
ibm.com/redbooks Redpaper

Front cover

IBM System Blue Gene Solution:
High Performance Computing
Toolkit for Blue Gene/P

Gary Lakner
I-Hsin Chung

Dr. Guojing Cong
David Klepacki

Dr. Christoph Pospiech
Seetharami R. Seelam

Hui-Fang Wen

Tools to visualize and analyze your
performance data

Instructions for the Xprofiler and High
Performance Computing Toolkit GUIs

Tips to optimize your
application’s performance

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM System Blue Gene Solution: High Performance
Computing Toolkit for Blue Gene/P

December 2007

REDP-4256-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2007)

This edition applies to Version 1, Release 1, Modification 1 of IBM System Blue Gene/P Solution (product
number 5733-BGP).

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
The team that wrote this paper . vii
Become a published author . viii
Comments welcome. ix

Chapter 1. MPI Profiler and Tracer. 1
1.1 System and software requirements. 2
1.2 Compiling and linking . 2
1.3 Environment variables. 3

1.3.1 TRACE_ALL_EVENTS . 3
1.3.2 TRACE_ALL_TASKS . 4
1.3.3 TRACE_MAX_RANK . 4
1.3.4 TRACEBACK_LEVEL. 4
1.3.5 SWAP_BYTES . 4
1.3.6 TRACE_SEND_PATTERN (Blue Gene/L and Blue Gene/P only) 5

1.4 Output . 5
1.4.1 Plain text file . 6
1.4.2 The VIZ file . 9
1.4.3 Trace file . 10

1.5 Configuration. 10
1.5.1 Configuration functions . 10
1.5.2 Data structure . 11
1.5.3 Utility functions . 13

1.6 Related issues. 16
1.6.1 Overhead . 16
1.6.2 Multithreading . 16

Chapter 2. CPU profiling using Xprofiler . 17
2.1 Starting Xprofiler . 18
2.2 Understanding the Xprofiler display . 20

2.2.1 Xprofiler main menus . 21
2.2.2 Elements of the function call tree . 22
2.2.3 Manipulating the Xprofiler display . 24

2.3 Getting performance data for your application . 31

Chapter 3. Hardware Performance Monitoring . 39
3.1 HPM . 40
3.2 Events and groups . 41
3.3 Derived metrics . 83
3.4 Inheritance . 83
3.5 Inclusive and exclusive values . 84

3.5.1 Parent-child relations . 84
3.5.2 Handling overlap issues . 85
3.5.3 Computation of exclusive values for derived metrics . 85

3.6 Function reference . 85
3.7 Measurement overhead . 87
© Copyright IBM Corp. 2007. All rights reserved. iii

3.8 Output . 87
3.9 Examples of libhpm for C and C++ . 88
3.10 Multithreaded program instrumentation issues . 89
3.11 Considerations for MPI parallel programs. 89

3.11.1 Distributors . 90
3.11.2 Aggregators . 90
3.11.3 Plug-ins shipped with HPCT . 90
3.11.4 User-defined plug-ins . 91
3.11.5 Detailed interface description . 91
3.11.6 Getting the plug-ins to work . 93

Chapter 4. High Performance Computing Toolkit GUI . 95
4.1 Starting the HPCT GUI . 96
4.2 HPCT GUI Main window (Visualization) . 96
4.3 HPCT GUI Main Window with instrumentation . 104
4.4 HPCT GUI simple IDE. 109

Chapter 5. I/O performance . 111
5.1 Design summary . 112
5.2 Runtime control of MIO . 112

5.2.1 MIO_STATS . 112
5.2.2 MIO_FILES . 112
5.2.3 MIO_DEFAULTS . 114
5.2.4 MIO_DEBUG . 114

5.3 Module descriptions and options. 114
5.4 Library implementation . 116
5.5 Sample implementation. 117

Related publications . 125
IBM Redbooks . 125
How to get IBM Redbooks . 125
Help from IBM . 125
iv IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. v

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
Blue Gene/L™
Blue Gene/P™
Blue Gene®
IBM®

PowerPC®
POWER™
POWER4™
POWER5™
POWER5+™
POWER6™

Redbooks®
Redbooks (logo) ®
System i™
System p™
Tracer™

The following terms are trademarks of other companies:

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
vi IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Preface

This IBM® Redpaper publication is one in a series of IBM documents written specifically for
the IBM System Blue Gene/P Solution. The Blue Gene/P system is the second generation of
a massively parallel supercomputer from IBM in the IBM System Blue Gene Solution series.
This paper provides an overview of the IBM High Performance Computing Toolkit for the Blue
Gene/P™ system.

We begin by describing the Message Passing Interface (MPI) Profiler and Tracer™ tool,
which collects profiling and tracing data for MPI programs. We explain the system
requirements as well as configuration, compiling, linking, environment variables, and output.

Next we discuss how to use Xprofiler for CPU profiling. We then move on to discuss
Hardware Performance Monitoring (HPM), including the use and behavior of the libhpm
library. Afterward, we describe the GUI of the High Performance Computing Toolkit (HPCT).
This single interface provides a means to execute the application and visualize and analyze
the collected performance data.

Finally we address I/O performance. Specifically, we discuss the features of the Modular I/O
(MIO) library that was developed to assist in optimizing an application’s I/O.

The team that wrote this paper
This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Rochester Center.

Gary Lakner is a Staff Software Engineer for IBM Rochester on assignment in the ITSO. He
is a member of the Blue Gene/L™ Support Team in the IBM Rochester Support Center,
where he specializes in both Blue Gene® hardware and software, as well as performs
customer installations. Prior to joining the Blue Gene team, Gary supported TCP/IP
communications on the IBM System i™ platform. Gary has been with IBM since 1998.

I-Hsin Chung is a Research Staff Member at the IBM Thomas J. Watson Research Center.
His research interests include performance tuning, performance analysis, and performance
tools. His experience includes designing and developing performance tools on IBM platforms
such as IBM Power Systems on AIX® and Linux®, and the Blue Gene/L and Blue Gene/P
systems. Prior to joining IBM Research, he received his Ph.D. in Computer Science from the
University of Maryland, College Park in 2004.

Dr. Guojing Cong is a research staff member at the IBM Thomas J. Watson Research
Center. His research interests include automation of performance analysis and tuning for
scientific applications, as well as the design and analysis of parallel algorithms for large-scale
graph problems. He is an expert in solving irregular combinatorial problems on parallel
systems. He received his Ph.D. in computer engineering from the University of New Mexico in
2004 and soon after joined IBM Research.

David Klepacki is a senior staff member of IBM Research and has more than 20 years of
experience in high performance computing (HPC). He currently manages the Advanced
Computing Technology department at the IBM Thomas J. Watson Research Center. He
earned a Ph.D. in theoretical nuclear physics from Purdue University and has since worked in
a variety of technical areas within IBM including high-performance processor design,
© Copyright IBM Corp. 2007. All rights reserved. vii

numerically intensive computation, computational physics, parallel computing, and
performance modeling.

Dr. Christoph Pospiech joined IBM in 1988 as a member of the IBM Scientific Center
Heidelberg, after completing his Ph.D. in applied mathematics at Heidelberg University. He
has nearly 20 years of experience in the area of vector and parallel computing. Currently he is
part of the Systems Technology Group, working on customer applications, mainly from the
weather and climate area. He collaborated with the Advanced Computing Technology
department at the IBM Thomas J. Watson Research Center on developing and maintaining
tool components.

Seetharami R. Seelam is a post-doctoral research staff member at the IBM Thomas J.
Watson Research Center in Yorktown Heights, NY, since 2007. He is a member of the IBM
Advanced Computing Technologies Center, where he works on performance analysis tools
and technologies for AIX on the IBM System p™ platform and Blue Gene systems as well as
on next-generation automatic performance analysis, bottleneck detection, and solution
determination technologies. He received a Ph.D. in Computer Science from University of
Texas at El Paso in 2006. His areas of interest are in HPC, operating systems, I/O,
performance tools, and resource management.

Hui-Fang Wen is an Advisory Software Engineer at the IBM Thomas J. Watson Research
Center. She is a member of the IBM Advanced Computing Technology Center, where she
works on performance tools and the GUI design. She holds a Masters in Computer Science
degree from University of Maryland, College Park. She has been with IBM since 2005.

Tom Gray
Todd Kelsey
Gary Mullen-Schultz
Craig Schmitz
Jenifer Servais
ITSO, Rochester Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbooks® publication
dealing with specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM technical
professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
viii IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other Redbooks publications in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface ix

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

x IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Chapter 1. MPI Profiler and Tracer

In this chapter, we provide documentation for the Message Passing Interface (MPI) profiling
and tracing library of the IBM High Performance Computing Toolkit. The MPI profiling and
tracing library collects profiling and tracing data for MPI programs. Table 1-1 provides the
library file names and their usage.

Table 1-1 Library file names and usage

1

Library name Usage

libmpitrace.a Library for both the C and Fortran applications

mpt.h Header files

Note: The C header file is used when it is necessary to configure the library.
© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 System and software requirements

The following systems and software are required for the currently supported architecture:

� AIX on Power: IBM Parallel Environment (PE) for AIX program product and its Parallel
Operating Environment (POE), 32 bit and 64 bit

� Linux on Power: IBM PE for Linux program product and its POE, 32 bit and 64 bit

� Blue Gene/L: System software V1R3M0 or later

� Blue Gene/P: System software V1R1M1 or later

1.2 Compiling and linking

The trace library uses the debugging information that is stored within the binary to map the
performance information back to the source code. To use the library, the application must be
compiled with the -g option.

You might consider turning off or having a lower level of optimization (-O2, -O1,...) for the
application when linking with the MPI profiling and tracing library. High level optimization
affects the correctness of the debugging information and can also affect the call stack
behavior.

To link the application with the library, add the following options to your command line:

� The option -L/path/to/libraries, where /path/to/libraries is the path where the
libraries are located

� The option -lmpitrace, which should be before the MPI library -lmpich, in the linking
order

� The option -llicense to link the license library

For some platforms, if the shared library liblicense.so is used, you might need to set the
environment variable LD_LIBRARY_PATH to $IHPCT BASE/lib(lib64) to make sure that the
application finds the correct library during runtime.

Example 1-1 shows how to compile and link in C, using mpicc, which currently is based on the
GNU compiler.

Example 1-1 Compiling and linking in C

BGPHOME=/bgsys/drivers/ppcfloor
CC=$(BGPHOME)/comm/bin/mpicc
CFLAGS = -I$(BGPHOME)/comm/include -g -O
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense
LIB1 = -L$(BGPHOME)/comm/lib -lmpich.cnk -ldcmfcoll.cnk -ldcmf.cnk
LIB2 = -L$(BGPHOME)/runtime/SPI -lSPI.cna -lpthread -lrt
LIB3 = -lgfortranbegin -lgfortran # please read the NOTE
mpitrace: mpi_test.c

$(CC) -o $@ $< $(CFLAGS) $(TRACE_LIB) $(LIB1) $(LIB2) –lm
2 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

In order to accommodate part of the MPI profiling and tracing library that is written in Fortran,
it is necessary to link the two GNU Fortran libraries. Example 1-2 shows how to compile and
link a program in Fortran.

Example 1-2 Compiling and linking in Fortran

BGPHOME=/bgsys/drivers/ppcfloor
CC=$(BGPHOME)/comm/bin/mpif77
FFLAGS = -I$(BGPHOME)/comm/include -g -O
TRACE_LIB = -L</path/to/libmpitrace.a> -lmpitrace -llicense
LIB1 = -L$(BGPHOME)/comm/lib -lmpich.cnk -ldcmfcoll.cnk -ldcmf.cnk
LIB2 = -L$(BGPHOME)/runtime/SPI -lSPI.cna -lpthread -lrt
statusesf: statusesf.f

$(CC) -o $@ $< $(FFLAGS) $(TRACE_LIB) $(LIB1) $(LIB2)

1.3 Environment variables

In this section, we list and describe the environment variables that are used by the toolkit.

1.3.1 TRACE_ALL_EVENTS

The wrappers can be used in two modes. The default value is set to yes and collects both a
timing summary and a time history of MPI calls that are suitable for graphical display. If this
environment variable is set to yes, it saves a record of all MPI events one after MPI Init(), until
the application completes or until the trace buffer is full. By default, for MPI ranks 0-255, or for
all MPI ranks, if there are 256 or fewer processes in MPI_COMM_WORLD, you can change
this setting by using TRACE_ALL_TASKS or the configuration that is described in 1.5,
“Configuration” on page 10.

Another method is to control the time-history measurement within the application by calling
routines to start or stop tracing. The following examples show these routines for Fortran, C,
and C++:

� Fortran syntax

call trace_start()
do work + mpi ...
call trace_stop()

� C syntax

void trace_start(void);
void trace_start(void);
trace_start();
do work + mpi ...
trace_stop();

� C++ syntax

extern "C" void trace_start(void);
extern "C" void trace_start(void);
trace_start();
do work + mpi ...
trace_stop();
Chapter 1. MPI Profiler and Tracer 3

http://www.research.ibm.com/actc/
http://www.ibm.com

To use one of the previous control methods, the TRACE_ALL_EVENTS variable must be
disabled. Otherwise, it traces all events. You can use one of the following commands,
depending on your shell, to disable the variable:

� bash

export TRACE_ALL_EVENTS=no

� csh

setenv TRACE_ALL_EVENTS no (csh)

1.3.2 TRACE_ALL_TASKS

When saving MPI event records, it is easy to generate trace files that are too large to
visualize. To reduce the data volume, when you set TRACE_ALL_EVENTS=yes, the default
behavior is to save event records from MPI tasks 0-255 or for all MPI processes if there are
256 or fewer processes in MPI COMM WORLD. That should be enough to provide a clear
visual record of the communication pattern.

If you want to save data from all tasks, you must set this environment variable to yes by using
one of the following commands depending on your shell:

� bash

export TRACE_ALL_TASKS=yes

� csh

setenv TRACE_ALL_TASKS yes

1.3.3 TRACE_MAX_RANK

To provide more control, you can set MAX_TRACE_RANK=#. For example, if you set MAX
TRACE RANK=2048, you get trace data from 2048 tasks, 0-2047, provided that you have at
least 2048 tasks in your job. By using the time-stamped trace feature selectively, both in time
(trace start/trace stop) and by MPI rank, you can gain insight into the MPI performance of
large complex parallel applications.

1.3.4 TRACEBACK_LEVEL

In some cases, there might be deeply nested layers on top of MPI and you might need to
profile higher up the call chain (functions in the call stack). You can do this by setting this
environment variable (default value is 0). For example, setting TRACEBACK_LEVEL=1
indicates that the library must save addresses starting with the parent in the call chain
(level = 1), not with the location of the MPI call (level = 0).

1.3.5 SWAP_BYTES

The event trace file is binary, and therefore, it is sensitive to byte order. For example, Blue
Gene/L is big endian, and your visualization workstation is probably little endian (for example,
x86). The trace files are written in little endian format by default.

If you use a big endian system for graphical display, such as Apple OS/X, AIX on the
System p workstation, and so on), you can set an environment variable by using one of the
following commands depending on you shell:
4 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

� bash

export SWAP_BYTES=no

� csh

setenv SWAP_BYTES no

Setting this variable results in a trace file in big endian format when you run your job.

1.3.6 TRACE_SEND_PATTERN (Blue Gene/L and Blue Gene/P only)

In either profiling or tracing mode, there is an option to collect information about the number of
hops for point-to-point communication on the torus network. This feature can be enabled by
setting the TRACE_SEND_PATTERN environment variable as follows depending on your
shell:

� bash

export TRACE_SEND_PATTERN=yes

� csh

setenv TRACE_SEND_PATTERN yes

When you set this variable, the wrappers keep track of the number of bytes that are sent to
each task, and a binary file send bytes.matrix is written during MPI Finalize, which lists the
number of bytes that were sent from each task to all other tasks. The binary file has the
following format:

D00,D01, ...D0n,D10, ...,Dij , ...,Dnn

In this format, the data type Dij is double (in C), and it represents the size of MPI data that is
sent from rank i to rank j. This matrix can be used as input to external utilities that can
generate efficient mappings of MPI tasks onto torus coordinates. The wrappers also provide
the average number of hops for all flavors of MPI Send. The wrappers do not track the
message-traffic patterns in collective calls, such as MPI Alltoall. Only point-to-point send
operations are tracked. AverageHops for all communications on a given processor is
measured as follows:

AverageHops = sum(Hopsi × Bytesi)/sum(Bytesi)

Hopsi is the distance between the processors for MPI communication, and Bytesi is the size
of the data that is transferred in this communication. The logical concept behind this
performance metric is to measure how far each byte has to travel for the communication (in
average). If the communication processor pair is close to each other in the coordinate, the
AverageHops value tends to be small.

1.4 Output

After building the binary executable and setting the environment, run the application as you
normally would do. To have better control for the performance data collected and output, refer
to 1.5, “Configuration” on page 10.
Chapter 1. MPI Profiler and Tracer 5

https://domino

1.4.1 Plain text file

The wrapper for MPI Finalize() writes the timing summaries in mpi profile.taskid files. The
mpi profile.0 file contains a timing summary from each task. Currently, for scalability reasons,
only four ranks, rank 0 and rank with (min,med,max) MPI communication time, generate a
plain text file by default. To change this default setting, one simple function can be
implemented and linked into compilation. Example 1-3 provides the function.

Example 1-3 Function to change the default

control.c:
int MT_output_trace(int rank) {

return 1;
}
mpitrace: mpi_test.c

$(CC) $(CFLAGS) control.o mpi_test.o $(TRACE_LIB) -lm -o $@

Example 1-4 shows an example of mpi profile.0.

Example 1-4 mpi profile.0

elapsed time from clock-cycles using freq = 700.0 MHz

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000
MPI_Comm_rank 1 0.0 0.000
MPI_Isend 21 99864.3 0.000
MPI_Irecv 21 99864.3 0.000
MPI_Waitall 21 0.0 0.014
MPI_Barrier 47 0.0 0.000

total communication time = 0.015 seconds.
total elapsed time = 4.039 seconds.

