of the protein folding process.
This protocol allows for accelerated exploration of the conformation space and faster
convergence to the biological fold. We observe practical identity (within the experi-
mental error) between the centroid of the biggest MC cluster and the experimental

3http://www.folding-protein.org
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Figure 3: (a) Snapshots of shared conformatuions between PDB structure and cluster
[5] in the 17.3 ns, and clusters [1] and [5] in the 7.2 ns; (b) RMSD of the Cα atoms
in the selected structures along the MD trajectory.

(biological) fold. The MD evolution confirms the uniformity of the two structures.
The third biggest (and furthest) cluster does not resemble the biological, however it
shares evolution states with the successful fold, which shows that the two sample the
same conformation space. This might be a signature for the existence of other stable
or quasi-stable folds. A convergence criterion should distinguish between these two
options and should also account for the exceptions from the Anfinsen dogma.
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Preconditioning of Flows in Heterogeneous Porous
Media with High Contrast Permeability

G. Kanschat, R. Lazarov, and Y. Mao

Mathematical models of flows in porous media have been used in various industrial
applications such as oil and water reservoirs, food processing, batteries, etc as well as
heat and mass transfer and transport.
Such applications have motivated research in design of numerical methods and algo-
rithms for simulation of fluid flows in highly heterogeneous porous media. At pore
level, the Reynolds number is small due to the small reference length and flows of
incompressible fluids can be modeled by Stokes equations. On field-scale, fluid flows
in porous media have been modeled mainly by mass conservation equation and by
Darcy’s law ∇p = −µK−1u between the macroscopic pressure p and velocity u, which
we write down on the form ∇p = −κ(x)u. Here K(x) is the media permeability and
µ is the fluid viscosity.

Figure 1: Left: CT scans of industrial foam on a micro-scale; Center: computer
generated 3-D permeability of benchmark SPE10; Right: slice 44 of of SPE10 [7]

Many porous media are characterized by very low solid volume fraction (or high
porosity), e.g. fractured or vuggy reservoirs, mineral wool, and industrial foams, (cf.
Figure 1: Left). For such media the porosity could be as high as 95 – 98 %. For
such highly porous media and Darcy’s law often does not give good agreement with
the experimental data. In order to reduce the deviations between the measurements
for flows in highly porous media and the Darcy-based predictions, Brinkman in [2]
introduced a new phenomenological relation between the fluid velocity u and the
pressure gradient: ∇p = −κ(x)u + µ∆u. Together with conservation of mass, which
in the absence of any mass sources or sinks is expressed by ∇ · u = 0, Brinkman
equations and proper boundary conditions form a closed mathematical model.
An important characteristic is the contrast of the media κ, defined as the ratio between
the highest and lowest values of the permeability, κ = maxx∈ΩK(x)/minx∈ΩK(x).
The problems we consider in this paper involve K(x) that varies substantially on a
small scale, corresponding to high frequency and high contrast media.
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Design and testing of multiscale numerical methods for Darcy and Brinkman equations
was done, for example, in [3, 6] and [5], respectively. These methods could be used
either (1) as a stand-alone numerical upscaling procedure that involves fine and coarse
grids or (2) as robust (with respect to the high contrast media properties) iterative
solvers for the finite element approximation on a very fine mesh. The robustness of
the upscaling method is achieved via special construction of a coarse grid space that
includes patched together eigenfunctions corresponding to the smallest eigenvalues of
properly weighted local spectral problems [4, 5]. Such approximation and solution
methods are based on some recent advances in discontinuous Galerkin finite element
methods (e.g. [3, 5]) and multiscale finite element method (e.g. [6]) and the solution
strategies for solving the corresponding algebraic systems, [4, 5, 12].
Here we present a unified approach for approximation and solving the Brinkman/Dar-
cy flow equations by Hdiv-conforming Raviart-Thomas mixed finite elements. The
discretization is done on fine meshes resolving meso-scale heterogeneity of the media.
For example, in our computations certain media are discretized on a mesh with 256d

or 512d (d = 2, 3 is the space dimension) cells/voxels. Discretization on such grid
results in a very large algebraic saddle point problem which is ill-conditioned due to
both, the small mesh-size and high contrast κ. The numerical simulation of processes
in media of high frequency and high contrast represent a great challenge for the com-
putational practice. In our opinion, its efficient preconditioning is not fully mastered
yet. In the talk we present a step in this direction, namely, multi-grid preconditioner
of Brinkman/Darcy system that uses a smoother based on overlapping domain de-
composition technique (e.g. [8, 11]). It is based on the work of Arnold, Falk, and
Winther, [1] for preconditioning systems involving Hdiv-norm.
The proposed preconditioner is based on a monolithic multi-grid framework that
operates on the saddle point system directly. This differs from the block diagonal
preconditioner developed in [10] for Darcy model. We have compared the performance
of these two methods on permeability field generated by slice 44 of SPE10 benchmark,
see Figure 1 (Right). The total number of iterations in the minimal residual method in
[10] is slightly less than the iterations of our method. However, within each iteration
the method, to invert the block corresponding to the weighted Hdiv-norm, the method
in [10, Tables 12 and 13] uses in average 6 inner multilevel iterations. Nevertheless,
the computational complexity of both methods is similar and experimentally they
both show robustness with respect to the high contrast in the case of Darcy flows.
In the talk we shall also discuss:
(1) A unified solution methodology for computer simulation of flows in porous media
modeled by Darcy and Brinkman equations. Using this methodology, one may set
up natural experiments with highly heterogeneous media in order to compare and
analyze the numerical simulations in the framework of a mathematical modeling tool.
(2) Experimental testimony of the efficiency of the developed preconditioner for solv-
ing very large systems of linear equations arising from the finite element approximation
of the Darcy and Brinkman equations and demonstration (via various tests) of robust-
ness with respect to both, the mesh step-size and the high contrast high frequency
porous media. Our numerics shows that the proposed preconditioner is efficient and
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robust with respect to the contrast in Brinkman flows. However, we see increase of
the number of iterations when the contrast grows, e.g. for growth of contrast from
104 to 106 the number of GMRES iterations increases 2.5 times.
(3) Various two- and three-dimensional numerical test problems that are used by flow
in porous media community in order to demonstrate the capabilities of numerical sim-
ulation methodology for relevant applications. As a modeling tool, these numerical
experiments also show the difference in the flow intensity (pressure and velocity) pro-
duced by Darcy and Brinkman mathematical models. As seen from Figure 2, the flow
patterns are quite similar but the velocity fields obtained by Darcy and Brinkman
models differ significantly.