Message size distributions:
MPI_Isend #calls avg. bytes time(sec)

3 2.3 0.000
1 8.0 0.000
1 16.0 0.000
1 32.0 0.000
1 64.0 0.000
1 128.0 0.000
1 256.0 0.000
1 512.0 0.000
1 1024.0 0.000
1 2048.0 0.000
1 4096.0 0.000
1 8192.0 0.000
1 16384.0 0.000
1 32768.0 0.000
1 65536.0 0.000
1 131072.0 0.000
1 262144.0 0.000
1 524288.0 0.000
1 1048576.0 0.000
6 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

MPI_Irecv #calls avg. bytes time(sec)
3 2.3 0.000
1 8.0 0.000
1 16.0 0.000
1 32.0 0.000
1 64.0 0.000
1 128.0 0.000
1 256.0 0.000
1 512.0 0.000
1 1024.0 0.000
1 2048.0 0.000
1 4096.0 0.000
1 8192.0 0.000
1 16384.0 0.000
1 32768.0 0.000
1 65536.0 0.000
1 131072.0 0.000
1 262144.0 0.000
1 524288.0 0.000
1 1048576.0 0.000

Communication summary for all tasks:
minimum communication time = 0.015 sec for task 0
median communication time = 4.039 sec for task 20
maximum communication time = 4.039 sec for task 30
taskid xcoord ycoord zcoord procid total_comm(sec) avg_hops

0 0 0 0 0 0.015 1.00
1 1 0 0 0 4.039 1.00
2 2 0 0 0 4.039 1.00
3 3 0 0 0 4.039 4.00
4 0 1 0 0 4.039 1.00
5 1 1 0 0 4.039 1.00
6 2 1 0 0 4.039 1.00
7 3 1 0 0 4.039 4.00
8 0 2 0 0 4.039 1.00
9 1 2 0 0 4.039 1.00
10 2 2 0 0 4.039 1.00
11 3 2 0 0 4.039 4.00
12 0 3 0 0 4.039 1.00
13 1 3 0 0 4.039 1.00
14 2 3 0 0 4.039 1.00
15 3 3 0 0 4.039 7.00
16 0 0 1 0 4.039 1.00
17 1 0 1 0 4.039 1.00
18 2 0 1 0 4.039 1.00
19 3 0 1 0 4.039 4.00
20 0 1 1 0 4.039 1.00
21 1 1 1 0 4.039 1.00
22 2 1 1 0 4.039 1.00
23 3 1 1 0 4.039 4.00
24 0 2 1 0 4.039 1.00
25 1 2 1 0 4.039 1.00
26 2 2 1 0 4.039 1.00
27 3 2 1 0 4.039 4.00
Chapter 1. MPI Profiler and Tracer 7

28 0 3 1 0 4.039 1.00
29 1 3 1 0 4.039 1.00
30 2 3 1 0 4.039 1.00
31 3 3 1 0 4.039 7.00

MPI tasks sorted by communication time:
taskid xcoord ycoord zcoord procid total_comm(sec) avg_hops

0 0 0 0 0 0.015 1.00
9 1 2 0 0 4.039 1.00
26 2 2 1 0 4.039 1.00
10 2 2 0 0 4.039 1.00
2 2 0 0 0 4.039 1.00
1 1 0 0 0 4.039 1.00
17 1 0 1 0 4.039 1.00
5 1 1 0 0 4.039 1.00
23 3 1 1 0 4.039 4.00
4 0 1 0 0 4.039 1.00
29 1 3 1 0 4.039 1.00
21 1 1 1 0 4.039 1.00
15 3 3 0 0 4.039 7.00
19 3 0 1 0 4.039 4.00
31 3 3 1 0 4.039 7.00
20 0 1 1 0 4.039 1.00
6 2 1 0 0 4.039 1.00
7 3 1 0 0 4.039 4.00
8 0 2 0 0 4.039 1.00
3 3 0 0 0 4.039 4.00
16 0 0 1 0 4.039 1.00
11 3 2 0 0 4.039 4.00
13 1 3 0 0 4.039 1.00
14 2 3 0 0 4.039 1.00
24 0 2 1 0 4.039 1.00
27 3 2 1 0 4.039 4.00
22 2 1 1 0 4.039 1.00
25 1 2 1 0 4.039 1.00
28 0 3 1 0 4.039 1.00
12 0 3 0 0 4.039 1.00
18 2 0 1 0 4.039 1.00
30 2 3 1 0 4.039 1.00
8 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

1.4.2 The VIZ file

In addition to the mpi profile.taskid files, the library might also generate mpi profile taskid.viz
XML format files that you can view by using the High Performance Computing Toolkit (HPCT)
GUI as shown in Figure 1-1.

Figure 1-1 HPCT GUI
Chapter 1. MPI Profiler and Tracer 9

1.4.3 Trace file

The library also generates a file called single trace. The Peekview utility can (inside the HPCT
GUI or independently) display this trace file as shown in Figure 1-2.

Figure 1-2 Single trace file in the Peekview utility

1.5 Configuration

In this section, we describe a more general way to make the tracing tool configurable, and
thereafter, to allow users to focus on performance points of interest. By providing a flexible
mechanism to control the events that are recorded, the library can remain useful for
large-scale parallel applications.

1.5.1 Configuration functions

Three functions can be rewritten to configure the library. During run time, the return values of
those three functions determine which performance information to store, which process (MPI
rank) will output the performance information, and which performance information to output to
files.

� int MT_trace_event(int);

Whenever an MPI function (profiled or traced) is called, this function is invoked. The
integer passed into this function is the ID number for the MPI function. The return value
is 1 if the performance information should be stored in the buffer. Otherwise, the return
value is 0.

� nt MT_output_trace(int);

This function is called once in MPI Finalize(). The integer passed into this function is the
MPI rank. The return value is 1 if it will output performance information. Otherwise, the
return value is 0.
10 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

� int MT_output_text(void);

This function is called inside the MPI Finalize() function once. The user can rewrite this
function to customize the performance data output, for example as user-defined
performance metrics or data layout.

1.5.2 Data structure

Each data structure that is described in this section is usually used with an associated utility
function to provide user information when implementing configuration functions.

MT_summarystruct
The MT_summarystruct data structure, shown in Example 1-5, holds statistics results, which
include MPI ranks and statistical values, such as Min, Max, Median, Average, and Sum. The
data structure is used together with the MT get allresults() utility function.

Example 1-5 MT_summarystruct data structure

struct MT_summarystruct {
int min_rank;
int max_rank;
int med_rank;
void *min_result;
void *max_result;
void *med_result;
void *avg_result;
void *sum_result;
void *all_result;
void *sorted_all_result;
int *sorted_rank;
};

MT_envstruct
The MT_envstruct data structure (Example 1-6) is used with the MT get environment() utility
function. It holds MPI process self information, including MPI rank (mpirank), total number of
MPI tasks (ntasks), and total number of MPI function types (profiled, traced, or nmpi). For the
Blue Gene/L system, it also provides the process self environment information including x, y,
and z coordinates in the torus, dimension of the torus (xSize, ySize, zSize), the processor ID
(procid), and the CPU clock frequency (clockHz).

Example 1-6 MT_envstruct data structure

struct MT_envstruct {
int mpirank;
int xCoord;
int yCoord;
int zCoord;
int xSize;
int ySize;
int zSize;
int procid;
int ntasks;
double clockHz;
int nmpi;
};
Chapter 1. MPI Profiler and Tracer 11

MT_tracebufferstruct
The MT_tracebufferstruct data structure (Example 1-7) is used together with the MT get
tracebufferinfo() utility function. It holds information about the number of events that are
recorded (number events) and information about memory space (in total, used, or available
in MB) for tracing.

Example 1-7 MT_tracebufferstruct data structure

struct MT_tracebufferstruct {
int number_events;
double total_buffer; /* in terms of MBytes */
double used_buffer;
double free_buffer;
};

MT_callerstruct
The MT_callerstruct data structure, shown in Example 1-8, holds the caller’s information for
the MPI function. It is used with the MT get callerinfo() utility function. The information
includes the source file path, source file name, function name, and line number in the source
file.

Example 1-8 MT_callerstruct data structure

struct MT_callerstruct {
char *filepath;
char *filename;
char *funcname;
int lineno;
};

MT_memorystruct (Blue Gene/L only)
Since the memory space per compute node on the Blue Gene/L system is limited, the
MT_memorystruct data structure (Example 1-9) is used with the MT get memoryinfo() utility
function to provide memory usage information.

Example 1-9 MT_memorystruct data structure

struct MT_memorystruct {
unsigned int max_stack_address;
unsigned int min_stack_address;
unsigned int max_heap_address;
};
12 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

1.5.3 Utility functions

The utility functions provide information for program execution to help the user easily
customize the MPI Profiler and Tracer. In this section, we describe the interface for the utility
functions.

long long MT_get_mpi_counts(int)
The integer passed in is the MPI ID, and the number of call counts for this MPI function is
returned. The MPI ID can be one of the following IDs:

double MT_get_mpi_counts(int)
Similar to the MT get_mpi_counts() function, the double MT_get_mpi_counts(int) function
returns the accumulated size of the data that is transferred by the MPI function.

double MT_get_mpi_time(int)
Similar to the MT get_mpi_counts() function, the double MT_get_mpi_time(int) function
returns the accumulated time that is spent in the MPI function.

double MT_get_avg_hops(void)
The distance between two processors p, q with physical coordinates (xp, yp, zp) and (xq, yq,
zq), is calculated as:

Hops(p, q) = |xp - xq| + |yp - yq| + |zp - zq|

We measure the AverageHops for all communications on a given processor as follows:

AverageHops = sum(Hopsi × Bytesi)/sum(Bytesi)

� ALLGATHER_ID � IPROBE_ID � SEND_INIT_ID

� ALLGATHERV_ID � IRECV_ID � SENDRECV_ID

� ALLREDUCE_ID � IRSEND_ID � SENDRECV_REPLACE_ID

� ALLTOALL_ID � ISEND_ID � SSEND_ID

� ALLTOALLV_ID � ISSEND_ID � SSEND_INIT_ID

� BARRIER_ID � PROBE_ID � START_ID

� BCAST_ID � RECV_ID � STARTALL_ID

� BSEND_ID � RECV_INIT_ID � TEST_ID

� BSEND_INIT_ID � REDUCE_ID � TESTALL_ID

� BUFFER_ATTACH_ID � REDUCE_SCATTER_ID � TESTANY_ID

� BUFFER_DETACH_ID � RSEND_ID � TESTSOME_ID

� COMM_RANK_ID � RSEND_INIT_ID � WAIT_ID

� COMM_SIZE_ID � SCAN_ID � WAITALL_ID

� GATHER_ID � SCATTER_ID � WAITANY_ID

� GATHERV_ID � SCATTERV_ID � WAITSOME_ID

� IBSEND_ID � SEND_ID
Chapter 1. MPI Profiler and Tracer 13

In this equation, Hopsi is the distance between the processors for MPI communication, and
Bytesi is the size of the data transferred in this communication. The logical concept behind
this performance metric is to measure how far each byte must travel for the communication (in
average). If the communication processor pair is close to each other in the coordinate, the
AverageHops value will tend to be small.

double MT_get_time(void)
The double MT_get_time(void) function returns the time since MPI_Init() is called.

double MT_get_elapsed_time(void)
The double MT_get_elapsed_time(void) function returns the time between which MPI_Init()
and MPI Finalize() are called.

char *MT_get_mpi_name(int)
The char *MT_get_mpi_name(int) function returns the name of an MPI ID in a string.

int MT_get_tracebufferinfo(struct MT_tracebufferstruct *)
The int MT_get_tracebufferinfo(struct MT_tracebufferstruct *) function returns the size
of a buffer used or free by the MPI Profiler or Tracer tool at the moment.

unsigned long MT_get_calleraddress(int level)
The unsigned long MT_get_calleraddress(int level) function returns the caller’s address
in memory.

int MT_get_callerinfo(unsigned long caller memory address, struct
MT_callerstruct *)
This function takes the caller memory address (from MT get calleraddress()) and returns
detailed caller information including the path, the source file name, the function name, and the
line number of the caller in the source file.

void MT_get_environment(struct MT_envstruct *)
The void MT_get_environment(struct MT_envstruct *) function returns its own environment
information including MPI rank, physical coordinates, dimension of the block, number of total
tasks, and CPU clock frequency.

int MT_get_allresults(int data type, int mpi id, struct
MT_summarystruct *)
This function returns statistical results, such as min, max, median, and average, on primitive
performance data, for example call counts, size of data transferred, time, and so on, for
specific or all MPI functions. The data type can be one of the following data types, and mpi id
can be one of the MPI IDs listed in 1.5.3, “Utility functions” on page 13, or ALLMPI ID for all
MPI functions:

� COUNTS
� BYTES
� COMMUNICATIONTIME
� STACK
� HEAP
� MAXSTACKFUNC
� ELAPSEDTIME
� AVGHOPS
14 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

file:///C:\temp\HPM_ug.html"
file:///C:\temp\HPM_ug.html"

int MT get_memoryinfo(struct MT_memorystruct *)
The int MT get_memoryinfo(struct MT_memorystruct *) function returns information for
memory usage on the compute node and is only available with the Blue Gene/L system.

In Example 1-10, we re-write the MT_trace_event() and MT output trace() routines with
about 50 lines of code (and use the default version of MT_output_text()) on the Blue Gene/L
system. The function automatically detects the communication pattern and shuts off the
recording of trace events after the first instance of the pattern. Also only MPI ranks of less
than 32 will output performance data at the end of program execution. As shown in the
example, such utility functions as MT_get_time() and MT_get_environment() help the user
easily obtain information that is necessary to configure the library. In this example,
MT_get_time() returns the execution time spent so far, and MT_get_environment() returns the
process personality including its physical coordinates and MPI rank.

Example 1-10 Sample code for the MPI tracing configuration

int MT_trace_event(int id) {
...
now=MT_get_time();
MT_get_environment(&env);
...
/* get MPI function call distribution */
current_event_count=MT_get_mpi_counts();
/* compare MPI function call distribution */
comparison_result
=compare_dist(prev_event_count,current_event_count);
prev_event_count=current_event_count;
/* compare MPI function call distribution */
if(comparison_result==1)
return 0; /* stop tracing */
else
return 1; /* start tracing */
}
int MT_output_trace(int rank) {
if (rank < 32)
return 1; /* output performance data */
else
return 0; /* no output */
}

Chapter 1. MPI Profiler and Tracer 15

1.6 Related issues

In this section, we describe related issues for the MPI Profiler and Tracer.

1.6.1 Overhead

The library implements wrappers that use the MPI profiling interface and have the following
form:

int MPI_Send(...) {
start_timing();
PMPI_Send(...);
stop_timing();
log_the_event();
}

When event tracing is enabled, the wrappers save a time-stamped record of every MPI call for
graphical display. This record adds some overhead, about 1-2 microseconds per call. The
event-tracing method uses a small buffer in memory, up to 3 × 104 events per task. Therefore,
this method is best suited for short-running applications or time-stepping codes for a few
steps. To further trace or profile a large scale application, configuration might be required to
improve the scalability. Refer to 1.5, “Configuration” on page 10, for details.

1.6.2 Multithreading

The current version of the MPI profiling and tracing library is not thread-safe. Therefore, use it
in single-threaded applications or when only one thread makes MPI calls. The wrappers can
be made thread-safe by adding mutex locks around updates of static data. These locks can
add additional overhead.
16 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Chapter 2. CPU profiling using Xprofiler

Xprofiler for the Blue Gene/P system is a tool that helps you analyze your application
performance. It uses data collected by the -pg compiler option to construct a graphical display
of the functions within your application. Xprofiler provides quick access to the profiled data,
which lets you identify the functions that are the most CPU intensive. The GUI also lets you
manipulate the display in order to focus on the critical areas of the application.

2

© Copyright IBM Corp. 2007. All rights reserved. 17

2.1 Starting Xprofiler

You start Xprofiler by issuing the Xprofiler command from the command line. You must also
specify the executable, profile data file or files, and options, which you can do in one of two
ways. You can either specify them on the command line, with the Xprofiler command, or you
can issue the Xprofiler command alone and then specify the options from within the GUI.

To start Xprofiler and specify the executable, profile data file or files, and options from the
command line, enter:

Xprofiler a.out gmon.out... [options]

a.out is the name of your binary executable file, and gmon.out is the name of your profile data
file or files. options can be one or more of the options listed in Table 2-1.

Table 2-1 Xprofiler options

Option Syntax Description

-b Xprofiler -b a.out
gmon.out

This option suppresses the printing of the field descriptions for the Flat
Profile, Call Graph Profile, and Function Index reports when they are written
to a file with the Save As option of the File menu.

-s Xprofiler -s a.out
gmon.out.1 gmon.out.2
gmon.out.3

If multiple gmon.out files are specified when Xprofiler is started, this option
produces the gmon.sum profile data file. The gmon.sum file represents the
sum of the profile information in all the specified profile files. Note that if you
specify a single gmon.out file, the gmon.sum file contains the same data as
the gmon.out file.

-z Xprofiler -z a.out
gmon.out

This option includes functions that have both zero CPU usage and no call
counts in the Flat Profile, Call Graph Profile, and Function Index reports. A
function will not have a call count if the file that contains its definition was not
compiled with the -pg option, which is common with system library files.

-a Xprofiler -a
pathA:@:pathB

This option adds alternative paths to search for source code and library files,
or changes the current path search order. When using this command line
option, you can use the at sign (@) to represent the default file path, in order
to specify that other paths be searched before the default path.

-c Xprofiler a.out
gmon.out -c
config_file_name

This option loads the specified configuration file. If the -c option is used on
the command line, the configuration file name specified with it is displayed
in the Configuration File (-c): text field, in the Loads Files window, and the
Selection field of the Load Configuration File window. When both the -c and
-disp_max options are specified on the command line, the -disp_max option
is ignored. However, the value that was specified with it is displayed in the
Initial Display (-disp_max): field in the Load Files window the next time it is
opened.

-disp_max Xprofiler -disp_max 50
a.out gmon.out

This option sets the number of function boxes that Xprofiler initially displays
in the function call tree. The value that is supplied with this flag can be any
integer between 0 and 5,000. Xprofiler displays the function boxes for the
most CPU-intensive functions through the number that you specify. For
instance, if you specify 50, Xprofiler displays the function boxes for the 50
functions in your program that consume the most CPU. After this, you can
change the number of function boxes that are displayed via the Filter menu
options. This flag has no effect on the content of any of the Xprofiler reports.
18 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

-e Xprofiler -e foo -e bar
a.out gmon.out

This option de-emphasizes the general appearance of the function box or
boxes for the specified function or functions in the function call tree. This
option also limits the number of entries for these function in the Call Graph
Profile report. This also applies to the specified function’s descendants, as
long as they have not been called by non-specified functions.

In the function call tree, the function box or boxes for the specified function
or functions appears to be unavailable. Its size and the content of the label
remain the same. This also applies to descendant functions, as long as they
have not been called by non-specified functions.

In the Call Graph Profile report, an entry for the specified function only
appears where it is a child of another function or as a parent of a function
that also has at least one non-specified function as its parent. The
information for this entry remains unchanged. Entries for descendants of the
specified function do not appear unless they have been called by at least one
non-specified function in the program.

-E Xprofiler -E foo -E bar
a.out gmon.out

This option changes the general appearance and label information of the
function box or boxes for the specified function or functions in the function
call tree. In addition, this option limits the number of entries for these
functions in the Call Graph Profile report and changes the CPU data that is
associated with them. These results also apply to the specified function’s
descendants, as long as they have not been called by non-specified
functions in the program.

In the function call tree, the function box for the specified function appears to
be unavailable, and its size and shape also change so that it appears as a
square of the smallest allowable size. In addition, the CPU time shown in the
function box label appears as zero. The same applies to function boxes for
descendant functions, as long as they have not been called by non-specified
functions. This option also causes the CPU time spent by the specified
function to be deducted from the left side CPU total in the label of the
function box for each of the specified ancestors of the function.

In the Call Graph Profile report, an entry for the specified function only
appears where it is a child of another function or as a parent of a function
that also has at least one non-specified function as its parent. When this is
the case, the time in the self and descendants columns for this entry is set
to zero. In addition, the amount of time that was in the descendants column
for the specified function is subtracted from the time listed under the
descendants column for the profiled function. As a result, be aware that the
value listed in the % time column for most profiled functions in this report will
change.

Option Syntax Description
Chapter 2. CPU profiling using Xprofiler 19

2.2 Understanding the Xprofiler display

The primary difference between Xprofiler and the UNIX® gprof command is that Xprofiler
gives a graphical picture of the CPU consumption of your application in addition to textual
data. This information allows you to focus quickly on the areas of your application that
consume a disproportionate amount of CPU.

Xprofiler displays your profiled program in a single main window. It uses several types of
graphic images to represent the relevant parts of your program. Functions are displayed as
solid green boxes, called function boxes, and the calls between them are displayed as blue
arrows, called call arcs. The function boxes and call arcs that belong to each library within
your application are displayed within a fenced-in area called a cluster box.

-f Xprofiler -f foo -f bar
a.out gmon.out

This option de-emphasizes the general appearance of all function boxes in
the function call tree, except for that of the specified function or functions and
its descendant or descendants. In addition, the number of entries in the Call
Graph Profile report for the non-specified functions and non-descendant
functions is limited. The -f flag overrides the -e flag.

In the function call tree, all function boxes, except for that of the specified
function or functions and its descendant or descendants, appear to be
unavailable. The size of these boxes and the content of their labels remain
the same. For the specified function or functions, and its descendant or
descendants, the appearance of the function boxes and labels remains the
same.

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only appears where it is a parent or child of a
specified function or one of its descendants. All information for this entry
remains the same.

-F Xprofiler -F foo -F bar
a.out gmon.out

This option changes the general appearance and label information of all
function boxes in the function call tree, except for that of the specified
function or functions and its descendants. In addition, the number of entries
in the Call Graph Profile report for the non-specified and non-descendant
functions is limited, and the CPU data associated with them is changed. The
-F flag overrides the -E flag.

In the function call tree, all function boxes, except for that of the specified
function or functions and its descendant or descendants, appear to be
unavailable. The size and shape of these boxes change so that they are
displayed as squares of the smallest allowable size. In addition, the CPU
time shown in the function box label appears as zero.

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only is displayed where it is a parent or child of a
specified function or one of its descendants. When this is the case, the time
in the self and descendants columns for this entry is set to zero. As a result,
be aware that the value listed in the % time column for most profiled
functions in this report will change.

-L Xprofiler -L
/lib/profiled

This option sets the path name for locating shared libraries. If you plan to
specify multiple paths, use the Set File Search Paths option of the File menu
on the Xprofiler GUI.

Option Syntax Description
20 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

The Xprofiler main window contains a graphical representation of the functions and calls
within your application as well as their inter-relationships. In the main window, Xprofiler shows
the function call tree. The function call tree shows the function boxes, call arcs, and cluster
boxes that represent the functions within your application.

When Xprofiler first opens, by default, the function boxes for your application are clustered by
library. This type of clustering means that a cluster box appears around each library, and the
function boxes and call arcs within the cluster box are reduced in size. If you want to see more
detail, you must uncluster the functions by selecting File → Uncluster Functions.

2.2.1 Xprofiler main menus

Along the upper portion of the main window is the menu bar. The left side of the menu bar
contains the Xprofiler menus that let you work with your profiled data. In this section, we
describe each of the menus:

� File menu

With the File menu, you specify the executable (a.out) files and profile data (gmon.out)
files that Xprofiler will use. You also use this menu to control how your files are accessed
and saved.

� View menu

You use the View menu to help you focus on portions of the function call tree, in the
Xprofiler main window, in order to have a better view of the application’s critical areas.

� Filter menu

Using the Filter menu, you can add, remove, and change specific parts of the function call
tree. By controlling what Xprofiler displays, you can focus on the objects that are most
important to you.

� Report menu

The Report menu provides several types of profiled data in a textual and tabular format.
With the options of the Report menu, you can display textual data, save it to a file, view the
corresponding source code, or locate the corresponding function box or call arc in the
function call tree, in addition to presenting the profiled data.

� Utility menu

The Utility menu contains one option, Locate Function By Name, with which you can
highlight a particular function box in the function call tree.

� Function menu

You can perform a number of operations for any of the functions shown in the function call
tree by using the Function menu. You can access statistical data, look at source code, and
control which functions are displayed.

The Function menu is not visible from the Xprofiler window. To access it, you right-click the
function box of the function in which you are interested. By doing this, you only open the
Function menu and also select this function. Then, when you select actions from the
Function menu, they are applied to this function.

� Arc menu

With the Arc menu, you can locate the caller and callee functions for a particular call arc. A
call arc represents a call between two functions within the function call tree.

The Arc menu is not visible from the Xprofiler window. You access it by right-clicking the
call arc in which you are interested. By doing this, you open the Arc menu and also select
Chapter 2. CPU profiling using Xprofiler 21

that call arc. Then, when you perform actions with the Arc menu, they are applied to that
call arc.

� Cluster Node menu

Using the Cluster Node menu, you can control the way your libraries are displayed by
Xprofiler. In order to access the Cluster Node Menu, the function boxes, in the function call
tree, must first be clustered by library. When the function call tree is clustered, all the
function boxes within each library are displayed within a cluster box.

The Cluster Node menu is not visible from the Xprofiler window. You access it by
right-clicking the edge of the cluster box in which you are interested. By doing this, you
open the Cluster Node menu and also select that cluster. Then, when you perform actions
with the Cluster Node menu, they are applied to the functions within that library cluster.
Display Status Field at the bottom of the Xprofiler window is a single field that tells you:

– The name of your application.
– The number of gmon.out files used in this session.
– The total amount of CPU used by the application.
– The number of functions and calls in your application and how many are currently

displayed.

2.2.2 Elements of the function call tree

The graphical representation of the functions within a program are displayed in the main
window of Xprofiler. Each function can be viewed individually or grouped into cluster boxes. In
this section, we describe how to interpret and manipulate the functions contained in the
display.

Functions
Functions are represented by green, solid-filled boxes in the function call tree:

� The size and shape of each function box indicates its CPU usage.

� The height of each function box represents the amount of CPU time it spent on executing
itself.

� The width of each function box represents the amount of CPU time it spent on executing
itself, plus its descendant functions.

As a result, a function box that is wide and flat represents a function that uses a relatively
small amount of CPU on itself. That is, it spends most of its time on its descendants. However,
the function box for a function that spends most of its time executing only itself is roughly
square shaped.

Under each function box in the function call tree is a label that contains the name of the
function and related CPU usage data. For information about the function box labels, see 2.3,
“Getting performance data for your application” on page 31.

Figure 2-1 shows the function boxes for two functions, sub1 and printf, as they might appear
in the Xprofiler display. Each function box has its own menu. To access it, move your mouse
pointer over the function box of the function in which you are interested, and right-click. Each
function also has an information box from which you can get basic performance information
quickly. To access the information box, move your mouse pointer over the function box of the
function in which you are interested, and click.

The calls made between each of the functions in the function call tree are represented by blue
arrows that extend between their corresponding function boxes. These lines are called call
arcs. Each call arc appears as a solid blue line between two function boxes. The arrowhead
22 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

indicates the direction of the call. The function represented by the function box it points to is
the one that receives the call. The function that makes the call is known as the caller, while
the function receiving the call is known as the callee.

Each call arc includes a numerical label that tells you the number of calls that were
exchanged between the two corresponding functions.

Figure 2-1 Sample functions

Library clusters
With Xprofiler, you can collect the function boxes and call arcs that belong to each of your
shared libraries into cluster boxes. Since there is a box around each library, the individual
function boxes and call arcs are difficult to see. If you want to see more detail, you must
uncluster the function boxes by selecting Filter → Uncluster Functions.

When viewing function boxes within a cluster box, notice that the size of each function box is
relative to those of the other functions within the same library cluster. However, when all the
libraries are unclustered, the size of each function box is relative to all the functions in the
application, as shown in the function call tree.

Each library cluster has its own menu with which you can manipulate the cluster box. To
access it, move your mouse pointer over the edge of the cluster box in which you are
interested and right-click. Each cluster also has an information box that shows you the name
of the library and the total CPU usage (in seconds) for the functions within it. To access the
information box, move your mouse pointer over the edge of the cluster box in which you are
interested and click.
Chapter 2. CPU profiling using Xprofiler 23

2.2.3 Manipulating the Xprofiler display

You can look at your profiled data a number of ways by using Xprofiler, depending on what
you want to see. Xprofiler provides the following functions:

� Navigation that lets you move around the display and zoom in on specific areas
� Display options, based on your personal viewing preferences
� Filtering capability so that you can include and exclude certain objects from the display
� Zooming in on the function call tree
� Filtering capabilities on what you see
� Clustering together of libraries
� Location of specific objects in the function call tree
� Customization of Xprofiler resources

We explain some of these functions in the sections that follow.

Zooming in on the function call tree
With Xprofiler, you can magnify specific areas of the window to gain a better view of your
profiled data. The View menu includes the following options for you to do this:

� Overview
� Zoom In
� Zoom Out

To resize a specific area of the display, select View → Overview. In the Overview Window is
a miniature view of the function call tree, just as it is displayed in the Xprofiler main window.
When you open the Overview window, the highlighted area represents the current view of the
main window.

You control the size and placement of the highlighted area with your mouse. Depending on
where you place your cursor over the highlighted area, your cursor changes to indicate the
operation that you can perform:

� Two crossed arrows

When your cursor appears as two crossed arrows, you can control where the box is placed
by clicking and holding down your left mouse button.

� Line with perpendicular arrow

When your cursor appears as a line with an arrow perpendicular to it, your mouse pointer
has grabbed the edge of the highlighted area, and you can now resize it.

By pressing and holding down your left mouse button, and then dragging it in or out, you
can increase or decrease the size of the box. Notice that, as you move the edge in or out,
the size of the entire highlighted area changes.

� Right angle with pointed arrow

When your cursor appears as a right angle with an arrow pointing into it, your mouse
pointer has grabbed the corner of the highlighted area and you can now resize it.

By pressing and holding down your left mouse button, and dragging it diagonally up or
down, you can increase or decrease the size of the box. Notice that, as you move the
corner up or down, the size of the entire highlighted area changes.
24 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

You can also zoom in or out on a specific area of the function call tree:

1. Place your cursor within the light blue highlighted area. Notice that the cursor changes to
four crossed arrows. This indicates that your cursor has control over the placement of the
box.

2. Move your cursor over one of the four corners of the highlighted area. Notice that the
cursor changes to a right angle with an arrow pointing into it. This indicates that you now
have control over the corner of the highlighted area.

3. Press and hold down your left mouse button, and drag the corner of the box diagonally
inward. The box shrinks as you move it.

4. When the highlighted area is as small as you want it, release the mouse button. The
Xprofiler main display redraws itself to contain only the functions within the highlighted
area, and in the same proportions. This function has the effect of magnifying the items
within the highlighted area.

5. Move your cursor over the highlighted area. Again it changes to four crossed arrows to
indicate that you have control over placement of the highlighted area. Press and hold
down the left mouse button and drag the highlighted area to the area of the Xprofiler
display that you want to magnify.

6. Release the mouse button. The main Xprofiler display now contains the items in which you
are interested.

Filtering your view
When Xprofiler first opens, the entire function call tree is displayed in the main window. This
includes the function boxes and call arcs that belong to your executable as well as the shared
libraries that it uses. At times, you might want to simplify what you see in the main window.
There are a number of ways to do this.

Using the Filtering options of the Filter menu, you can change the appearance of the function
call tree only. The performance data contained in the reports, via the Reports menu, is not
affected.

Displaying the entire function call tree
When you first open Xprofiler, all the function boxes and call arcs of your executable and its
shared libraries appear in the main window (Figure 2-2 on page 26). After that, you can
choose to filter out specific items from the window. However, there might be times when you
want to see the entire function call tree again without reloading your application. To display
the entire tree, select Filter → Show Entire Call Tree. Xprofiler erases whatever is currently
displayed in the main window and replaces it with the entire function call tree.
Chapter 2. CPU profiling using Xprofiler 25

Figure 2-2 Xprofiler before filters

Filtering shared library functions
In most cases, your application will call functions that are within shared libraries. This means
that these shared libraries will appear in the Xprofiler window along with your executable. As a
result, the window can become crowded and obscure the items that you really want to see. If
this is the case, you might want to filter the shared libraries from the display.

To filter the shared libraries, select Filter → Remove All Library Calls. The shared library
function boxes disappear from the function call tree, leaving only the function boxes of your
executable file visible (see Figure 2-3).

Figure 2-3 Xprofiler with library calls filtered
26 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

If you removed the library calls from the display, you might want to add all or some of the
library calls back. To add library calls to the display, select File → Add Library Calls. Once
again, the function boxes are displayed with the function call tree. Note, however, that all of
the shared library calls that were in the initial function call tree might not be added back. The
Add Library Calls option only adds back the function boxes for the library functions that were
called by functions that are currently displayed in the Xprofiler window.

If you only want to add specific function boxes back to the display, select Filter → Filter by
Function Names (see Figure 2-4). When the window opens, click the Add these functions
to graph button. Then in the Enter Function name field, type the name of the function. You
can add more than one function by using this method. Each of the functions that you enter
must be separated by a space.

Figure 2-4 Xprofiler with the function box added

If multiple functions in your program include the strings that you enter in their names, the filter
applies to each one. For example, say that you specified sub and print, and your program
also included the functions named sub1, psub1, and printf. The sub, sub1, psub1, print, and
printf functions will all be added to the graph.

Filtering by function characteristics
The Filter menu of Xprofiler offers three options to add or subtract function boxes from the
main window, based on specific characteristics:

� Filter by function name
� Filter by CPU time
� Filter by call counts

Each one of these options uses a different window so that you can specify the criteria by
which you want to include or exclude function boxes from the window.
Chapter 2. CPU profiling using Xprofiler 27

Filter by function name
To filter by function name, select Filter → Filter by Function Names. A window opens that
presents three options:

� Add these functions to graph
� Remove these functions from the graph
� Display only these functions

Click the button for the option you want, and then, in the Enter function name field, type the
name of the function to which you want the filter applied to. For example, if you want to
remove the function box for a function called fprint, from the main window, you click the
Remove this function from the graph button.

Then in the Enter function name field, type fprint. You can enter more than one function
name in this field. If there are multiple functions in your program that include the strings that
you enter in their names, the filter applies to each one. For example, you specified sub and
print, and your program also included the functions named sub1, psub1, and printf. The sub,
sub1, psub1, print, and printf functions will all be added to the graph.

Filter by CPU time
To Filter by CPU time, select Filter → Filter by CPU Time. The Filter by CPU Time window
that opens presents two options:

� Show functions consuming the most CPU time
� Show functions consuming the least CPU time

Click the button for the option that you want. Then use the slider to specify the number of
function boxes that you want displayed. For example, if you want to display the function
boxes for the 10 functions in your application that consumed the most CPU, you click the
Show functions consuming the most CPU button. Then you specify 10 with the slider and
click the OK button. The function call tree then updates to reflect the options that you
selected.

Filter by call counts
To filter by call counts, select Filter → Filter by Call Counts. A window opens that provides
two choices:

� Show arcs with the most call counts
� Show arcs with the least call counts

Click the button for the option that you want. Then use the slider to specify the number of arcs
that you want displayed. For example, if you want to display the 10 call arcs in your application
that represented the least number of calls, you click the Show arcs with the least call
counts button and specify 10 with the slider.

Including and excluding parent and child functions
When tuning the performance of your application, you will want to know which functions
consumed the most CPU time. Then you will need to ask several questions in order to
understand their behavior:

� Where did each function spend most of the CPU time?
� What other functions called this function?
� Were the calls made directly or indirectly?
� What other functions did this function call?
� Were the calls made directly or indirectly?
28 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

When you understand how these functions behave and can improve their performance, you
can move on to analyzing the functions that consume less CPU.