(a) Darcy: u1 (b) Darcy: u2 (c) Darcy: p

(d) Brinkman: u1 (e) Brinkman: u2 (f) Brinkman: p

Figure 2: Solutions of 2-D Darcy (first row) and Brinkman (second row) models for
permeability data of slice 44 in the same color scale
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Numerical penalization algorithms for pricing
American options

Miglena N. Koleva, Radoslav L. Valkov

The pricing of early-exercise securities is important in quantative finance because
these are the most widely-traded type of instruments on the derivative market. The
American-style option valuation is an illustrative example of an optimal stopping time
problem which could be further formulated as a parabolic variational inequality.
Let S stand for the underlying asset price process, following a standard geometric
Brownian motion with volatility σ and drift equal to the interest rate r while t is the
time to maturity. For computational purposes one must truncate the spatial domain
S ∈ [0,∞) and introduce the far field boundary location Smax. For clarity we consider
pricing a put with strike K and the following conditions on the parabolic boundary:

V (S, 0) = V ∗(S) := max(K − S, 0), V (0, t) = K, V (Smax, t) = 0.

A rule of the thumb says "Smax is a few times the strike price K". The American put
is a classical Stefan problem where the payoff is convex, continuous but nonsmooth.
The option value with maturity T satisfies the parabolic variational inequality

LV (S, t) := Vt−
1

2
σ2S2VSS−rVS +rV ≥ 0 ⊥ V (S, t) ≥ V ∗(S) a.e. in (0,∞)× [0, T )

which could be written down as the following linear complementarity problem (LCP){
LV (S, t) = λ ≥ 0,
V (S, t)− V ∗(S) ≥ 0, LV (S, t) · (V (S, t)− V ∗(S)) = 0

From the complementarity condition

V ≥ V ∗, λ ≥ 0, λ · (V (S, t)− V ∗(S)) = 0

we infer for the Lagrange multiplier

λ = max
(
0, λ+ ε−1(V ∗ − V )

)
for any sufficiently small (penalty) parameter ε > 0. Thus, we get to solve the follow-
ing nonlinear equation, equipped with the complementarity condition and drawing
analogies with the augmented Lagrangian method:

LV (S, t)−max
(
0, λ+ ε−1(V ∗ − V )

)
= 0.

Superimposing infinite penalty when violating the constraint V (S, t)− V ∗(S) ≥ 0 we
may embed the LCP in the family of the nonlinear equations

LVε(S, t)−max
(
0, ε−1(V ∗ − Vε)

)
= 0. (1)
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The penalty method guarantees in an asymptotic sense the fulfilment of constraints
by including in the objective function an additional penalty term. If we consider the
upper bound on the multiplier Λmax we may state the following approximation, see
[1]:

LVε(S, t)−max
(
0,Λmax + ε−1(V ∗ − Vε)

)
= 0. (2)

There are, however, some issues with this approach since the early exercise constraint
is not strictly satisfied by the solution for fixed small ε while the penalty term is
nonsmooth and unbounded. The following interior approximation aims to tackle
these drawbacks with C ≥ rK for pricing the American put, cf. [2],

LVε(S, t)−
εC

Vε + ε− (K − S)
= 0 (3)

where the general interior penalty method, applicable to any type of payoff, is

LVε(S, t)−
εC

Vε + ε− V ∗
= 0. (4)

[4] prove convergence of the penalized solution Vε to the solution of the underlying
variational inequality V . However, a major issue with this approach is its dependence
on ε and some vague parameter C, resulting in overall lower accuracy and more
Newton iterations per time level.
We therefore consider modifying this interior barrier method in order to enhance the
performance. Let us set up the fully-discrete LCP in order to present our considera-
tions in a clear and concise manner. First, by the method of lines, we define a smooth
nonuniform spatial grid and approximate the spatial derivatives by second-order finite
difference formulas. After backward Euler time discretization with step ∆t we have
to solve the following discrete linear complementarity problem for Un ∈ Rm−1{

(I −∆tA)Un = Un−1 + ∆tg + ∆tλn
λn ≥ 0, Un ≥ U0, λn · (Un − U0) = 0,

where A ∈ R(m−1)×(m−1) stands for the spatial discretization matrix, g ∈ Rm−1 is
the boundary information (assuming Dirichlet conditions on the elliptic boundary)
and λn ∈ Rm−1 is the nonnegative auxiliary (multiplier) vector which satisfies

λn = max

(
0, λn +

1

∆t
(U0 − Un)

)
.