When your application is large, the function call tree will also be large. As a result, the
functions that are the most CPU-intensive might be difficult to see in the function call tree. To
work around this, select Filter → Filter by CPU, which lets you display only the function
boxes for the functions that consume the most CPU time. After you have done this, the
Function menu for each function lets you add the parent and descendant function boxes to
the function call tree. By doing this, you create a smaller, simpler function call tree that
displays the function boxes associated with the most CPU-intensive area of the application.

A child function is one that is directly called by the function of interest. To see only the
function boxes for the function of interest and its child functions:

1. Move your mouse pointer over the function box in which you are interested.

2. Right-click to access the Function menu, and select Immediate Children → Show Child
Functions Only.

Xprofiler erases the current display and replaces it with only the function boxes for the
function you chose, plus its child functions.

A parent function is one that directly calls the function of interest. To see only the function
boxes for the function of interest and its parent functions:

1. Move your mouse pointer over the function box in which you are interested.

2. Right-click to access the Function menu, and select Immediate Parents → Show Parent
Functions Only.

Xprofiler erases the current display and replaces it with only the function boxes for the
function that you chose plus its parent functions.

There might be times when you want to see the function boxes for both the parent and child
functions of the function in which you are interested, without erasing the rest of the function
call tree. This is especially true if you chose to display the function boxes for two or more of
the most CPU-intensive functions with the Filter by CPU option of the Filter menu. You
suspect that more than one function is consuming too much CPU. To see these function
boxes for both the parent and child functions:

1. Move your mouse pointer over the function box in which you are interested.

2. Right-click to access the Function menu, and select Immediate Parents → Add Parent
Functions to Tree. Xprofiler leaves the current display as it is, but adds the parent
function boxes.

3. Move your mouse pointer over the same function box.

4. Right-click to access the Function menu, and select Immediate Children → Add Child
functions to Tree. Xprofiler leaves the current display as it is, but now adds the child
function boxes in addition to the parent function boxes.

Locating specific objects in the function call tree
If you are interested in one or more specific functions in a complex program, you might need
help locating their corresponding function boxes in the function call tree. If you want to locate
a single function and you know its name, you can use the Locate Function By Name option of
the Utility menu.
Chapter 2. CPU profiling using Xprofiler 29

To locate a function by name:

1. Select the Utility → Locate Function By Name option.

2. In the Search By Function Name Dialog window, in the Enter Function Name field, type
the name of the function you want to locate. The function name you type here must be a
continuous string. It cannot include blanks. Then click either the OK or Apply button.

The corresponding function box is highlighted (its color changes to red) in the function call
tree and Xprofiler zooms in on its location. To display the function call tree in full detail again,
select View → Overview.

There might also be times when you want to see only the function boxes for the functions that
you are concerned with, plus other specific functions that are related to it. For instance,
suppose you want to see all the functions that directly called the function in which you are
interested. It is not easy to select these function boxes when you view the entire call tree, so
you want to display them, plus the function of interest alone. Each function has its own menu,
called a Function menu. Via the Function menu, you can choose to see the following
functions for the function in which you are interested:

� Parent functions: Functions that directly call the function of interest

� Child functions: Functions that are directly called by the function of interest

� Ancestor functions: Functions that can call, directly or indirectly, the function of interest

� Descendant functions: Functions that can be called, directly or indirectly, by the function of
interest

� Functions that belong to the same cycle

When you use these options, Xprofiler erases the current display and replaces it with only the
function boxes for the function of interest and all the functions of the type that you specified.

Locating and displaying parent functions
A parent is any function that directly calls the function in which you are interested. To locate
the parent function boxes of the function in which you are interested:

1. Right-click the function box of interest to open the Function menu.

2. From the Function menu, select Immediate Parents → Show Parent Functions Only.
Xprofiler redraws the display to show you only the function boxes for the function of
interest and its parent functions.

Locating and displaying child functions
A child is any function that is directly called by the function in which you are interested. To
locate the function boxes for the children of the function in which you are interested:

1. Right-click the function box of interest to open the Function menu.

2. From the Function menu, select Immediate Children → Show Child Functions Only.
Xprofiler redraws the display to show you only the function boxes for the function of
interest and its child functions.
30 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Locating and displaying ancestor functions
An ancestor is any function that can call, directly or indirectly, the function in which you are
interested. To locate ancestor functions:

1. Right-click the function box of interest to open the Function menu.

2. From the Function menu, select All Paths To → Show Ancestor Functions Only.
Xprofiler redraws the display to show you only the function boxes for the function of
interest and its ancestor functions.

Locating and displaying descendant functions
A descendant is any function that can be called, directly or indirectly, by the function in which
you are interested. To locate the descendant functions:

1. Right-click the function box of interest to open the Function menu.

2. From the Function menu, select All Paths From → Show Descendant Functions Only.
Xprofiler redraws the display to show you only the function boxes for the function of
interest and its descendant functions.

Locating and displaying functions on a cycle
To locate the functions that are on the same cycle as the function in which you are interested:

1. Right-click the function box of interest to open the Function menu.

2. From the Function menu, select All Functions on the Cycle → Show Cycle Functions
Only. Xprofiler redraws the display to show you only the function of interest and all the
other functions on its cycle.

2.3 Getting performance data for your application

With Xprofiler, you can obtain performance data for your application on a number of levels
and in a number of ways. You can easily view data that pertains to a single function, or you
can use the reports that are provided to obtain information about your application as a whole.

Getting basic data
Xprofiler makes it easy to obtain data on specific items in the function call tree. After you
locate the item in which you are interested, you can gather function data, call data, or cluster
data.

Basic function data
Below each function box in the function call tree is a label that contains basic performance
data. Figure 2-5 shows the function box for the function main and its label.

Figure 2-5 Function box
Chapter 2. CPU profiling using Xprofiler 31

The label contains the following information:

� The name of the function, its associated cycle, if any, and its index

In the example in Figure 2-5, the name of the function is main, and its index is [3]. It is not
associated with a cycle.

� The total amount of CPU time (in seconds) this function spent on itself plus the amount of
CPU time it spent on its descendants (the number to the left of the x)

In Figure 2-5, the function main spent 0.100 seconds on itself, plus its descendants.

� The amount of CPU time (in seconds) this function spent only on itself (the number to the
right of the x)

In Figure 2-5, the function main spent 0.010 seconds on itself.

Since labels are not always visible in the Xprofiler window when it is fully zoomed out, you
might need to zoom in to see the labels.

Basic call data
Call arc labels are displayed over each call arc as shown in Figure 2-6. The label shows the
number of calls that were made between the two functions (from caller to callee).

Figure 2-6 Call arc labels

Basic cluster data
Cluster box labels indicate the name of the library that is represented by that cluster. If it is a
shared library, the label shows its full path name.

Information boxes
For each function box, call arc, and cluster box, there is a corresponding information box that
you can access with your mouse. It provides the same basic data that is displayed on the
label. This is useful when the Xprofiler display is fully zoomed out and the labels are not
visible. To access the information box, click the function box, call arc, or cluster box (place it
over the edge of the box).

For a function, the information box contains the following details:

� The name of the function, its associated cycle, if any, and its index

� The amount of CPU used by this function

Two values are supplied in this field:

– The first value is the amount of CPU time that is spent on this function plus the time
spent on its descendants.

– The second value represents the amount of CPU time this function spent only on itself.

� The number of times this function was called (by itself or any other function in the
application)
32 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

For a call, the information box contains the following details:

� The caller and callee functions (their names) and their corresponding indexes
� The number of times the caller function called the callee

For a cluster, the information box contains the following details:

� The name of the library
� The total CPU usage (in seconds) used by the functions within it

Statistics Report option of the Function menu
You can obtain performance statistics for a single function via the Statistics Report option of
the Function menu. With this option, you can see data on the CPU usage and call counts of
the selected function. If you are using more than one gmon.out file, this option breaks down
the statistics per each gmon.out file that you use.

When you select the Statistics Report menu option, the Function Level Statistics Report
window opens and contains the following information:

� Function name

The name of the function you selected.

� Summary data

The total amount of CPU used by this function and the number of times it was called. If you
used multiple gmon.out files, the value shown here represents their sum.

� CPU usage

The amount of CPU used by this function. Two values are supplied in this field:

– The first value is the amount of CPU time spent on this function plus the time spent on
its descendants.

– The second value represents the amount of CPU time this function spent only on itself.

� Call counts

The number of times this function called itself, plus the number of times it was called by
other functions:

– The average (Average) number of calls made to this function, or by this function, per
gmon.out file.

– Standard Deviation (Std Dev), which is the value that represents the difference in call
count sampling, per function, from one gmon.out file to another. A small standard
deviation value in this field means that the function was almost always called the same
number of times in each gmon.out file.

– The maximum (Maximum) number of calls made to this function or by this function in a
single gmon.out file. The corresponding gmon.out file is displayed to the right.

– The minimum (Minimum) number of calls made to this function or by this function in a
single gmon.out file. The corresponding gmon.out file is displayed to the right.

� Statistics data

The CPU usage and calls made to or by this function, broken down by gmon.out file:

– The average (Average) CPU time used by the data in each gmon.out file.

– Standard deviation (Std Dev) which is the value that represents the difference in CPU
usage samplings, per function, from one gmon.out file to another. The smaller the
standard deviation is, the more balanced the workload is.
Chapter 2. CPU profiling using Xprofiler 33

– Of all the gmon.out files, the maximum (Maximum) amount of CPU time used by all
calls to this function. The corresponding gmon.out file is displayed to the right.

– Of all the gmon.out files, the minimum (Minimum) amount of CPU time used by all calls
to this function. The corresponding gmon.out file is displayed to the right.

Getting detailed data via reports
Xprofiler provides CPU usage data in textual and tabular format. This data is provided in
various tables called reports. If you are a gprof user, you are familiar with the Flat Profile, Call
Graph Profile, and Function Index reports. Xprofiler generates these same reports, in the
same format, plus two others.

You can access the Xprofiler reports from the Report menu. With the Report menu, you can
see the following reports:

� Flat Profile
� Call Graph Profile
� Function Index
� Function Call Summary
� Library Statistics

Each report window also includes a Search Engine field, which is located at the bottom of the
window. Using the Search Engine field, you can search for a specific string in the report. Each
of the Xprofiler reports is explained in the sections that follow.

Flat Profile report
When you select the Flat Profile menu option, the Flat Profile window opens. The Flat Profile
report shows the total execution times and call counts for each function, including shared
library calls, within the application. The entries for the functions that use the greatest
percentage of the total CPU usage are displayed at the top of the list, while the remaining
functions appear in descending order, based on the amount of time used.

Note that the data that is presented in the Flat Profile window is the same data that is
generated with the UNIX gprof command.

Call Graph Profile report
Using the Call Graph Profile menu option, you can view the functions of your application,
sorted by the percentage of total CPU usage that each function, and its descendants,
consumed. When you select this option, a new Call Graph Profile window opens.

Function Index report
With the Function Index menu option, you can view a list of the function names that are
included in the function call tree. When you select this option, the Function Index window
opens and shows the function names in alphabetical order. To the left of each function name
is its index, enclosed in brackets, for instance [2].

Fields of the Function Call Summary window
The Function Call Summary window contains the following fields:

� %total

The percentage of the total number of calls generated by this caller-callee pair.

� calls

The number of calls attributed to this caller-callee pair.
34 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

� function

The name of the caller function and callee function.

Library Statistics report
When you select the Library Statistics menu option, a window opens that shows the CPU time
consumed and call counts of each library within your application.

Viewing the source and disassembler code
Xprofiler provides several ways for you to view your code. You can view the source or
disassembler code for your application on a per-function basis. This ability also applies to any
included code your application may use.

When you view source or included function call code, you use the Source Code window.
When you view disassembler code, you use the Disassembler Code window. You can access
these windows through the Report menu of the Xprofiler GUI or the Function menu of the
function that you have selected.

Viewing source code
Both the Function menu and Report menu provide the means for you to access the Source
Code window, from which you view your code.

To access the Source Code window via the Function menu:

1. Right-click the function box to open the Function menu.

2. Select the Show Source Code option.

To access the Source Code window via the Report menu:

1. Select Report → Flat Profile.

2. In the Flat Profile window, click the entry of the function that you want to view. The entry is
highlighted to show that it is selected.

3. Select Code Display → Show Source Code.

The Source Code window opens and shows the source code for the function that you
selected.

Using the Source Code window
The Source Code window shows only the source code file for the function that you specified
from the Flat Profile window or Function menu. It contains information in the following fields:

� Line

This is the source code line number.

� No. ticks per line

Each tick represents .01 seconds of CPU time used. The number that is displayed in this
field represents the number of ticks that are used by the corresponding line of code. For
instance, if the number 3 is displayed in this field, for a source statement, this source
statement has used .03 seconds of CPU time. Note that the CPU usage data is displayed
only in this field if you used the -g option when you compiled your application. Otherwise,
this field is blank.

� Source code

This is the application’s source code.
Chapter 2. CPU profiling using Xprofiler 35

� Search Engine

Using the Search Engine field at the bottom of the Source Code window, you can search
for a specific string in your source code.

The Source Code window contains the following menus:

� File menu

With the Save As option, you can save the annotated source code to a file. When you
select this option, the Save File Dialog window opens. Click Close if you want to close the
Source Code window.

� Utility menu

The Utility menu contains only one option, Show Included Functions. Using the Show
Included Functions option, you can view the source code of files that are included by the
application’s source code. If a selected function does not have an included function file
associated with it, or does not have the function file information available because the -g
option was not used for compiling, the Utility menu will be unavailable.

The availability of the Utility menu serves as an indication of whether there is any included
function file information associated with the selected function. Be aware that, when you
display a selected function’s source code, the function name shown in the Search Engine
area of the Source Code window does not match any function shown in the code display if
the selected function is an included function that is called by more than one function. In
this case, the selected function resides in one of the included function files of the caller
function. Therefore, if you cannot find the function that you selected in the Source Code
window, and the Utility menu is activated, use the Utility menu to select the proper
included function file. If you cannot find the selected function in the Source Code window
and the Utility menu is unavailable, you can assume that the program was not compiled
with the -g flag.

When you select the Show Included Functions option, the Included Functions Dialog
window opens, which lists all of the included function files. Specify a file by either clicking
one of the entries in the list or by typing the file name in the Selection field. Then click
either the OK or Apply button. After selecting a file from the Included Functions Dialog
window, the Included Function File window opens, displaying the source code for the file
that you specified.

Viewing disassembler code
Both the Function and Report menus provide the means for you to access the Disassembler
Code window, from which you can view your code.

To access the Disassembler Code window via the Function menu:

1. Right-click the function in which you are interested to open the Function menu.

2. From the Function menu, select Show Disassembler Code to open the Disassembler
Code window.

To access the Disassembler Code window via the Report menu:

1. Select Report → Flat Profile.

2. In the Flat Profile window, click the entry of the function that you want to view. The entry
highlights to show that it is selected.

3. Select Code Display → Show Disassembler Code. The Disassembler Code window
opens and shows the disassembler code for the function that you selected.
36 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Using the Disassembler Code window
The Disassembler Code window shows only the disassembler code for the function that you
specified in the Flat Profile window. The Disassembler Code window contains information in
the following fields:

� Address

The address of each instruction in the function that you selected from either the Flat
Profile window or the function call tree.

� No. ticks per instruction

Each tick represents .01 seconds of CPU time used. The number that is displayed in this
field represents the number of ticks used by the corresponding instruction. For instance, if
the number 3 is in this field, this instruction uses .03 seconds of CPU time.

� Instruction

The execution instruction.

� Assembler code

The corresponding assembler code of the execution instruction.

� Source code

The line in your application’s source code that corresponds to the execution instruction
and assembler code.

Using the Search Engine field, at the bottom of the Disassembler Code window, you can
search for a specific string in your disassembler code.
Chapter 2. CPU profiling using Xprofiler 37

38 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Chapter 3. Hardware Performance
Monitoring

Hardware Performance Monitoring (HPM) was developed for performance measurement of
applications running on IBM systems that support IBM PowerPC® 970, POWER4™,
POWER5™, and POWER6™ processors with the AIX 5L™, Linux, or Blue Gene operating
system.

3

© Copyright IBM Corp. 2007. All rights reserved. 39

3.1 HPM

The HPM capability on the Blue Gene/P system consists of an instrumentation library, called
libhpm. Libhpm provides instrumented programs with a summary output for each
instrumented region in a program. This library supports serial and parallel (Message Passing
Interface (MPI), threaded, and mixed mode) applications, written in Fortran, C, and C++.

Libhpm is a library that provides a programming interface to start and stop performance
counting for an application program. The part of the application program between the start
and stop of performance counting is called an instrumentation section. Any such
instrumentation section is assigned a unique integer number as a section identifier.
Example 3-1 shows a simple case of how an instrumented program might look.

Example 3-1 Sample instrumented program

hpmInit(tasked, "my program");
hpmStart(1, "outer call");
do_work();
hpmStart(2, "computing meaning of life");
do_more_work();
hpmStop(2);
hpmStop(1);
hpmTerminate(taskID);

Calls to hpmInit() and hpmTerminate() embrace the instrumented part. Every
instrumentation section starts with hpmStart() and ends with hpmStop(). The section
identifier is the first parameter to the latter two functions. As shown in the example, libhpm
supports multiple instrumentation sections, overlapping instrumentation sections. Each
instrumented section can be called multiple times. When hpmTerminate() is encountered, the
counted values are collected and printed.

The program in Example 3-1 also shows a sample of two properly nested instrumentation
sections. For section 1, we can consider the exclusive time and exclusive counter values. By
that, we mean the difference of the values for section 1 and section 2. The original values for
section 1 are called inclusive values for a matter of distinction. The terms inclusive and
exclusive for the embracing instrumentation section are chosen to indicate whether counter
values and times for the contained sections are included or excluded. For more details, see
3.5, “Inclusive and exclusive values” on page 84.

Libhpm supports OpenMP and threaded applications. There is only a thread-safe version of
libhpm. Either a thread-safe linker invocation, such as xlc_r and xlf_r, should be used or
libpthreads.a must be included in the list of libraries.

Notice that libhpm collects information and performs summarization during run time. Thus,
there can be considerable overhead if instrumentation sections are inserted inside inner
loops.
40 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3.2 Events and groups

The hardware performance counters information is the value of special CPU registers that are
incremented at certain events. The number of such registers is different for each architecture
as shown in Table 3-1.

Table 3-1 Registers per architecture

On both AIX and Linux, kernel extensions provide counter virtualization. That is, the user
sees private counter values for the application. On a technical side, the counting of the
special CPU registers is frozen, and the values are saved whenever the application process is
taken off the CPU and another process is scheduled. The counting is resumed when the user
application is scheduled on the CPU.

The special CPU registers can count different events. On the IBM POWER™ CPUs, there are
restrictions on which registers can count which events. Table 3-3 lists the events for the Blue
Gene/P system.

Furthermore, there are many rules that restrict the concurrent use of different events. Each
valid combination of assignments of events to hardware counting registers is called a group.
To make handling easier, a list of valid groups is provided. Table 3-2 lists the valid groups. The
group or event set to be used can be selected via the environment variable
HPM_EVENT_SET. If the environment variable HPM_EVENT_SET is not specified, a default
group is taken as indicated in Table 3-2.

Table 3-2 Default group

Processor architecture Number of performance counter registers

PowerPC 970 8

POWER4 8

POWER5 6

POWER5+ 6

POWER6 6

Blue Gene/L 52

Blue Gene/P 256

Processor architecture Number of groups Default group

PowerPC 970 41 23

POWER4 64 60

POWER5 148 (140) 137

POWER5+™ 152 145

POWER6 127 195

Blue Gene/L 16 0

Blue Gene/P 4 0
Chapter 3. Hardware Performance Monitoring 41

The number of groups for POWER5 is 140 for AIX 5.2 and 148 for Linux and AIX 5.3. The
reason for this difference is the different versions of bos.pmapi. The last group (139) was
changed and eight new groups were appended.

Table 3-3 contains a list of the event names and groups on the Blue Gene/P system.

Table 3-3 Event names

Group Counter Event name Event description

0 0 BGP_PU0_JPIPE_INSTRUCTIONS PU0: Number of J-pipe instructions

0 1 BGP_PU0_JPIPE_ADD_SUB PU0: PowerPC Add/Sub in J-pipe

0 2 BGP_PU0_JPIPE_LOGICAL_OPS PU0: PowerPC logical operations in
J-pipe

0 3 BGP_PU0_JPIPE_SHROTMK PU0: Shift, rotate, mask instructions

0 4 BGP_PU0_IPIPE_INSTRUCTIONS PU0: Number of I-pipe instructions

0 5 BGP_PU0_IPIPE_MULT_DIV PU0: PowerPC Mul/Div in I-pipe

0 6 BGP_PU0_IPIPE_ADD_SUB PU0: PowerPC Add/Sub in I-pipe

0 7 BGP_PU0_IPIPE_LOGICAL_OPS PU0: PowerPC logical operations in
I-pipe

0 8 BGP_PU0_IPIPE_SHROTMK PU0: Shift, rotate, mask instructions

0 9 BGP_PU0_IPIPE_BRANCHES PU0: PowerPC branches

0 10 BGP_PU0_IPIPE_TLB_OPS PU0: PowerPC TLB operations

0 11 BGP_PU0_IPIPE_PROCESS_CONTROL PU0: PowerPC process control

0 12 BGP_PU0_IPIPE_OTHER PU0: PowerPC other I-pipe operations

0 13 BGP_PU0_DCACHE_LINEFILLINPROG PU0: Number of cycles D-cache
LineFillInProgress

0 14 BGP_PU0_ICACHE_LINEFILLINPROG PU0: Number of cycles I-cache
LineFillInProgress

0 15 BGP_PU0_DCACHE_MISS PU0: Accesses to D cache that miss in
D Cache

0 16 BGP_PU0_DCACHE_HIT PU0: Accesses to D cache that hit in
D Cache

0 17 BGP_PU0_DATA_LOADS PU0: PowerPC data loads

0 18 BGP_PU0_DATA_STORES PU0: PowerPC data stores

0 19 BGP_PU0_DCACHE_OPS PU0: D cache operations

0 20 BGP_PU0_ICACHE_MISS PU0: Accesses to I cache that miss in
I Cache

0 21 BGP_PU0_ICACHE_HIT PU0: Accesses to I cache that hit in
I Cache

0 22 BGP_PU0_FPU_ADD_SUB_1 PU0: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

0 23 BGP_PU0_FPU_MULT_1 PU0: PowerPC FP Mult (fmul, fmuls)
42 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

0 24 BGP_PU0_FPU_FMA_2 PU0: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

0 25 BGP_PU0_FPU_DIV_1 PU0: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

0 26 BGP_PU0_FPU_OTHER_NON_STORAGE_OPS PU0: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

0 27 BGP_PU0_FPU_ADD_SUB_2 PU0: Dual pipe Add/Sub (fpadd, fpsub)

0 28 BGP_PU0_FPU_MULT_2 PU0: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

0 29 BGP_PU0_FPU_FMA_4 PU0: Dual pipe FMAs (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
are generated per instruction, four flops)

0 30 BGP_PU0_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS

PU0: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

0 31 BGP_PU0_FPU_QUADWORD_LOADS PU0: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

0 32 BGP_PU0_FPU_OTHER_LOADS PU0: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

0 33 BGP_PU0_FPU_QUADWORD_STORES PU0: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

0 34 BGP_PU0_FPU_OTHER_STORES PU0: All other FPU Stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

0 35 BGP_PU1_JPIPE_INSTRUCTIONS PU1: Number of J-pipe instructions

0 36 BGP_PU1_JPIPE_ADD_SUB PU1: PowerPC Add/Sub in J-pipe

0 37 BGP_PU1_JPIPE_LOGICAL_OPS PU1: PowerPC logical operations in
J-pipe

0 38 BGP_PU1_JPIPE_SHROTMK PU1: Shift, rotate, mask instructions

0 39 BGP_PU1_IPIPE_INSTRUCTIONS PU1: Number of I-pipe instructions

0 40 BGP_PU1_IPIPE_MULT_DIV PU1: PowerPC Mul/Div in I-pipe

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 43

0 41 BGP_PU1_IPIPE_ADD_SUB PU1: PowerPC Add/Sub in I-pipe

0 42 BGP_PU1_IPIPE_LOGICAL_OPS PU1: PowerPC logical operations in
I-pipe

0 43 BGP_PU1_IPIPE_SHROTMK PU1: Shift, rotate, mask instructions

0 44 BGP_PU1_IPIPE_BRANCHES PU1: PowerPC branches

0 45 BGP_PU1_IPIPE_TLB_OPS PU1: PowerPC TLB operations

0 46 BGP_PU1_IPIPE_PROCESS_CONTROL PU1: PowerPC process control

0 47 BGP_PU1_IPIPE_OTHER PU1: PowerPC other I-pipe operations

0 48 BGP_PU1_DCACHE_LINEFILLINPROG PU1: Number of cycles D-cache
LineFillInProgress

0 49 BGP_PU1_ICACHE_LINEFILLINPROG PU1: Number of cycles I-cache
LineFillInProgress

0 50 BGP_PU1_DCACHE_MISS PU1: Accesses to D cache that miss in
D Cache

0 51 BGP_PU1_DCACHE_HIT PU1: Accesses to D cache that hit in
D Cache

0 52 BGP_PU1_DATA_LOADS PU1: PowerPC data loads

0 53 BGP_PU1_DATA_STORES PU1: PowerPC data stores

0 54 BGP_PU1_DCACHE_OPS PU1: D cache operations

0 55 BGP_PU1_ICACHE_MISS PU1: Accesses to I cache that miss in
I Cache

0 56 BGP_PU1_ICACHE_HIT PU1: Accesses to I cache that hit in
I Cache

0 57 BGP_PU1_FPU_ADD_SUB_1 PU1: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

0 58 BGP_PU1_FPU_MULT_1 PU1: PowerPC FP Mult (fmul, fmuls)

0 59 BGP_PU1_FPU_FMA_2 PU1: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

0 60 BGP_PU1_FPU_DIV_1 PU1: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

0 61 BGP_PU1_FPU_OTHER_NON_STORAGE_OPS PU1: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

0 62 BGP_PU1_FPU_ADD_SUB_2 PU1: Dual pipe Add/Sub (fpadd, fpsub)

0 63 BGP_PU1_FPU_MULT_2 PU1: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

Group Counter Event name Event description
44 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

0 64 BGP_PU1_FPU_FMA_4 PU1: Dual pipe FMA's (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
generated per instruction, four flops)

0 65 BGP_PU1_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS

PU1: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

0 66 BGP_PU1_FPU_QUADWORD_LOADS PU1: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

0 67 BGP_PU1_FPU_OTHER_LOADS PU1: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

0 68 BGP_PU1_FPU_QUADWORD_STORES PU1: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

0 69 BGP_PU1_FPU_OTHER_STORES PU1: All other FPU Stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

0 70 BGP_PU0_L1_INVALIDATION_REQUESTS PU0 L1: Invalidation requested

0 71 BGP_PU1_L1_INVALIDATION_REQUESTS PU1 L1: Invalidation requested

0 72 BGP_PU0_L2_VALID_PREFETCH_REQUESTS PU0 L2: Prefetch request valid

0 73 BGP_PU0_L2_PREFETCH_HITS_IN_FILTER PU0 L2: Prefetch hits in filter

0 74 BGP_PU0_L2_PREFETCH_HITS_IN_STREAM PU0 L2: Prefetch hits in active stream

0 75 BGP_PU0_L2_CYCLES_PREFETCH_PENDING PU0 L2: Number of cycles for which
L2-prefetch is pending

0 76 BGP_PU0_L2_PAGE_ALREADY_IN_L2 PU0 L2: requested PF is already in L2

0 77 BGP_PU0_L2_PREFETCH_SNOOP_HIT_SAME_
CORE

PU0 L2: Prefetch snoop hit from the
same core (write)

0 78 BGP_PU0_L2_PREFETCH_SNOOP_HIT_OTHER_
CORE

PU0 L2: Prefetch snoop hit from the
other core

0 79 BGP_PU0_L2_PREFETCH_SNOOP_HIT_PLB PU0 L2: Prefetch snoop hit PLB (write)

0 80 BGP_PU0_L2_CYCLES_READ_REQUEST_
PENDING

PU0 L2: Number of cycles for which a
read request is pending

0 81 BGP_PU0_L2_READ_REQUESTS PU0 L2: Read requests

0 82 BGP_PU0_L2_DEVBUS_READ_REQUESTS PU0 L2: Devbus read requests (for
SRAM, LOCK and UPC)

0 83 BGP_PU0_L2_L3_READ_REQUESTS PU0 L2: L3 read request

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 45

0 84 BGP_PU0_L2_NETBUS_READ_REQUESTS PU0 L2: Netbus read requests (for tree
and torus)

0 85 BGP_PU0_L2_BLIND_DEV_READ_REQUESTS PU0 L2: BLIND device read request

0 86 BGP_PU0_L2_PREFETCHABLE_REQUESTS PU0 L2: Prefetchable requests

0 87 BGP_PU0_L2_HIT PU0 L2: L2 hit

0 88 BGP_PU0_L2_SAME_CORE_SNOOPS PU0 L2: Same core snoops

0 89 BGP_PU0_L2_OTHER_CORE_SNOOPS PU0 L2: Other core snops

0 90 BGP_PU0_L2_OTHER_DP_PU0_SNOOPS PU0 L2: Other DP PU0 snoops

0 91 BGP_PU0_L2_OTHER_DP_PU1_SNOOPS PU0 L2: Other DP PU1 snoops

0 92 BGP_PU0_L2_RESERVED_1 PU0 L2: Reserved

0 93 BGP_PU0_L2_RESERVED_2 PU0 L2: Reserved

0 94 BGP_PU0_L2_RESERVED_3 PU0 L2: Reserved

0 95 BGP_PU0_L2_RESERVED_4 PU0 L2: Reserved

0 96 BGP_PU0_L2_RESERVED_5 PU0 L2: Reserved

0 97 BGP_PU0_L2_RESERVED_6 PU0 L2: Reserved

0 98 BGP_PU0_L2_RESERVED_7 PU0 L2: Reserved

0 99 BGP_PU0_L2_RESERVED_8 PU0 L2: Reserved

0 100 BGP_PU0_L2_RESERVED_9 PU0 L2: Reserved

0 101 BGP_PU0_L2_RESERVED_10 PU0 L2: Number of writes to L3

0 102 BGP_PU0_L2_RESERVED_11 PU0 L2: Number of writes to network

0 103 BGP_PU0_L2_RESERVED_12 PU0 L2: Number of writes to devbus

0 104 BGP_PU1_L2_VALID_PREFETCH_REQUESTS PU1 L2: Prefetch request valid

0 105 BGP_PU1_L2_PREFETCH_HITS_IN_FILTER PU1 L2: Prefetch hits in filter

0 106 BGP_PU1_L2_PREFETCH_HITS_IN_STREAM PU1 L2: Prefetch hits in active stream

0 107 BGP_PU1_L2_CYCLES_PREFETCH_PENDING PU1 L2: Number of cycles for which
L2-prefetch is pending

0 108 BGP_PU1_L2_PAGE_ALREADY_IN_L2 PU1 L2: requested PF is already in L2

0 109 BGP_PU1_L2_PREFETCH_SNOOP_HIT_SAME_
CORE

PU1 L2: Prefetch snoop hit from the
same core (write)

0 110 BGP_PU1_L2_PREFETCH_SNOOP_HIT_OTHER_
CORE

PU1 L2: Prefetch snoop hit from the
other core

0 111 BGP_PU1_L2_PREFETCH_SNOOP_HIT_PLB PU1 L2: Prefetch snoop hit PLB (write)

0 112 BGP_PU1_L2_CYCLES_READ_REQUEST_
PENDING

PU1 L2: Number of cycles for which a
read request is pending

0 113 BGP_PU1_L2_READ_REQUESTS PU1 L2: Read requests

Group Counter Event name Event description
46 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

0 114 BGP_PU1_L2_DEVBUS_READ_REQUESTS PU1 L2: Devbus read requests (for
SRAM, LOCK and UPC)

0 115 BGP_PU1_L2_L3_READ_REQUESTS PU1 L2: L3 read request

0 116 BGP_PU1_L2_NETBUS_READ_REQUESTS PU1 L2: Netbus read requests (for tree
and torus)

0 117 BGP_PU1_L2_BLIND_DEV_READ_REQUESTS PU1 L2: BLIND device read request

0 118 BGP_PU1_L2_PREFETCHABLE_REQUESTS PU1 L2: Prefetchable requests

0 119 BGP_PU1_L2_HIT PU1 L2: L2 hit

0 120 BGP_PU1_L2_SAME_CORE_SNOOPS PU1 L2: Same core snoops

0 121 BGP_PU1_L2_OTHER_CORE_SNOOPS PU1 L2: Other core snops

0 122 BGP_PU1_L2_OTHER_DP_PU0_SNOOPS PU1 L2: Other DP PU0 snoops

0 123 BGP_PU1_L2_OTHER_DP_PU1_SNOOPS PU1 L2: Other DP PU1 snoops

0 124 BGP_PU1_L2_RESERVED_1 PU1 L2: Reserved

0 125 BGP_PU1_L2_RESERVED_2 PU1 L2: Reserved

0 126 BGP_PU1_L2_RESERVED_3 PU1 L2: Reserved

0 127 BGP_PU1_L2_RESERVED_4 PU1 L2: Reserved

0 128 BGP_PU1_L2_RESERVED_5 PU1 L2: Reserved

0 129 BGP_PU1_L2_RESERVED_6 PU1 L2: Reserved

0 130 BGP_PU1_L2_RESERVED_7 PU1 L2: Reserved

0 131 BGP_PU1_L2_RESERVED_8 PU1 L2: Reserved

0 132 BGP_PU1_L2_RESERVED_9 PU1 L2: Reserved

0 133 BGP_PU1_L2_RESERVED_10 PU1 L2: Number of writes to L3

0 134 BGP_PU1_L2_RESERVED_11 PU1 L2: Number of writes to network

0 135 BGP_PU1_L2_RESERVED_12 PU1 L2: Number of writes to devbus

0 136 BGP_L3_M0_RD0_SINGLE_LINE_DELIVERED_L2 L3 M0: Rd 0: Single line delivered to L2

0 137 BGP_L3_M0_RD0_BURST_DELIVERED_L2 L3 M0: Rd 0: Burst delivered to L2

0 138 BGP_L3_M0_RD0_READ_RETURN_COLLISION L3 M0: Rd 0: Read return collision

0 139 BGP_L3_M0_RD0_DIR0_HIT_OR_INFLIGHT L3 M0: Rd 0: dir0 hit or in flight

0 140 BGP_L3_M0_RD0_DIR0_MISS_OR_LOCKDOWN L3 M0: Rd 0: dir0 miss or lock-down

0 141 BGP_L3_M0_RD0_DIR1_HIT_OR_INFLIGHT L3 M0: Rd 0: dir1 hit or in flight

0 142 BGP_L3_M0_RD0_DIR1_MISS_OR_LOCKDOWN L3 M0: Rd 0: dir1 miss or lock-down

0 143 BGP_L3_M0_RD1_SINGLE_LINE_DELIVERED_L2 L3 M0: Rd 1: Single line delivered to L2