The solution Un of the discrete LCP is the saddle point of the Lagrange functional

Λ(Un, λn) =
1

2
(I −∆tA)Un · Un − bn · Un −∆tλn · (Un − U0), bn := Un−1 + ∆tg.

Let us now observe the following equivalence [3]

Un − U0 ≥ 0⇔ ε log
(
1 + ε−1(Un − U0)

)
≥ 0

46



Figure 1: Put Option Value and Free Boundary
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and further we shall modify the Lagrange functional accordingly

Λ(Un, λn) =
1

2
(I −∆tA)Un · Un − bn · Un −∆tλn · (ε log

(
1 + ε−1(Un − U0)

)
).

After applying the Karush-Kuhn-Tucker conditions we get the following discrete LCP:{
(I −∆tA)Un −∆tλn

ε
Un−U0+ε = bn

λn ≥ 0, Un ≥ U0, λn · (Un − U0) = 0.
(5)

As a matter of fact, if we consider the fairly rough estimate for the multiplier λn ≤ rK
in the put case we get the discrete interior penalty method Eq. (4):

(I −∆tA)Un −∆t
rKε

Un − U0 + ε
= bn.

Substituting U0 = max(K − S, 0) with K − S as in Eq. (3) is a band-aid for the case
of put option to fix the accuracy and minimize the penalty term in the continuation
region where S > K, far away from the free boundary.
This paper is focused on comparing numerically the known penalty methods and the
newly proposed modified barrier approach. We present numerical algorithms for the
modified exterior and interior methods with the aim to investigate their properties in
detail. These perform well, showing reliable and efficient results on Figure 1.
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Optimal System of Strengthening Ties for the
Seismic Upgrading of RC Structures Environmentally

Degradated: A Computational Approach

Angelos Liolios, Konstantinos Liolios,
Krassimir Georgiev, and Ivan Georgiev

In Civil Engineering, non-usual extremal actions (seismic, environmental etc.) can
cause significant strength degradation and damages on existing reinforced concrete
(RC) structures. To overcome such strength degradation effects, various repairing
and strengthening procedures can be used for the seismic upgrading of existing RC
buildings [1, 2, 3]. Among them, cable-like members (ties) can be used as a first
strengthening and repairing procedure [4]. These cable-members can undertake ten-
sion, but buckle and become slack and structurally ineffective when subjected to a
sufficient compressive force. So, in the mathematical problem formulation, the consti-
tutive relations for cable-members include also inequality conditions. Such inequality
conditions govern also the piece-wise linearized constitutive relations describing the
non-linear behavior of the usual RC structural elements. Due to above considera-
tions, the full problem of the earthquake response of RC structures strengthened by
cable-elements bracings has as governing conditions both, equalities as well as inequal-
ities. Thus the problem becomes a high nonlinear one. For the strict mathematical
treatment of the problem, the concept of variational and/or hemivariational inequal-
ities can be used and has been successfully applied [5]. As concerns the numerical
treatment, non-convex optimization algorithms are generally required cite[6, 7]. The
present study deals with two numerical approaches for the earthquake analysis of
existing reinforced concrete (RC) building frames, which after their seismic assess-
ment have to be strengthened by cable elements. The unilateral behaviours of the
cable-elements and the non-linear behavior of the RC elements, are taken strictly into
account and result to inequality constitutive conditions. The finite element method is
used for space discretization in combination with a time discretization scheme. First,
the RC frame structural system is discretized in space by using finite elements. The
usual frame elements are used for the reinforced concrete frame. On the other hand,
for the cable strengthening system, pin-jointed bar elements are used. The behaviour
of both, the cable elements and the non-linear RC elements, includes loosening, elasto-
plastic or/and elastoplastic-softening-fracturing and unloading - reloading effects. All
these characteristics can be expressed mathematically by non-convex relations of the
general form:

si(di) ∈ ∂̂Si(di) (1)

Here si and di are generalized stress and deformation quantities, respectively, ∂̂ is
the generalized gradient and Si is the superpotential function, see Panagiotopoulos
[5]. In specializing details, for the cables, si is the tensile force (in [kN]) and di the
deformation (elongation) (in [m]), of the i-th cable element.
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By definition -see [5] - the relation (1) is equivalent to the following hemivariational
inequality, expressing the Virtual Work Principle:

S↑i (di, ei − di) ≥ si(di) · (ei − di), (2)

where S↑i denotes the subderivative of Si and ei, di are kinematically admissible
(virtual) deformations.
Next, the dynamic equilibrium for the structural system, considered as unstrength-
ened, i.e. without cables, is expressed by the usual matrix relations of Structural
Dynamics:

Mü + C(u̇) + K(u) = f (3)

Here u and f are the displacement and the loading forces time dependent vectors,
respectively. The damping and stiffness terms, C(u̇) and K(u), respectively, concern
the general non-linear case. Dots over symbols denote derivatives with respect to time.
For the case of ground seismic excitation xg, the loading history term f becomes

f = −Mrẍg (4)

where r is the vector of stereostatic displacements. When cable-elements and pound-
ing are taken into account, equations (3) for the assembled system considered as
strengthened, becomes

Mü + C(u̇) + K(u) = f + Ts (5)

Here s is the cable elements stress vector and T is a transformation matrix.
The system of the above relations (1)–(5), combined with the initial conditions, pro-
vide the problem formulation, where, for given f and/or ẍg, the vectors u and s have
to be computed.
The relevant computational approach is described in [3, 4]. A piecewise linearization
of the above constitutive relations as in elastoplasticity is used(see e.g. Fig. 1.B). By
applying a time-integration scheme, in each time-step ∆t a relevant non-convex linear
complementarity problem of the following matrix form is eventually solved :

v ≥ 0, Av + a ≤ 0, vT · (Av + a) = 0. (6)