0 144 BGP_L3_M0_RD1_BURST_DELIVERED_L2 L3 M0: Rd 1: Burst delivered to L2

0 145 BGP_L3_M0_RD1_READ_RETURN_COLLISION L3 M0: Rd 1: Read return collision

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 47

0 146 BGP_L3_M0_RD1_DIR0_HIT_OR_INFLIGHT L3 M0: Rd 1: dir0 hit or in flight

0 147 BGP_L3_M0_RD1_DIR0_MISS_OR_LOCKDOWN L3 M0: Rd 1: dir0 miss or lock-down

0 148 BGP_L3_M0_RD1_DIR1_HIT_OR_INFLIGHT L3 M0: Rd 1: dir1 hit or in flight

0 149 BGP_L3_M0_RD1_DIR1_MISS_OR_LOCKDOWN L3 M0: Rd 1: dir1 miss or lock-down

0 150 BGP_L3_M0_DIR0_LOOKUPS L3 M0: Dir 0: Number of lookups

0 151 BGP_L3_M0_DIR0_CYCLES_REQUESTS_NOT_
TAKEN

L3 M0: Dir 0: Number of cycles with
requests that are not taken

0 152 BGP_L3_M0_DIR1_LOOKUPS L3 M0: Dir 1: Number of lookups

0 153 BGP_L3_M0_DIR1_CYCLES_REQUESTS_NOT_
TAKEN

L3 M0: Dir 1: Number of cycles with
requests that are not taken

0 154 BGP_L3_M0_MH_DDR_STORES L3 M0: M0-18/MH: Number of stores to
DDR

0 155 BGP_L3_M0_MH_DDR_FETCHES L3 M0: M0-19/MH: Number of fetches
from DDR

0 156 BGP_L3_M1_RD0_SINGLE_LINE_DELIVERED_L2 L3 M1: Rd 0: Single line delivered to L2

0 157 BGP_L3_M1_RD0_BURST_DELIVERED_L2 L3 M1: Rd 0: Burst delivered to L2

0 158 BGP_L3_M1_RD0_READ_RETURN_COLLISION L3 M1: Rd 0: Read return collision

0 159 BGP_L3_M1_RD0_DIR0_HIT_OR_INFLIGHT L3 M1: Rd 0: dir0 hit or in flight

0 160 BGP_L3_M1_RD0_DIR0_MISS_OR_LOCKDOWN L3 M1: Rd 0: dir0 miss or lock-down

0 161 BGP_L3_M1_RD0_DIR1_HIT_OR_INFLIGHT L3 M1: Rd 0: dir1 hit or in flight

0 162 BGP_L3_M1_RD0_DIR1_MISS_OR_LOCKDOWN L3 M1: Rd 0: dir1 miss or lock-down

0 163 BGP_L3_M1_RD1_SINGLE_LINE_DELIVERED_L2 L3 M1: Rd 1: Single line delivered to L2

0 164 BGP_L3_M1_RD1_BURST_DELIVERED_L2 L3 M1: Rd 1: Burst delivered to L2

0 165 BGP_L3_M1_RD1_READ_RETURN_COLLISION L3 M1: Rd 1: Read return collision

0 166 BGP_L3_M1_RD1_DIR0_HIT_OR_INFLIGHT L3 M1: Rd 1: dir0 hit or in flight

0 167 BGP_L3_M1_RD1_DIR0_MISS_OR_LOCKDOWN L3 M1: Rd 1: dir0 miss or lock-down

0 168 BGP_L3_M1_RD1_DIR1_HIT_OR_INFLIGHT L3 M1: Rd 1: dir1 hit or in flight

0 169 BGP_L3_M1_RD1_DIR1_MISS_OR_LOCKDOWN L3 M1: Rd 1: dir1 miss or lock-down

0 170 BGP_L3_M1_DIR0_LOOKUPS L3 M1: Dir 0: Number of lookups

0 171 BGP_L3_M1_DIR0_CYCLES_REQUESTS_
NOT_TAKEN

L3 M1: Dir 0: Number of cycles with
requests that are not taken

0 172 BGP_L3_M1_DIR1_LOOKUPS L3 M1: Dir 1: Number of lookups

0 173 BGP_L3_M1_DIR1_CYCLES_REQUESTS_
NOT_TAKEN

L3 M1: Dir 1: Number of cycles with
requests that are not taken

0 174 BGP_L3_M1_MH_DDR_STORES L3 M1: M0-18/MH: Number of stores to
DDR

Group Counter Event name Event description
48 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

0 175 BGP_L3_M1_MH_DDR_FETCHES L3 M1: M0-19/MH: Number of fetches
from DDR

0 176 BGP_PU0_SNOOP_PORT0_REMOTE_SOURCE_
REQUESTS

PU0 snoop: Port 0 received a snoop
request from a remote source

0 177 BGP_PU0_SNOOP_PORT1_REMOTE_SOURCE_
REQUESTS

PU0 snoop: Port 1 received a snoop
request from a remote source

0 178 BGP_PU0_SNOOP_PORT2_REMOTE_SOURCE_
REQUESTS

PU0 snoop: Port 2 received a snoop
request from a remote source

0 179 BGP_PU0_SNOOP_PORT3_REMOTE_SOURCE_
REQUESTS

PU0 snoop: Port 3 received a snoop
request from a remote source

0 180 BGP_PU0_SNOOP_PORT0_REJECTED_
REQUESTS

PU0 snoop: Port 0 snoop filter rejected a
snoop request

0 181 BGP_PU0_SNOOP_PORT1_REJECTED_
REQUESTS

PU0 snoop: Port 1 snoop filter rejected a
snoop request

0 182 BGP_PU0_SNOOP_PORT2_REJECTED_
REQUESTS

PU0 snoop: Port 2 snoop filter rejected a
snoop request

0 183 BGP_PU0_SNOOP_PORT3_REJECTED_
REQUESTS

PU0 snoop: Port 3 snoop filter rejected a
snoop request

0 184 BGP_PU0_SNOOP_L1_CACHE_WRAP PU0 snoop: Snoop filter detected an L1
cache wrap

0 185 BGP_PU1_SNOOP_PORT0_REMOTE_SOURCE_
REQUESTS

PU1 snoop: Port 0 received a snoop
request from a remote source

0 186 BGP_PU1_SNOOP_PORT1_REMOTE_SOURCE_
REQUESTS

PU1 snoop: Port 1 received a snoop
request from a remote source

0 187 BGP_PU1_SNOOP_PORT2_REMOTE_SOURCE_
REQUESTS

PU1 snoop: Port 2 received a snoop
request from a remote source

0 188 BGP_PU1_SNOOP_PORT3_REMOTE_SOURCE_
REQUESTS

PU1 snoop: Port 3 received a snoop
request from a remote source

0 189 BGP_PU1_SNOOP_PORT0_REJECTED_
REQUESTS

PU1 snoop: Port 0 snoop filter rejected a
snoop request

0 190 BGP_PU1_SNOOP_PORT1_REJECTED_
REQUESTS

PU1 snoop: Port 1 snoop filter rejected a
snoop request

0 191 BGP_PU1_SNOOP_PORT2_REJECTED_
REQUESTS

PU1 snoop: Port 2 snoop filter rejected a
snoop request

0 192 BGP_PU1_SNOOP_PORT3_REJECTED_
REQUESTS

PU1 snoop: Port 3 snoop filter rejected a
snoop request

0 193 BGP_PU1_SNOOP_L1_CACHE_WRAP PU1 snoop: Snoop filter detected an L1
cache wrap

0 194 BGP_TORUS_XP_PACKETS Torus: Number of packets sent to X+
dimension

0 195 BGP_TORUS_XP_32BCHUNKS Torus: Number of 32B chunks sent to X+

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 49

0 196 BGP_TORUS_XM_PACKETS Torus: Number of packets sent to X-
dimension

0 197 BGP_TORUS_XM_32BCHUNKS Torus: Number of 32B chunks sent to X-

0 198 BGP_TORUS_YP_PACKETS Torus: Number of packets sent to Y+
dimension

0 199 BGP_TORUS_YP_32BCHUNKS Torus: Number of 32B chunks sent to Y+

0 200 BGP_TORUS_YM_PACKETS Torus: Number of packets sent to Y-
dimension

0 201 BGP_TORUS_YM_32BCHUNKS Torus: Number of 32B chunks sent to Y-

0 202 BGP_TORUS_ZP_PACKETS Torus: Number of packets sent to Z+
dimension

0 203 BGP_TORUS_ZP_32BCHUNKS Torus: Number of 32B chunks sent to Z+

0 204 BGP_TORUS_ZM_PACKETS Torus: Number of packets sent to Z-
dimension

0 205 BGP_TORUS_ZM_32BCHUNKS Torus: Number of 32B chunks sent to Z-

0 206 BGP_DMA_PACKETS_INJECTED DMA: Number of packets injected

0 207 BGP_DMA_DESCRIPTORS_READ_FROM_L3 DMA: Number of descriptors read from
L3

0 208 BGP_DMA_FIFO_PACKETS_RECEIVED DMA: Number of fifo packets received

0 209 BGP_DMA_COUNTER_PACKETS_RECEIVED DMA: Number of counter packets
received

0 210 BGP_DMA_REMOTE_GET_PACKETS_RECEIVED DMA: Number of remote get packets
received

0 211 BGP_DMA_IDPU_READ_REQUESTS_TO_L3 DMA: Number of read requests to L3 by
IDPU

0 212 BGP_DMA_READ_VALID_RETURNED DMA: Number of read valid returned
from L3

0 213 BGP_DMA_ACKED_READ_REQUESTS DMA: Number of DMA L3 read requests
acknowledged by the L3

0 214 BGP_DMA_CYCLES_RDPU_WRITE_ACTIVE DMA: Number of cycles rdpu wants to
write to L3, independent of the write
ready

0 215 BGP_DMA_WRITE_REQUESTS_TO_L3 DMA: Number of write requests to L3

0 216 BGP_DMA_RESERVED_1 DMA: Reserved

0 217 BGP_DMA_RESERVED_2 DMA: Reserved

0 218 BGP_DMA_RESERVED_3 DMA: Reserved

0 219 BGP_DMA_RESERVED_4 DMA: Reserved

0 220 BGP_DMA_RESERVED_5 DMA: Reserved

0 221 BGP_DMA_RESERVED_6 DMA: Reserved

Group Counter Event name Event description
50 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

0 222 BGP_COL_AC_CH2_VC0_MATURE Collective: arbiter_core
ch2_vc0_mature

0 223 BGP_COL_AC_CH1_VC0_MATURE Collective: arbiter_core
ch1_vc0_mature

0 224 BGP_COL_AC_CH0_VC0_MATURE Collective: arbiter_core
ch0_vc0_mature

0 225 BGP_COL_AC_INJECT_VC0_MATURE Collective: arbiter_core inj_vc0_mature

0 226 BGP_COL_AC_CH2_VC1_MATURE Collective: arbiter_core
ch2_vc1_mature

0 227 BGP_COL_AC_CH1_VC1_MATURE Collective: arbiter_core
ch1_vc1_mature

0 228 BGP_COL_AC_CH0_VC1_MATURE Collective: arbiter_core
ch0_vc1_mature

0 229 BGP_COL_AC_INJECT_VC1_MATURE Collective: arbiter_core inj_vc1_mature

0 230 BGP_COL_AC_PENDING_REQUESTS Collective: arbiter_core requests
pending

0 231 BGP_COL_AC_WAITING_REQUESTS Collective: arbiter_core requests waiting
(ready to go)

0 232 BGP_COL_AR2_PACKET_TAKEN Collective: Arbiter receiver 2 packets
taken

0 233 BGP_COL_AR1_PACKET_TAKEN Collective: Arbiter receiver 1 packets
taken

0 234 BGP_COL_AR0_PACKET_TAKEN Collective: Arbiter receiver 0 packets
taken

0 235 BGP_COL_ALC_PACKET_TAKEN Collective: Arbiter local client packets
taken

0 236 BGP_COL_AR0_VC0_DATA_PACKETS_RECEIVED Collective: Receiver 0 vc0 data packets
received

0 237 BGP_COL_AR0_VC1_DATA_PACKETS_RECEIVED Collective: Receiver 0 vc1 data packets
received

0 238 BGP_COL_AR1_VC0_DATA_PACKETS_RECEIVED Collective: Receiver 1 vc0 data packets
received

0 239 BGP_COL_AR1_VC1_DATA_PACKETS_RECEIVED Collective: Receiver 1 vc1 data packets
received

0 240 BGP_COL_AR2_VC0_DATA_PACKETS_RECEIVED Collective: Receiver 2 vc0 data packets
received

0 241 BGP_COL_AR2_VC1_DATA_PACKETS_RECEIVED Collective: Receiver 2 vc1 data packets
received

0 242 BGP_COL_AS0_VC0_DATA_PACKETS_SENT Collective: Sender 0 vc0 data packets
sent

0 243 BGP_COL_AS0_VC1_DATA_PACKETS_SENT Collective: Sender 0 vc1 data packets
sent

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 51

0 244 BGP_COL_AS1_VC0_DATA_PACKETS_SENT Collective: Sender 1 vc0 data packets
sent

0 245 BGP_COL_AS1_VC1_DATA_PACKETS_SENT Collective: Sender 1 vc1 data packets
sent

0 246 BGP_COL_AS2_VC0_DATA_PACKETS_SENT Collective: Sender 2 vc0 data packets
sent

0 247 BGP_COL_AS2_VC1_DATA_PACKETS_SENT Collective: Sender 2 vc1 data packets
sent

0 248 BGP_COL_INJECT_VC0_HEADER Collective: Injection vc0 header

0 249 BGP_COL_INJECT_VC1_HEADER Collective: Injection vc1 header added

0 250 BGP_COL_RECEPTION_VC0_PACKET_ADDED Collective: Reception vc0 packet added

0 251 BGP_COL_RECEPTION_VC1_PACKET_ADDED Collective: Reception vc1 packet added

0 252 BGP_IC_TIMESTAMP IC: Timestamp

0 253 BGP_MISC_RESERVED_1 Misc: Reserved

0 254 BGP_MISC_RESERVED_2 Misc: Reserved

0 255 BGP_MISC_ELAPSED_TIME Misc: Elapsed time

1 0 BGP_PU2_JPIPE_INSTRUCTIONS PU2: Number of J-pipe instructions

1 1 BGP_PU2_JPIPE_ADD_SUB PU2: PowerPC Add/Sub in J-pipe

1 2 BGP_PU2_JPIPE_LOGICAL_OPS PU2: PowerPC logical operations in
J-pipe

1 3 BGP_PU2_JPIPE_SHROTMK PU2: Shift, rotate, mask instructions

1 4 BGP_PU2_IPIPE_INSTRUCTIONS PU2: Number of I-pipe instructions

1 5 BGP_PU2_IPIPE_MULT_DIV PU2: PowerPC Mul/Div in I-pipe

1 6 BGP_PU2_IPIPE_ADD_SUB PU2: PowerPC Add/Sub in I-pipe

1 7 BGP_PU2_IPIPE_LOGICAL_OPS PU2: PowerPC logical operations in
I-pipe

1 8 BGP_PU2_IPIPE_SHROTMK PU2: Shift, rotate, mask instructions

1 9 BGP_PU2_IPIPE_BRANCHES PU2: PowerPC branches

1 10 BGP_PU2_IPIPE_TLB_OPS PU2: PowerPC TLB operations

1 11 BGP_PU2_IPIPE_PROCESS_CONTROL PU2: PowerPC process control

1 12 BGP_PU2_IPIPE_OTHER PU2: PowerPC other I-pipe operations

1 13 BGP_PU2_DCACHE_LINEFILLINPROG PU2: Number of cycles D-cache
LineFillInProgress

1 14 BGP_PU2_ICACHE_LINEFILLINPROG PU2: Number of cycles I-cache
LineFillInProgress

1 15 BGP_PU2_DCACHE_MISS PU2: Accesses to D cache that miss in
D Cache

Group Counter Event name Event description
52 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

1 16 BGP_PU2_DCACHE_HIT PU2: Accesses to D cache that hit in D
Cache

1 17 BGP_PU2_DATA_LOADS PU2: PowerPC data loads

1 18 BGP_PU2_DATA_STORES PU2: PowerPC data stores

1 19 BGP_PU2_DCACHE_OPS PU2: D cache operations

1 20 BGP_PU2_ICACHE_MISS PU2: Accesses to I cache that miss in
I Cache

1 21 BGP_PU2_ICACHE_HIT PU2: Accesses to I cache that hit in
I Cache

1 22 BGP_PU2_FPU_ADD_SUB_1 PU2: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

1 23 BGP_PU2_FPU_MULT_1 PU2: PowerPC FP Mult (fmul, fmuls)

1 24 BGP_PU2_FPU_FMA_2 PU2: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

1 25 BGP_PU2_FPU_DIV_1 PU2: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

1 26 BGP_PU2_FPU_OTHER_NON_STORAGE_OPS PU2: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

1 27 BGP_PU2_FPU_ADD_SUB_2 PU2: Dual pipe Add/Sub (fpadd, fpsub)

1 28 BGP_PU2_FPU_MULT_2 PU2: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

1 29 BGP_PU2_FPU_FMA_4 PU2: Dual pipe FMAs (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
generated per instruction, four flops)

1 30 BGP_PU2_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS

PU2: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

1 31 BGP_PU2_FPU_QUADWORD_LOADS PU2: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

1 32 BGP_PU2_FPU_OTHER_LOADS PU2: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 53

1 33 BGP_PU2_FPU_QUADWORD_STORES PU2: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

1 34 BGP_PU2_FPU_OTHER_STORES PU2: All other FPU stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

1 35 BGP_PU3_JPIPE_INSTRUCTIONS PU3: Number of J-pipe instructions

1 36 BGP_PU3_JPIPE_ADD_SUB PU3: PowerPC Add/Sub in J-pipe

1 37 BGP_PU3_JPIPE_LOGICAL_OPS PU3: PowerPC logical operations in
J-pipe

1 38 BGP_PU3_JPIPE_SHROTMK PU3: Shift, rotate, mask instructions

1 39 BGP_PU3_IPIPE_INSTRUCTIONS PU3: Number of I-pipe instructions

1 40 BGP_PU3_IPIPE_MULT_DIV PU3: PowerPC Mul/Div in I-pipe

1 41 BGP_PU3_IPIPE_ADD_SUB PU3: PowerPC Add/Sub in I-pipe

1 42 BGP_PU3_IPIPE_LOGICAL_OPS PU3: PowerPC logical operations in
I-pipe

1 43 BGP_PU3_IPIPE_SHROTMK PU3: Shift, rotate, mask instructions

1 44 BGP_PU3_IPIPE_BRANCHES PU3: PowerPC branches

1 45 BGP_PU3_IPIPE_TLB_OPS PU3: PowerPC TLB operations

1 46 BGP_PU3_IPIPE_PROCESS_CONTROL PU3: PowerPC process control

1 47 BGP_PU3_IPIPE_OTHER PU3: PowerPC other I-pipe operations

1 48 BGP_PU3_DCACHE_LINEFILLINPROG PU3: Number of cycles D-cache
LineFillInProgress