Here v is the vector of unknown unilateral quantities at the time âĂŞmoment t, vT

is the transpose of v, a is a known vector dependent on excitation and results from
previous time moments (t−∆t), and A is a transformation matrix.
An alternative approach for treating numerically the problem is the incremental one.
Now, relations (5), taking into account also second-order geometric effects (P-Delta
effects), are written in incremental form:

M∆ü + C∆u̇ + (K + G)∆U = −M∆üg + T∆s (7)

Here G is the geometric stiffness matrix, by which P-Delta effects are taken into
account.
On such incremental approaches is based the structural analysis software Ruaumoko
[8]. Ruaumoko software uses the finite element method and permits an extensive
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parametric study on the inelastic response of structures. Concerning the time-dis-
cretization, implicit or explicit approaches can be used. Here the Newmark implicit
scheme is chosen and Ruaumoko is used to provide results which are related to the
following critical parameters: local or global structural damage, maximum displace-
ments, interstorey drift ratios, development of plastic hinges.

A) B)

C) D)

Figure 1: Numerical example: A) The two-bays two-storey RC frame; B) The consti-
tutive law of cable-elements; C) The F2 ties-system; D) The F4 ties-system.

The decision about a possible strengthening for an existing structural system, dam-
aged by a seismic or environmental event, can be taken after an assessment realization
[2, 3]. Here the assessment is based on a relevant evaluation of suitable damage in-
dices. After Park/Ang [10], the global damage is obtained as a weighted average
of the local damage at the section ends of each structural element or at each cable
element. First the local damage index DIL is computed by the following relation:

DIL =
µm
µu

+
β

Fydu
ET (8)

where: µm is the maximum ductility attained during the load history, µu the ultimate
ductility capacity of the section or element, β a strength degrading parameter, Fy the
yield generalized force of the section or element, ET the dissipated hysteretic energy,
and du the ultimate generalized deformation. As known [2, 3], ductility concerns the
metelastic behaviour, see e.g. Fig. 1.B, and in terms of a generalized deformation d is
defined by the relation µ = d/dy, where dy denotes the yield generalized deformation
and it holds d ≥ dy.
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Next, the dissipated energy ET is chosen as the weighting function and the global
damage index DIG is computed by using the following relation:

DIG =

∑n
i=1DILiEi∑n

i=1Ei
(9)

where: DILi is the local damage index after Park/Ang at location i, Ei is the energy
dissipated at location i and n is the number of locations at which the local damage
is computed.
Finally, for the choice of the optimal system of the strengthening ties, various virtual
such systems are proposed and the minimum value according to (9) is sought, that is
the problem DIG → min has to be solved.
The applicability of the proposed method for selecting the optimal ties system is
verified in numerical examples, e.g. as shown in Fig. 1. The RC frame to be upgraded
under multiple earthquakes is shown in Fig. 1.A. The constitutive law of cable-
elements is shown in Fig. 1.B. The two proposed ties strengthening systems are shown
in Fig. 1.C and Fig. 1.D. The numerical results prove that the optimal system is that
one of Fig. 1.D. Further details, concerning the seismic response of cable-braced RC
systems subjected to multiple earthquakes, are described in [9].

References
[1] Bertero V. V., Whittaker A. S., Seismic upgrading of existing buildings, 5as

Jornadas Chilenas de SismologÃŋa e IngenierÃŋa AntisÃŋsmica, 1 (1989), 27-
46.

[2] Penelis Ge., Penelis Gr., Concrete Buildings in Seismic Regions. CRC Press.,
(2014)

[3] Fardis, M. N., Seismic design, assessment and retrofitting of concrete buildings:
based on EN-Eurocode 8 , Springer, (2009)

[4] Markogiannaki O., Tegos I., Strengthening of a Multistory R/C Building under
Lateral Loading by Utilizing Ties. Applied Mechanics and Materials, 82, 559-564,
(2011)

[5] Panagiotopoulos P.D., Hemivariational Inequalities. Applications in Mechanics
and Engineering, Springer-Verlag, Berlin, New York, (1993).

[6] Liolios A., A linear complementarity approach for the non-convex seismic fric-
tional interaction between adjacent structures under instabilizing effects, Journal
of Global Optimization, 17 (2000), 259-266.

[7] Liolios Ang., Chalioris K., Liolios Ast., Radev St., and Liolios Kon., A Com-
putational Approach for the Earthquake Response of Cable-braced Reinforced
Concrete Structures under Environmental Actions, LNCS, 7116 (2012), 590-597.

52



[8] Carr A.J., RUAUMOKO - Inelastic Dynamic Analysis Program, Department of
Civil Engineering, University of Canterbury, Christchurch, New Zealand, 2008.

[9] Liolios Ang., Liolios Ast., Hatzigeorgiou G., A Numerical Approach for Esti-
mating the Effects of Multiple Earthquakes to Seismic Response of Structures
Strengthened by Cable-Elements, Journal of Theoretical and Applied Mechanics,
43(3) (2013), 21-32.

[10] Park Y.J., A.H.S. Ang, Mechanistic seismic damage model for reinforced con-
crete, Journal of Structural Division ASCE, 111(4), (1985), 722âĂŞ739.