1 49 BGP_PU3_ICACHE_LINEFILLINPROG PU3: Number of cycles I-cache
LineFillInProgress

1 50 BGP_PU3_DCACHE_MISS PU3: Accesses to D cache that miss in
D Cache

1 51 BGP_PU3_DCACHE_HIT PU3: Accesses to D cache that hit in D
Cache

1 52 BGP_PU3_DATA_LOADS PU3: PowerPC data loads

1 53 BGP_PU3_DATA_STORES PU3: PowerPC data stores

1 54 BGP_PU3_DCACHE_OPS PU3: D cache operations

1 55 BGP_PU3_ICACHE_MISS PU3: Accesses to I cache that miss in
I Cache

1 56 BGP_PU3_ICACHE_HIT PU3: Accesses to I cache that hit in
I Cache

1 57 BGP_PU3_FPU_ADD_SUB_1 PU3: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

1 58 BGP_PU3_FPU_MULT_1 PU3: PowerPC FP Mult (fmul, fmuls)

Group Counter Event name Event description
54 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

1 59 BGP_PU3_FPU_FMA_2 PU3: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

1 60 BGP_PU3_FPU_DIV_1 PU3: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

1 61 BGP_PU3_FPU_OTHER_NON_STORAGE_OPS PU3: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

1 62 BGP_PU3_FPU_ADD_SUB_2 PU3: Dual pipe Add/Sub (fpadd, fpsub)

1 63 BGP_PU3_FPU_MULT_2 PU3: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

1 64 BGP_PU3_FPU_FMA_4 PU3: Dual pipe FMAs (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
generated per instruction, four flops)

1 65 BGP_PU3_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS

PU3: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

1 66 BGP_PU3_FPU_QUADWORD_LOADS PU3: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

1 67 BGP_PU3_FPU_OTHER_LOADS PU3: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

1 68 BGP_PU3_FPU_QUADWORD_STORES PU3: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

1 69 BGP_PU3_FPU_OTHER_STORES PU3: All other FPU Stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

1 70 BGP_PU2_L1_INVALIDATION_REQUESTS PU2 L1: Invalidation requested

1 71 BGP_PU3_L1_INVALIDATION_REQUESTS PU3 L1: Invalidation requested

1 72 BGP_COL_AC_CH2_VC0_MATURE_UM1 Collective: arbiter_core
ch2_vc0_mature

1 73 BGP_COL_AC_CH1_VC0_MATURE_UM1 Collective: arbiter_core
ch1_vc0_mature

1 74 BGP_COL_AC_CH0_VC0_MATURE_UM1 Collective: arbiter_core
ch0_vc0_mature

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 55

1 75 BGP_COL_AC_INJECT_VC0_MATURE_UM1 Collective: arbiter_core inj_vc0_mature

1 76 BGP_COL_AC_CH2_VC1_MATURE_UM1 Collective: arbiter_core
ch2_vc1_mature

1 77 BGP_COL_AC_CH1_VC1_MATURE_UM1 Collective: arbiter_core
ch1_vc1_mature

1 78 BGP_COL_AC_CH0_VC1_MATURE_UM1 Collective: arbiter_core
ch0_vc1_mature

1 79 BGP_COL_AC_INJECT_VC1_MATURE_UM1 Collective: arbiter_core inj_vc1_mature

1 80 BGP_COL_AR0_VC0_EMPTY_PACKET Collective: Receiver 0 vc0 empty packet

1 81 BGP_COL_AR0_VC1_EMPTY_PACKET Collective: Receiver 0 vc1 empty packet

1 82 BGP_COL_AR0_IDLE_PACKET Collective: Receiver 0 IDLE packet

1 83 BGP_COL_AR0_BAD_PACKET_MARKER Collective: Receiver 0
known-bad-packet marker

1 84 BGP_COL_AR0_VC0_CUT_THROUGH Collective: Receiver 0 vc0 cut-through

1 85 BGP_COL_AR0_VC1_CUT_THROUGH Collective: Receiver 0 vc1 cut-through

1 86 BGP_COL_AR0_HEADER_PARITY_ERROR Collective: Receiver 0 header parity
error

1 87 BGP_COL_AR0_UNEXPECTED_HEADER_ERROR Collective: Receiver 0 unexpected
header error

1 88 BGP_COL_AR0_RESYNC Collective: Receiver 0 resynch-mode
(after error)

1 89 BGP_COL_AR1_VC0_EMPTY_PACKET Collective: Receiver 1 vc0 empty packet

1 90 BGP_COL_AR1_VC1_EMPTY_PACKET Collective: Receiver 1 vc1 empty packet

1 91 BGP_COL_AR1_IDLE_PACKET Collective: Receiver 1 IDLE packet

1 92 BGP_COL_AR1_BAD_PACKET_MARKER Collective: Receiver 1
known-bad-packet marker

1 93 BGP_COL_AR1_VC0_CUT_THROUGH Collective: Receiver 1 vc0 cut-through

1 94 BGP_COL_AR1_VC1_CUT_THROUGH Collective: Receiver 1 vc1 cut-through

1 95 BGP_COL_AR1_HEADER_PARITY_ERROR Collective: Receiver 1 header parity
error

1 96 BGP_COL_AR1_UNEXPECTED_HEADER_ERROR Collective: Receiver 1 unexpected
header error

1 97 BGP_COL_AR1_RESYNC Collective: Receiver 1 resynch-mode
(after error)

1 98 BGP_COL_AR2_VC0_EMPTY_PACKET Collective: Receiver 2 vc0 empty packet

1 99 BGP_COL_AR2_VC1_EMPTY_PACKET Collective: Receiver 2 vc1 empty packet

1 100 BGP_COL_AR2_IDLE_PACKET Collective: Receiver 2 IDLE packet

1 101 BGP_COL_AR2_BAD_PACKET_MARKER Collective: Receiver 2
known-bad-packet marker

Group Counter Event name Event description
56 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

1 102 BGP_COL_AR2_VC0_CUT_THROUGH Collective: Receiver 2 vc0 cut-through

1 103 BGP_COL_AR2_VC1_CUT_THROUGH Collective: Receiver 2 vc1 cut-through

1 104 BGP_COL_AR2_HEADER_PARITY_ERROR Collective: Receiver 2 header parity
error

1 105 BGP_COL_AR2_UNEXPECTED_HEADER_ERROR Collective: Receiver 2 unexpected
header error

1 106 BGP_COL_AR2_RESYNC Collective: Receiver 2 resynch-mode
(after error)

1 107 BGP_COL_AS0_VC0_CUT_THROUGH Collective: Sender 0 vc0 cut-through

1 108 BGP_COL_AS0_VC1_CUT_THROUGH Collective: Sender 0 vc1 cut-through

1 109 BGP_COL_AS0_VC0_PACKETS_SENT Collective: Sender 0 vc0 packet sent
(total)

1 110 BGP_COL_AS0_VC1_PACKETS_SENT Collective: Sender 0 vc1 packet sent
(total)

1 111 BGP_COL_AS0_IDLE_PACKETS_SENT Collective: Sender 0 IDLE packets sent

1 112 BGP_COL_AS1_VC0_CUT_THROUGH Collective: Sender 1 vc0 cut-through

1 113 BGP_COL_AS1_VC1_CUT_THROUGH Collective: Sender 1 vc1 cut-through

1 114 BGP_COL_AS1_VC0_PACKETS_SENT Collective: Sender 1 vc0 packets sent
(total)

1 115 BGP_COL_AS1_VC1_PACKETS_SENT Collective: Sender 1 vc1 packets sent
(total)

1 116 BGP_COL_AS1_IDLE_PACKETS_SENT Collective: Sender 1 IDLE packets sent

1 117 BGP_COL_AS2_VC0_CUT_THROUGH Collective: Sender 2 vc0 cut-through

1 118 BGP_COL_AS2_VC1_CUT_THROUGH Collective: Sender 2 vc1 cut-through

1 119 BGP_COL_AS2_VC0_PACKETS_SENT Collective: Sender 2 vc0 packets sent
(total)

1 120 BGP_COL_AS2_VC1_PACKETS_SENT Collective: Sender 2 vc1 packets sent
(total)

1 121 BGP_COL_AS2_IDLE_PACKETS_SENT Collective: Sender 2 IDLE packets sent

1 122 BGP_COL_INJECT_VC0_PAYLOAD_ADDED Collective: Injection vc0 payload added

1 123 BGP_COL_INJECT_VC1_PAYLOAD_ADDED Collective: Injection vc1 payload added

1 124 BGP_COL_INJECT_VC0_PACKET_TAKEN Collective: Injection vc0 packet taken

1 125 BGP_COL_INJECT_VC1_PACKET_TAKEN Collective: Injection vc1 packet taken

1 126 BGP_COL_RECEPTION_VC0_HEADER_TAKEN Collective: Reception vc0 header taken

1 127 BGP_COL_RECEPTION_VC1_HEADER_TAKEN Collective: Reception vc1 header taken

1 128 BGP_COL_RECEPTION_VC0_PAYLOAD_TAKEN Collective: Reception vc0 payload taken

1 129 BGP_COL_RECEPTION_VC1_PAYLOAD_TAKEN Collective: Reception vc1 payload taken

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 57

1 130 BGP_COL_RECEPTION_VC0_PACKET_
DISCARDED

Collective: Reception vc0 packet
discarded

1 131 BGP_COL_RECEPTION_VC1_PACKET_
DISCARDED

Collective: Reception vc1 packet
discarded

1 132 BGP_PU2_L2_VALID_PREFETCH_REQUESTS PU2 L2: Prefetch request valid

1 133 BGP_PU2_L2_PREFETCH_HITS_IN_FILTER PU2 L2: Prefetch hits in filter

1 134 BGP_PU2_L2_PREFETCH_HITS_IN_STREAM PU2 L2: Prefetch hits in active stream

1 135 BGP_PU2_L2_CYCLES_PREFETCH_PENDING PU2 L2: Number of cycles for which an
L2-prefetch is pending

1 136 BGP_PU2_L2_PAGE_ALREADY_IN_L2 PU2 L2: Requested PF is already in L2

1 137 BGP_PU2_L2_PREFETCH_SNOOP_HIT_
SAME_CORE

PU2 L2: Prefetch snoop hit from same
core (write)

1 138 BGP_PU2_L2_PREFETCH_SNOOP_HIT_OTHER_
CORE

PU2 L2: Prefetch snoop hit from other
core

1 139 BGP_PU2_L2_PREFETCH_SNOOP_HIT_PLB PU2 L2: Prefetch snoop hit PLB (write)

1 140 BGP_PU2_L2_CYCLES_READ_REQUEST_
PENDING

PU2 L2: Number of cycles for which a
read request is pending

1 141 BGP_PU2_L2_READ_REQUESTS PU2 L2: read requests

1 142 BGP_PU2_L2_DEVBUS_READ_REQUESTS PU2 L2: devbus read requests (for
SRAM, LOCK and UPC)

1 143 BGP_PU2_L2_L3_READ_REQUESTS PU2 L2: L3 read request

1 144 BGP_PU2_L2_NETBUS_READ_REQUESTS PU2 L2: netbus read requests (for tree
and torus)

1 145 BGP_PU2_L2_BLIND_DEV_READ_REQUESTS PU2 L2: BLIND device read request

1 146 BGP_PU2_L2_PREFETCHABLE_REQUESTS PU2 L2: Prefetchable requests

1 147 BGP_PU2_L2_HIT PU2 L2: L2 hit

1 148 BGP_PU2_L2_SAME_CORE_SNOOPS PU2 L2: Same core snoops

1 149 BGP_PU2_L2_OTHER_CORE_SNOOPS PU2 L2: Other core snops

1 150 BGP_PU2_L2_OTHER_DP_PU0_SNOOPS PU2 L2: Other DP PU2 snoops

1 151 BGP_PU2_L2_OTHER_DP_PU1_SNOOPS PU2 L2: Other DP PU1 snoops

1 152 BGP_PU2_L2_RESERVED_1 PU2 L2: Reserved

1 153 BGP_PU2_L2_RESERVED_2 PU2 L2: Reserved

1 154 BGP_PU2_L2_RESERVED_3 PU2 L2: Reserved

1 155 BGP_PU2_L2_RESERVED_4 PU2 L2: Reserved

1 156 BGP_PU2_L2_RESERVED_5 PU2 L2: Reserved

1 157 BGP_PU2_L2_RESERVED_6 PU2 L2: Reserved

1 158 BGP_PU2_L2_RESERVED_7 PU2 L2: Reserved

Group Counter Event name Event description
58 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

1 159 BGP_PU2_L2_RESERVED_8 PU2 L2: Reserved

1 160 BGP_PU2_L2_RESERVED_9 PU2 L2: Reserved

1 161 BGP_PU2_L2_RESERVED_10 PU2 L2: Number of writes to L3

1 162 BGP_PU2_L2_RESERVED_11 PU2 L2: Number of writes to network

1 163 BGP_PU2_L2_RESERVED_12 PU2 L2: Number of writes to devbus

1 164 BGP_PU3_L2_VALID_PREFETCH_REQUESTS PU3 L2: Prefetch request valid

1 165 BGP_PU3_L2_PREFETCH_HITS_IN_FILTER PU3 L2: Prefetch hits in filter

1 166 BGP_PU3_L2_PREFETCH_HITS_IN_STREAM PU3 L2: Prefetch hits in active stream

1 167 BGP_PU3_L2_CYCLES_PREFETCH_PENDING PU3 L2: Number of cycles for which an
L2-prefetch is pending

1 168 BGP_PU3_L2_PAGE_ALREADY_IN_L2 PU3 L2: requested PF is already in L2

1 169 BGP_PU3_L2_PREFETCH_SNOOP_HIT_
SAME_CORE

PU3 L2: Prefetch snoop hit from same
core (write)

1 170 BGP_PU3_L2_PREFETCH_SNOOP_HIT_OTHER_
CORE

PU3 L2: Prefetch snoop hit from other
core

1 171 BGP_PU3_L2_PREFETCH_SNOOP_HIT_PLB PU3 L2: Prefetch snoop hit PLB (write)

1 172 BGP_PU3_L2_CYCLES_READ_REQUEST_
PENDING

PU3 L2: Number of cycles for which a
read request is pending

1 173 BGP_PU3_L2_READ_REQUESTS PU3 L2: read requests

1 174 BGP_PU3_L2_DEVBUS_READ_REQUESTS PU3 L2: Devbus read requests (for
SRAM, LOCK and UPC)

1 175 BGP_PU3_L2_L3_READ_REQUESTS PU3 L2: L3 read request

1 176 BGP_PU3_L2_NETBUS_READ_REQUESTS PU3 L2: netbus read requests (for tree
and torus)

1 177 BGP_PU3_L2_BLIND_DEV_READ_REQUESTS PU3 L2: BLIND device read request

1 178 BGP_PU3_L2_PREFETCHABLE_REQUESTS PU3 L2: Prefetchable requests

1 179 BGP_PU3_L2_HIT PU3 L2: L2 hit

1 180 BGP_PU3_L2_SAME_CORE_SNOOPS PU3 L2: Same core snoops

1 181 BGP_PU3_L2_OTHER_CORE_SNOOPS PU3 L2: Other core snops

1 182 BGP_PU3_L2_OTHER_DP_PU0_SNOOPS PU3 L2: Other DP PU0 snoops

1 183 BGP_PU3_L2_OTHER_DP_PU1_SNOOPS PU3 L2: Other DP PU3 snoops

1 184 BGP_PU3_L2_RESERVED_1 PU3 L2: Reserved

1 185 BGP_PU3_L2_RESERVED_2 PU3 L2: Reserved

1 186 BGP_PU3_L2_RESERVED_3 PU3 L2: Reserved

1 187 BGP_PU3_L2_RESERVED_4 PU3 L2: Reserved

1 188 BGP_PU3_L2_RESERVED_5 PU3 L2: Reserved

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 59

1 189 BGP_PU3_L2_RESERVED_6 PU3 L2: Reserved

1 190 BGP_PU3_L2_RESERVED_7 PU3 L2: Reserved

1 191 BGP_PU3_L2_RESERVED_8 PU3 L2: Reserved

1 192 BGP_PU3_L2_RESERVED_9 PU3 L2: Reserved

1 193 BGP_PU3_L2_RESERVED_10 PU3 L2: Number of writes to L3

1 194 BGP_PU3_L2_RESERVED_11 PU3 L2: Number of writes to network

1 195 BGP_PU3_L2_RESERVED_12 PU3 L2: Number of writes to devbus

1 196 BGP_L3_M0_R2_SINGLE_LINE_DELIVERED_L2 L3 M0: Rd 2: Single line delivered to L2

1 197 BGP_L3_M0_R2_BURST_DELIVERED_L2 L3 M0: Rd 2: Burst delivered to L2

1 198 BGP_L3_M0_R2_READ_RETURN_COLLISION L3 M0: Rd 2: Read return collision

1 199 BGP_L3_M0_R2_DIR0_HIT_OR_INFLIGHT L3 M0: Rd 2: dir0 hit or in flight

1 200 BGP_L3_M0_R2_DIR0_MISS_OR_LOCKDOWN L3 M0: Rd 2: dir0 miss or lock-down

1 201 BGP_L3_M0_R2_DIR1_HIT_OR_INFLIGHT L3 M0: Rd 2: dir1 hit or in flight

1 202 BGP_L3_M0_R2_DIR1_MISS_OR_LOCKDOWN L3 M0: Rd 2: dir1 miss or lock-down

1 203 BGP_L3_M0_W0_DEPOSIT_REQUESTS L3 M0: WRB 0: total accepted deposit
requests from write queues to write
buffer