53



Selection of the Optimal Adsorption Model
Concerning TP Removal in Horizontal Subsurface
Flow Constructed Wetlands: A Computational

Investigation

Konstantinos Liolios, Vassilios Tsihrintzis
Krassimir Georgiev, and Ivan Georgiev

1 Introduction
The use of Horizontal Subsurface Flow Constructed Wetlands (HSF CW) for wastew-
ater treatment is recently a popular ecological and ecological solution, see f.e. [1, 2,
3, 4, 5]. The investigation of the ability of these systems to remove pollutants is a
very interesting parameter for the optimal construction and operation of HSF CW
[6, 7, 8]. In the essential municipal pollutants is included the Total Phosphorus (TP),
for which the phenomenon of adsorption is a governing one.
In the present study, a numerical simulation concerning TP removal in HSF CW is
presented. The selection of the optimal adsorption model is obtained, by using inverse
problems procedures [9]. In the relevant computational investigation, a comparison
between the Freundlich linear and the Langmuir non-linear isotherms for the adsorp-
tion, on the basis of available experimental data, is realized. The used experimental
data are from five pilot-scale HSF CW as described in details in [4, 10]. The Visual
MODFLOW computer code family [11, 12], based on the finite difference method
(FDM), was used for the numerical simulations. Concerning the linear case of the
Freundlich isotherm, some results have already been presented in [13].

2 The mathematical formulation of the problem
The partial differential equation (PDE), which describes in the three-dimensional (3-
D) space the advection, dispersion, and removal of a solute considering sources/sinks,
equilibrated adsorption and first-order irreversible kinetic reactions, is in tensorial
notation (i, j = 1, 2, 3) [14]:

θRd
∂C

∂t
=

∂

∂xi

(
θDij

∂C

∂xj

)
− ∂

∂xi
(qiC) + qsCs − λ1θC − λ2ρbS (1)

where θ is the porosity, in [%]; C the aqueous solute concentration, in [ML−3]; Dij

the hydrodynamic dispersion coefficient tensor, in [L2T−1]; Cs the concentration of
the source or sink flux, in [ML−3]; qs the volumetric flow rate per unit volume of
aquifer, representing fluid sources (positive) or sinks (negative), in [T−1]; qi the Darcy
velocity, in [LT−1]; ρb the dry bulk density of the soil, in [ML−3]; S the concentration
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adsorbed by the solid phase of the porous medium, in [M pollutant/M solid]; and λ1

and λ2 are the removal coefficients for the dissolved and adsorbed phases respectively,
both in [T−1]. Here, as usually in environmental engineering praxis, it is assumed:
λ1 = λ2 = λ.
In Equation (1), Rd is the retardation factor [dimensionless], which is given by the
equation:

Rd = 1 +
ρb
θ

∂S

∂C
(2)

Regarding the dependence of S on C, i.e. S = f(C), the most frequently used sorption
isotherms are the Freundlich and Langmuir ones [14].
The linear Freundlich isotherm is expressed by the Equation:

S = Kd · C (3)

where Kd is the distribution coefficient, in [L3M−1], which expresses the distribution
of the pollutant concentrations between solid and liquid phases, S and C, respectively,.
The non-linear Langmuir isotherm is described by the equation:

S = Smax
KLC

1 +KLC
(4)

where Smax is the maximum adsorption capacity in [M pollutant / M solid]; and KL

the Langmuir constant, in [L3M−1].
The above equations (1), (2) and (3) or (4), combined with the groundwater flow equa-
tion and the Darcy velocity relationship [14], formulate a system of PDE equations.
The solution of this system, under appropriate boundary and initial conditions, pro-
vides the five main space-time functions of the hydraulic head h, the Darcy velocities
field qi (where i = 1, 2, 3) and the solute concentration C.
The aim of the present study is to investigate which of the two adsorption models,
the linear Freundlich isotherm of equation (3) or the non-linear Langmuir isotherm
of equation (4), approaches better the experimental operation of the pilot-scale HSF
CW, described in [4, 10].

3 Representative results and conclusions
The main unknown parameters of the adsorption problem are: λ,Kd, Smax and KL.
Concerning the distribution coefficient Kd, the oprimal value of 0.1cm3/g has been
chosen, according to the type of porous media of the pilot-scale HSF CW, the inflow-
ing concentration of TP and literature values. The values of the first-order removal
coefficient λ were determined by using a trial-and-error procedure. For more details,
see [13]. The values for the Langmuir constant KL and for the maximum adsorp-
tion capacity Smax were determined by using the least square methods. The results
show that the linear Freundlich isotherm describes slightly better the operation for
the pilot-scale HSF CW units, described in [4, 10], comparing with the non-linear
Langmuir isotherm. The proposed values of the parameters λ,Kd, Smax and KL can
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be used effectively for the optimum design of HSF CW, both pilot-scale or full-scale,
and for their construction and operation with an ecological and economical way.
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Newton methods for option pricing with liquidity
switching

Walter Mudzimbabwe, Carlos Vázquez

One of the assumptions made in the the classical Black-Scholes model for option
pricing is that the market is liquid at all times. However, this is not the case in
all markets, in which sometimes periods of liquidity are followed by time intervals
where the market becomes illiquid. Recently, in Ludkovski and Shen [2], a model to
price European options in a market that switches between liquid and illiquid states
is proposed.
In the case of European options, p and q denote the indifference option prices
in liquid and illiquid states, respectively. These difference option prices satisfy the
following parabolic partial and ordinary differential equations system (see Ludkovski
and Shen [2]), for details:

∂pi
∂t

+
1

2
σ2
i S

2 ∂
2pi
∂S2

+
νi1-i

γ

F1-i

Fi
(1− e−γ(p1-i−pi)) = 0, (1)

where i ∈ {0, 1}, σ0 = σ, σ1 = 0 and p0 = p, p1 = q, pi(T, S) = h(S), t and S represent
time and underlying asset price, σ > 0 denotes the constant asset volatility and γ > 0
denotes the coefficient of risk aversion. Moreover, F0(t) and F1(t) are functions related
to the investment performance and given in [2].
A weighted finite differences θ-method can now be written as

P j,n+1
i − P j,ni

∆t
+ (1− θ)1

2
σ2
i S

2
jD+D−P

j,n+1
i + θ

1

2
σ2
i S

2
jD+D−P

j,n
i

+ (1− θ)νi1−i
γ

Fn+1
1−i

Fn+1
i

(1− e−γ(P j,n+1
1−i −P

j,n+1
i ))

+ θ
νi1−i
γ

Fn1−i
Fni

(1− e−γ(P j,n1−i−P
j,n
i )) = 0 (2)

for j = 2, · · · ,M − 1 and n = N − 1, N − 2, · · · , 1. At each time step tn let:

xn = (P 2,n
0 , · · · , PM−1,n

0 , P 2,n
1 , · · · , PM−1,n

1 ),

and the following notation

νni1−i =
∆tνi1−i

γ

Fn1−i
Fni

, gji (x
n) = exp(−γ(P j,n1−i − P

j,n
i ))

and

f j,ni (xn) = −θLjiP
j−1,n
i + (1 + θDj

i )P
j,n
i − θLjiP

j+1,n
i − θνni1−i(1− g

j
i (x

n))

− (1− θ)LjiP
j−1,n+1
i − (1− (1− θ)Dj

i )P
j,n+1
i − (1− θ)LjiP

j+1,n+1
i

− (1− θ)νn+1
i1−i(1− g

j
i (x

n+1)), (3)
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where
Lji = ασ2

i S
2
j , Dj

i = 2ασ2
i S

2
j , α =

1

2

∆t

(∆S)2
.

Next we can introduce for each step n, the following nonlinear function:

fn(x) =
(
f2,n

0 (x), · · · , fM−1,n
0 (x), f2,n

1 (x), · · · , fM−1,n
1 (x)

)
,

The problem is now to solve nonlinear system of equations:

fn(x) = 0. (4)

Thus, starting from xn,0 = xn+1, at each iteration of Newton method we have to
solve the linear system:

Jn(xn,k)∆n,k = −fn(xn,k), xn,k+1 = xn,k + ∆n,k (5)

until convergence, where Jn(x) ∈ R2(M−2),2(M−2) denotes the Jacobian of fn at point
x,

Jn =

(
Jn0 Dn

0

Dn
1 Jn1

)
,

where Jni (x) ∈ RM−2,M−2 is a tridiagonal matrix, the coefficients of which are given
for j, l = 1, . . . ,M − 2 by

(Jni (x))jl =


1 + θDj+1

i + θγνni1−ig
j+1
i (x) if j = l

−θLj+1
i if j = l − 1

−θLj+1
i if j = l + 1

0 otherwise ,

and Dn
i (x) ∈ RM−2,M−2 is a diagonal matrix whose diagonal coefficients are given

by
(Dn

i (x))jj = −θγνni1−ig
j+1
i (x), j = 1, . . .M − 2.

Table 1: Indifference price p per option for buyer

European call Digital call
Number of options S0=8 S0=10 S0=12 S0=8 S0=10 S0=12

10 0.2879 1.0726 2.4482 0.1638 0.4199 0.6676
5 0.3133 1.1271 2.4877 0.1738 0.4348 0.6805
1 0.3227 1.1448 2.5020 0.1781 0.4412 0.6862

The order of convergence in variable S is computed as O = log2

(
|uM−u2M |
|u2M−u4M |

)
,. Al-

though the problem is nonlinear, in all these experiments we observe a quadratic
convergence in space.
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Table 2: Order of convergence in S for p using implicit scheme, Digital call option

M Value Difference Ratio O
128 0.441346278059106 5.0969E-006 4.484722689 2.165018779
256 0.441351374942845 1.1365E-006 4.158038692 2.055903183
512 0.441352511442043 2.7333E-007 4.046247441 2.016584548
1024 0.441352784767830 6.7550E-008 4.013960169 2.005026301
2048 0.441352852318268 1.6829E-008 4.004761335 2.001716267
4096 0.441352869147144 4.2022E-009
8192 0.441352873349361

Table 3: Order of convergence in t for p using Crank-Nicholson scheme, Call option

N Value Difference Ratio O
128 1.145166992332569 6.1187E-007 4.032230375 2.011578067
256 1.145166380458687 1.5175E-007 4.017177866 2.006182340
512 1.145166228712922 3.7774E-008 4.008847272 2.003187455
1024 1.145166190938701 9.4227E-009 4.004558195 2.001643085
2048 1.145166181515987 2.3530E-009 4.001329503 2.000479437
4096 1.145166179162990 5.8805E-010
8192 1.145166178574936
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American options give the holder the opportunity to exercise prior to the expiry.
In mathematical terms, the problem becomes a free boundary problem. The problem
can be written as the following discrete nonlinear complementary problem (NCP) (cf.
[4])  fn(xn) ≥ 0,

xn ≥ h
(xn − h)T fn(xn) = 0.

(6)

One of the most common way to price American options is to use the Projected Suc-
cessive Over-Relaxation (PSOR) algorithm (see [6], for example). By applying PSOR
technique at each Newton iterate to solve the corresponding linear complementarity
problem (LCP) we get Newton-PSOR algorithm.
We also calculate the price of American options.

Table 4: Indifference price p per option for buyer

American call Digital call
Number of options S0=8 S0=10 S0=12 S0=8 S0=10 S0=12

10 0.2879 1.0726 2.4482 0.3478 0.9880 1.0000
5 0.3133 1.1270 2.4877 0.3757 0.9888 1.0000
1 0.3227 1.1448 2.5020 0.3828 0.9890 1.0000
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Comparative analysis of finite elements for shear
locking problems of Mindlin’s plate

Stanislav Stoykov, Svetozar Margenov

1 Introduction
Plates are thin structures which have wide applications among engineering construc-
tions. There are several hypothesis used to derive the two dimensional equation of
equilibrium. The most common ones are Kirchhoff’s and Mindlin’s plate theories.
Kirchhoff’s hypothesis assumes that the transverse shear strains are negligible and
it is applicable to thin plates. Mindlin’s plate theory considers the transverse shear
strains and it provides good results for thin and thick plates. Both theories assume
linear variation of the in-plane displacements with the thickness coordinate. There
are also higher order plate theories which express the variation of the in-plane dis-
placements by higher order functions.
Mindlin’s plate theory is the most commonly used, the resulting PDE is of second
order and the related finite element discretization requires C0 continuity. This ap-
proach leads to shear locking when the plate is thin. There are several techniques to
avoid shear locking, such as reduced and selective integration, mixed formulation or
approximation by higher order shape functions. The aim of the current paper is to
implement the most commonly used finite elements and to investigate their behavior
when they are applied to thin plates.

2 MindlinâĂŹs plate equation of motion
A rectangular plate of isotropic material and uniform thickness d is considered for the
computational analysis. The dimensions of the plate along x and y axes are denoted
by a and b respectively. The transverse displacement on the middle plane is denoted
by w(x, y) and φx(x, y) and φy(x, y) represent the rotations of the middle plane about
x and y axes. The equilibrium equations have the following form [1]:

λA55

(
∂2w

∂x2
+
∂φy
∂x

)
+ λA44

(
∂2w

∂y2
+
∂φx
∂y

)
= −q(x, y)

D66
∂2φx
∂x2

+ (D12 +D66)
∂2φy
∂x∂y

+D22
∂2φx
∂y2

− λA44

(
∂w

∂y
+ φx

)
= 0

D11
∂2φy
∂x2

+ (D12 +D66)
∂2φx
∂x∂y

+D66
∂2φy
∂x2

− λA55

(
∂w

∂x
+ φy

)
= 0

(1)

Here Dij are the stiffness coefficients, i.e. they relate the moment resultants with the
curvatures and define the bending stiffness matrix, A44 and A55 formulate the trans-
verse shear stiffness matrix and λ is the shear correction factor. Simply-supported
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boundary conditions on all four edges are considered:

w = 0,
∂φy
∂x

= 0, φx = 0, for x = 0, a,

w = 0,
∂φx
∂y

= 0, φy = 0, for y = 0, b.
(2)

The strain energy is defined by the following expression:

U =
1

2

∫
V

(σxεx + σyεy + τxyγxy + τyzγyz + τxzγxz)dV (3)

which, under the assumptions of MindlinâĂŹs plate theory, and after integration with
respect to the transverse axis z, has the following form:

U =
1

2

Ed3

12(1− ν2)

∫
Ω

((∂φy
∂x

)2

+ 2ν
∂φy
∂x

∂φx
∂y

+
(∂φx
∂y

)2

+

1− ν
2

(∂φy
∂x

+
∂φx
∂y

)2

+
6λ(1− ν)

d2

((∂w
∂y

+ φx

)2

+
(∂w
∂x

+ φy

)2
)) (4)

E is the Young modulus of the material and ν is the Poisson’s ratio. For plates with
small thickness, the coefficient 6λ(1−ν)

d2 becomes much larger than the other coefficients
from the strain energy. Since the minimum of U is sought, this forces ∂w

∂y → −φx and
∂w
∂x → −φy as d→ 0, i.e.

lim
d→0

∫
Ω

(∂w
∂y

+ φx

)2

dΩ→ 0,

lim
d→0

∫
Ω

(∂w
∂x

+ φy

)2

dΩ→ 0.

(5)

These enforcements introduce additional constraints in the finite element model which
leads to reduced order of convergence. This phenomenon is known as shear locking.
As a result of the shear locking, the plate becomes stiff and the displacements become
smaller compared to the true solution. The terms in eq. (5) are related with the shear
strain energy and they employ zero shear stress on the limit of very thin plates.

3 Comparison of different finite elements
Several finite elements are compared in order to investigate their behavior as the
thickness of the plate becomes small. The considered elements are presented in Fig.1
using digital codes for simplicity of the notations. Element 404 has four nodes on
the corners, it uses four bilinear shape functions and it uses selective and reduced
integration for the shear strain energy. This element is equivalent to the mixed FEM
with piecewise constant approximation of the shear forces. Element 408 has eight
nodes, placed on the corners and on middle of the edges. The element uses quadratic
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Figure 1: Types of finite elements used in the comparative analysis.

shape functions. This element belongs to the Serendipity family of elements. Element
409 has nine nodes, it uses biquadratic shape functions. The element belongs to the
Lagrange family of elements. Element 412 is the cubic element from Serendipity
family. Element 416 is the cubic element from Lagrange family.
Plate with dimensions a = 0.6 m and b = 0.3 m and material properties: E = 70

GPa and ν = 0.3 is assumed for the numerical experiments. Uniformly distributed
load of 40 N/m2 is applied in transverse direction. Shear correction factor λ = 5/6 is
used. Different meshes are considered, each one is obtained from the previous one by
dividing the edges of the elements by 2. The first three meshes are shown in Fig. 2.
The energy norm due to static load is computed for the different meshes and for
different thicknesses of the plate. The relative error of the solution in energy norm
obtained by the different finite elements is presented in Fig. 3 as a function of the
plate thickness. The results confirm that elements 409 and 416 are robust and behave
well when the thickness of the plate is small. The rate of convergence of these elements
is reduced due to the locking effect. Elements 408 and 412 are not robust, the results
show that they can produce enormous error, thus they are not reliable for plate
problems. Element 404 used with selective and reduced integration is robust, it gives
convergence of order O(h) in energy norm.
The error in energy norm of mesh i is denoted by ‖ei‖ =

∥∥u− uhi ∥∥. The ratio of
the errors in energy norms of two sequential meshes of element 409 are presented
in Table 1. Considering the theoretical estimation presented in [2], element 409 has
locking order of 1/2 in energy norm which is confirmed by the results in Table 1.
For thick plates, the convergence order for sufficiently fine meshes is close to the
theoretical estimation of second order PDE without any locking - O(h2), while when
the thickness is reduced, the convergence becomes of order O(h).

Table 1: Ratio of errors in energy norms of element 409.

409 ‖em1‖
‖em2‖

‖em2‖
‖em3‖

‖em3‖
‖em4‖

‖em4‖
‖em5‖

‖em5‖
‖em6‖

d = 0.005 2.0369 2.3748 2.9723 3.5813 3.9955
d = 0.001 1.9270 2.0005 2.0750 2.2865 2.8793
d = 0.0001 1.9225 1.9824 2.0045 2.0391 2.1875

Figure 2: Meshes of rectangular finite elements with different sizes, Mesh 1 ∆h = 0.1,
Mesh 2 ∆h = 0.05, Mesh 3 ∆h = 0.025.
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Figure 3: Logarithmic plots of relative error of the energy norm of the different finite
elements, (a) Mesh 1, (b) Mesh 2, (c) Mesh 3. — — — 404, · · · · · 408, - - - 409,
− · − · −· 412, –––– 416

4 Conclusion
Five different rectangular finite elements are developed and applied to the numerical
solution of the Mindlin’s plate equation of equilibrium. The behavior the finite ele-
ments is investigated for different meshes and thicknesses of the plate. It is shown
that the elements from the Lagrange family are robust while the ones from Serendip-
ity family are not and produce enormous error when the thickness is decreasing. The
bilinear element with selective and reduced integration is free of locking and provides
good results and has less degrees of freedom.
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Interpolation of Convex Scattered Data in R3 using
Piecewise Quadratic Minimum Norm Networks

Krassimira Vlachkova

Scattered data interpolation is a fundamental problem in approximation theory and
finds applications in many areas including geology, medicine, architecture, computer
graphics, etc. Different methods for solving this problem were applied and reported,
excellent surveys can be found e.g., in [4, 5]. The problem can be formulated as
follows: Given scattered data (xi, yi, zi) ∈ R3, i = 1, . . . , N , that is points vi = (xi, yi)
are different and non-collinear, find a bivariate function F defined in a certain domain
D containing points vi, such that F possesses continuous partial derivatives up to a
given order and F (xi, yi) = zi.
One of the possible approaches to solving the problem is due to Nielson [6]. The
method consists of the following three steps:
Step 1. Triangulation. Construct a triangulation T of vi, i = 1, . . . N .
Step 2. Minimum norm network (MNN). The interpolant F and its first order partial
derivatives are defined on the edges of T so as to satisfy an extremal property. The
MNN is a cubic curve network, i. e. on every edge of T it is a cubic polynomial.
Step 3. Interpolation surface. The obtained network is extended to F by an appro-
priate blending method. The interpolant is a rational function on every triangle in
T .
In [1] Andersson et al. gave an alternative proof of Nielson’s result. Their method
allows to consider and handle the case where the data are convex and a convex
interpolant is sought. Andersson et al. formulated and solved the corresponding
extremal constrained interpolation problem of finding a MNN that is convex along
the edges of the triangulation. The results from [1] are extended in [7] to the class
of Lp-norms for 1 < p ≤ ∞. The extremal constrained interpolation problem for
p =∞ has a solution whose restriction to any edge e in T is a convex quadratic spline
function with at most one knot in the interval (0, ‖e‖), see Fig. 1. We note that the
edge convex MNN may not be globally convex. Moreover, even in the case where it
is globally convex, Nielson’s blending method may produce non-convex surface.

a. b.

Figure 1: The edge convex MNN for p = ∞ on every edge of T is either a quadratic
polynomial (a.) or a C1-continuous spline with one inner knot consisting of a linear function
plus a quadratic polynomial (b.)
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We consider the interpolation of convex scattered data in R3 associated with a planar
triangulation T . Convexity preserving methods using macro-element splines defined
on triangulations has been developed e. g., in [2, 3]. We propose a solution that
constructs a minimum norm piecewise quadratic network defined and convex on the
edges of T and then builds a Powell-Sabin six-split interpolant. We obtain neces-
sary and sufficient geometric conditions for the convexity of the resulting interpolant.
An example of a triangulation T , the corresponding edge convex MNN for p = ∞,
and the convex Powell-Sabin six-split interpolant are shown in Fig. 2. The data are
(−1/2,−

√
3/6, 0), (1/2,−

√
3/6, 0), (0,

√
3/3, 0), (0, 0,−1/2).

Figure 2: Triangulation T , the edge convex MNN for p = ∞, and the corresponding convex
Powell-Sabin six-split interpolant.
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