1 204 BGP_L3_M0_W0_CYCLES_REQUESTS_
NOT_TAKEN

L3 M0: WRB 0: Number of cycles with
requests from queues that are not taken

1 205 BGP_L3_M0_W1_DEPOSIT_REQUESTS L3 M0: WRB 1: Total accepted deposit
requests from write queues to write
buffer

1 206 BGP_L3_M0_W1_CYCLES_REQUESTS_
NOT_TAKEN

L3 M0: WRB 1: Number of cycles with
requests from queues that are not taken

1 207 BGP_L3_M0_MH_ALLOCATION_REQUESTS L3 M0: MH: Number of allocation
requests to write buffer

1 208 BGP_L3_M0_MH_CYCLES_ALLOCATION_
REQUESTS_NOT_TAKEN

L3 M0: MH: Number of allocation
request cycles to write buffer without
being taken

1 209 BGP_L3_M0_PF_PREFETCH_INTO_
EDRAM

L3 M0: PF: Number of line prefetches
brought into eDRAM

1 210 BGP_L3_M0_RESERVED_1 L3 M0: Reserved

1 211 BGP_L3_M0_RESERVED_2 L3 M0: Reserved

1 212 BGP_L3_M0_RESERVED_3 L3 M0: Reserved

1 213 BGP_L3_M0_RESERVED_4 L3 M0: Reserved

1 214 BGP_L3_M0_RESERVED_5 L3 M0: Reserved

1 215 BGP_L3_M0_RESERVED_6 L3 M0: Reserved

1 216 BGP_L3_M1_R2_SINGLE_LINE_DELIVERED_L2 L3 M1: Rd 2: Single line delivered to L2

Group Counter Event name Event description
60 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

1 217 BGP_L3_M1_R2_BURST_DELIVERED_L2 L3 M1: Rd 2: Burst delivered to L2

1 218 BGP_L3_M1_R2_READ_RETURN_COLLISION L3 M1: Rd 2: Read return collision

1 219 BGP_L3_M1_R2_DIR0_HIT_OR_INFLIGHT L3 M1: Rd 2: dir0 hit or in flight

1 220 BGP_L3_M1_R2_DIR0_MISS_OR_LOCKDOWN L3 M1: Rd 2: dir0 miss or lock-down

1 221 BGP_L3_M1_R2_DIR1_HIT_OR_INFLIGHT L3 M1: Rd 2: dir1 hit or in flight

1 222 BGP_L3_M1_R2_DIR1_MISS_OR_LOCKDOWN L3 M1: Rd 2: dir1 miss or lock-down

1 223 BGP_L3_M1_W0_DEPOSIT_REQUESTS L3 M1: WRB 0: Total accepted deposit
requests from write queues to write
buffer

1 224 BGP_L3_M1_W0_CYCLES_REQUESTS_
NOT_TAKEN

L3 M1: WRB 0: Number of cycles with
requests from queues that are not taken

1 225 BGP_L3_M1_W1_DEPOSIT_REQUESTS L3 M1: WRB 1: Total accepted deposit
requests from write queues to write
buffer

1 226 BGP_L3_M1_W1_CYCLES_REQUESTS_
NOT_TAKEN

L3 M1: WRB 1: Number of cycles with
requests from queues that are not taken

1 227 BGP_L3_M1_MH_ALLOCATION_REQUESTS L3 M1: MH: Number of allocation
requests to write buffer

1 228 BGP_L3_M1_MH_CYCLES_ALLOCATION_
REQUESTS_NOT_TAKEN

L3 M1: MH: Number of allocation
request cycles to writebuffer without
being taken

1 229 BGP_L3_M1_PF_PREFETCH_INTO_EDRAM L3 M1: PF: Number of line prefetches
brought into eDRAM

1 230 BGP_L3_M1_RESERVED_1 L3 M1: Reserved

1 231 BGP_L3_M1_RESERVED_2 L3 M1: Reserved

1 232 BGP_L3_M1_RESERVED_3 L3 M1: Reserved

1 233 BGP_L3_M1_RESERVED_4 L3 M1: Reserved

1 234 BGP_L3_M1_RESERVED_5 L3 M1: Reserved

1 235 BGP_L3_M1_RESERVED_6 L3 M1: Reserved

1 236 BGP_PU2_SNOOP_PORT0_REMOTE_
SOURCE_REQUESTS

PU2 snoop: Port 0 received a snoop
request from a remote source

1 237 BGP_PU2_SNOOP_PORT1_REMOTE_
SOURCE_REQUESTS

PU2 snoop: Port 1 received a snoop
request from a remote source

1 238 BGP_PU2_SNOOP_PORT2_REMOTE_
SOURCE_REQUESTS

PU2 snoop: Port 2 received a snoop
request from a remote source

1 239 BGP_PU2_SNOOP_PORT3_REMOTE_
SOURCE_REQUESTS

PU2 snoop: Port 3 received a snoop
request from a remote source

1 240 BGP_PU2_SNOOP_PORT0_REJECTED_
REQUESTS

PU2 snoop: Port 0 snoop filter rejected a
snoop request

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 61

1 241 BGP_PU2_SNOOP_PORT1_REJECTED_
REQUESTS

PU2 snoop: Port 1 snoop filter rejected a
snoop request

1 242 BGP_PU2_SNOOP_PORT2_REJECTED_
REQUESTS

PU2 snoop: Port 2 snoop filter rejected a
snoop request

1 243 BGP_PU2_SNOOP_PORT3_REJECTED_
REQUESTS

PU2 snoop: Port 3 snoop filter rejected a
snoop request

1 244 BGP_PU2_SNOOP_L1_CACHE_WRAP PU2 snoop: Snoop filter detected an L1
cache wrap

1 245 BGP_PU3_SNOOP_PORT0_REMOTE_
SOURCE_REQUESTS

PU3 snoop: Port 0 received a snoop
request from a remote source

1 246 BGP_PU3_SNOOP_PORT1_REMOTE_
SOURCE_REQUESTS

PU3 snoop: Port 1 received a snoop
request from a remote source

1 247 BGP_PU3_SNOOP_PORT2_REMOTE_
SOURCE_REQUESTS

PU3 snoop: Port 2 received a snoop
request from a remote source

1 248 BGP_PU3_SNOOP_PORT3_REMOTE_
SOURCE_REQUESTS

PU3 snoop: Port 3 received a snoop
request from a remote source

1 249 BGP_PU3_SNOOP_PORT0_REJECTED_
REQUESTS

PU3 snoop: Port 0 snoop filter rejected a
snoop request

1 250 BGP_PU3_SNOOP_PORT1_REJECTED_
REQUESTS

PU3 snoop: Port 1 snoop filter rejected a
snoop request

1 251 BGP_PU3_SNOOP_PORT2_REJECTED_
REQUESTS

PU3 snoop: Port 2 snoop filter rejected a
snoop request

1 252 BGP_PU3_SNOOP_PORT3_REJECTED_
REQUESTS

PU3 snoop: Port 3 snoop filter rejected a
snoop request

1 253 BGP_PU3_SNOOP_L1_CACHE_WRAP PU3 snoop: Snoop filter detected an L1
cache wrap

1 254 BGP_MISC_RESERVED_3 Misc: Reserved

1 255 BGP_MISC_ELAPSED_TIME_UM1 Misc: Elapsed tmie

2 0 BGP_PU0_JPIPE_INSTRUCTIONS_UM2 PU0: Number of J-pipe instructions

2 1 BGP_PU0_JPIPE_ADD_SUB_UM2 PU0: PowerPC Add/Sub in J-pipe

2 2 BGP_PU0_JPIPE_LOGICAL_OPS_UM2 PU0: PowerPC logical operations in
J-pipe

2 3 BGP_PU0_JPIPE_SHROTMK_UM2 PU0: Shift, rotate, mask instructions

2 4 BGP_PU0_IPIPE_INSTRUCTIONS_UM2 PU0: Number of I-pipe instructions

2 5 BGP_PU0_IPIPE_MULT_DIV_UM2 PU0: PowerPC Mul/Div in I-pipe

2 6 BGP_PU0_IPIPE_ADD_SUB_UM2 PU0: PowerPC Add/Sub in I-pipe

2 7 BGP_PU0_IPIPE_LOGICAL_OPS_UM2 PU0: PowerPC logical operations in
I-pipe

2 8 BGP_PU0_IPIPE_SHROTMK_UM2 PU0: Shift, rotate, mask instructions

2 9 BGP_PU0_IPIPE_BRANCHES_UM2 PU0: PowerPC branches

Group Counter Event name Event description
62 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

2 10 BGP_PU0_IPIPE_TLB_OPS_UM2 PU0: PowerPC TLB operations

2 11 BGP_PU0_IPIPE_PROCESS_CONTROL_UM2 PU0: PowerPC process control

2 12 BGP_PU0_IPIPE_OTHER_UM2 PU0: PowerPC other I-pipe operations

2 13 BGP_PU0_DCACHE_LINEFILLINPROG_UM2 PU0: Number of cycles D-cache
LineFillInProgress

2 14 BGP_PU0_ICACHE_LINEFILLINPROG_UM2 PU0: Number of cycles I-cache
LineFillInProgress

2 15 BGP_PU0_DCACHE_MISS_UM2 PU0: Accesses to D cache that miss in
D Cache

2 16 BGP_PU0_DCACHE_HIT_UM2 PU0: Accesses to D cache that hit in D
Cache

2 17 BGP_PU0_DATA_LOADS_UM2 PU0: PowerPC data loads

2 18 BGP_PU0_DATA_STORES_UM2 PU0: PowerPC data stores

2 19 BGP_PU0_DCACHE_OPS_UM2 PU0: D cache operations

2 20 BGP_PU0_ICACHE_MISS_UM2 PU0: Accesses to I cache that miss in
I Cache

2 21 BGP_PU0_ICACHE_HIT_UM2 PU0: Accesses to I cache that hit in
I Cache

2 22 BGP_PU0_FPU_ADD_SUB_1_UM2 PU0: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

2 23 BGP_PU0_FPU_MULT_1_UM2 PU0: PowerPC FP Mult (fmul, fmuls)

2 24 BGP_PU0_FPU_FMA_2_UM2 PU0: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

2 25 BGP_PU0_FPU_DIV_1_UM2 PU0: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

2 26 BGP_PU0_FPU_OTHER_NON_STORAGE_
OPS_UM2

PU0: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

2 27 BGP_PU0_FPU_ADD_SUB_2_UM2 PU0: Dual pipe Add/Sub (fpadd, fpsub)

2 28 BGP_PU0_FPU_MULT_2_UM2 PU0: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

2 29 BGP_PU0_FPU_FMA_4_UM2 PU0: Dual pipe FMAs (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
generated per instruction, four flops)

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 63

2 30 BGP_PU0_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS_UM2

PU0: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

2 31 BGP_PU0_FPU_QUADWORD_LOADS_UM2 PU0: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

2 32 BGP_PU0_FPU_OTHER_LOADS_UM2 PU0: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

2 33 BGP_PU0_FPU_QUADWORD_STORES_UM2 PU0: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

2 34 BGP_PU0_FPU_OTHER_STORES_UM2 PU0: All other FPU Stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

2 35 BGP_PU1_JPIPE_INSTRUCTIONS_UM2 PU1: Number of J-pipe instructions

2 36 BGP_PU1_JPIPE_ADD_SUB_UM2 PU1: PowerPC Add/Sub in J-pipe

2 37 BGP_PU1_JPIPE_LOGICAL_OPS_UM2 PU1: PowerPC logical operations in
J-pipe

2 38 BGP_PU1_JPIPE_SHROTMK_UM2 PU1: Shift, rotate, mask instructions

2 39 BGP_PU1_IPIPE_INSTRUCTIONS_UM2 PU1: Number of I-pipe instructions

2 40 BGP_PU1_IPIPE_MULT_DIV_UM2 PU1: PowerPC Mul/Div in I-pipe

2 41 BGP_PU1_IPIPE_ADD_SUB_UM2 PU1: PowerPC Add/Sub in I-pipe

2 42 BGP_PU1_IPIPE_LOGICAL_OPS_UM2 PU1: PowerPC logical operations in
I-pipe

2 43 BGP_PU1_IPIPE_SHROTMK_UM2 PU1: Shift, rotate, mask instructions

2 44 BGP_PU1_IPIPE_BRANCHES_UM2 PU1: PowerPC branches

2 45 BGP_PU1_IPIPE_TLB_OPS_UM2 PU1: PowerPC TLB operations

2 46 BGP_PU1_IPIPE_PROCESS_CONTROL_UM2 PU1: PowerPC process control

2 47 BGP_PU1_IPIPE_OTHER_UM2 PU1: PowerPC other I-pipe operations

2 48 BGP_PU1_DCACHE_LINEFILLINPROG_UM2 PU1: Number of cycles D-cache
LineFillInProgress

2 49 BGP_PU1_ICACHE_LINEFILLINPROG_UM2 PU1: Number of cycles I-cache
LineFillInProgress

2 50 BGP_PU1_DCACHE_MISS_UM2 PU1: Accesses to D cache that miss in
D Cache

2 51 BGP_PU1_DCACHE_HIT_UM2 PU1: Accesses to D cache that hit in
D Cache

2 52 BGP_PU1_DATA_LOADS_UM2 PU1: PowerPC data loads

2 53 BGP_PU1_DATA_STORES_UM2 PU1: PowerPC data stores

Group Counter Event name Event description
64 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

2 54 BGP_PU1_DCACHE_OPS_UM2 PU1: D cache operations

2 55 BGP_PU1_ICACHE_MISS_UM2 PU1: Accesses to I cache that miss in
I Cache

2 56 BGP_PU1_ICACHE_HIT_UM2 PU1: Accesses to I cache that hit in
I Cache

2 57 BGP_PU1_FPU_ADD_SUB_1_UM2 PU1: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

2 58 BGP_PU1_FPU_MULT_1_UM2 PU1: PowerPC FP Mult (fmul, fmuls)

2 59 BGP_PU1_FPU_FMA_2_UM2 PU1: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

2 60 BGP_PU1_FPU_DIV_1_UM2 PU1: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

2 61 BGP_PU1_FPU_OTHER_NON_STORAGE_
OPS_UM2

PU1: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

2 62 BGP_PU1_FPU_ADD_SUB_2_UM2 PU1: Dual pipe Add/Sub (fpadd, fpsub)

2 63 BGP_PU1_FPU_MULT_2_UM2 PU1: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

2 64 BGP_PU1_FPU_FMA_4_UM2 PU1: Dual pipe FMAs (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
generated per instruction, four flops)

2 65 BGP_PU1_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS_UM2

PU1: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

2 66 BGP_PU1_FPU_QUADWORD_LOADS_UM2 PU1: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

2 67 BGP_PU1_FPU_OTHER_LOADS_UM2 PU1: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

2 68 BGP_PU1_FPU_QUADWORD_STORES_UM2 PU1: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

2 69 BGP_PU1_FPU_OTHER_STORES_UM2 PU1: All other FPU Stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 65

2 70 BGP_PU0_L1_INVALIDATION_UM2 PU0 L1: Invalidation requested

2 71 BGP_PU1_L1_INVALIDATION_UM2 PU1 L1: Invalidation requested

2 72 BGP_PU0_SNOOP_PORT0_CACHE_REJECTED_
REQUEST

PU0 snoop: Port 0 snoop cache rejected
a request

2 73 BGP_PU0_SNOOP_PORT1_CACHE_REJECTED_
REQUEST

PU0 snoop: Port 1 snoop cache rejected
a request

2 74 BGP_PU0_SNOOP_PORT2_CACHE_REJECTED_
REQUEST

PU0 snoop: Port 2 snoop cache rejected
a request

2 75 BGP_PU0_SNOOP_PORT3_CACHE_REJECTED_
REQUEST

PU0 snoop: Port 3 snoop cache rejected
a request

2 76 BGP_PU0_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU0 snoop: Port 0 request hit a stream
register in the active set

2 77 BGP_PU0_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU0 snoop: Port 1 request hit a stream
register in the active set

2 78 BGP_PU0_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU0 snoop: Port 2 request hit a stream
register in the active set

2 79 BGP_PU0_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU0 snoop: Port 3 request hit a stream
register in the active set

2 80 BGP_PU0_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU0 snoop: Port 0 request hit a stream
register in the history set

2 81 BGP_PU0_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU0 snoop: Port 1 request hit a stream
register in the history set

2 82 BGP_PU0_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU0 snoop: Port 2 request hit a stream
register in the history set

2 83 BGP_PU0_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU0 snoop: Port 3 request hit a stream
register in the history set

2 84 BGP_PU0_SNOOP_PORT0_STREAM_REGISTER_
REJECTED_REQUEST

PU0 snoop: Port 0 stream register
rejected a request

2 85 BGP_PU0_SNOOP_PORT1_STREAM_REGISTER_
REJECTED_REQUEST

PU0 snoop: Port 1 stream register
rejected a request

2 86 BGP_PU0_SNOOP_PORT2_STREAM_REGISTER_
REJECTED_REQUEST

PU0 snoop: Port 2 stream register
rejected a request

2 87 BGP_PU0_SNOOP_PORT3_STREAM_REGISTER_
REJECTED_REQUEST

PU0 snoop: Port 3 stream register
rejected a request

2 88 BGP_PU0_SNOOP_PORT0_RANGE_FILTER_
REJECTED_REQUEST

PU0 snoop: Port 0 range filter rejected a
request

2 89 BGP_PU0_SNOOP_PORT1_RANGE_FILTER_
REJECTED_REQUEST

PU0 snoop: Port 1 range filter rejected a
request

2 90 BGP_PU0_SNOOP_PORT2_RANGE_FILTER_
REJECTED_REQUEST

PU0 snoop: Port 2 range filter rejected a
request

2 91 BGP_PU0_SNOOP_PORT3_RANGE_FILTER_
REJECTED_REQUEST

PU0 snoop: Port 3 range filter rejected a
request

Group Counter Event name Event description
66 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

2 92 BGP_PU0_SNOOP_PORT0_UPDATED_CACHE_
LINE

PU0 snoop: Port 0 snoop cache updated
cache line

2 93 BGP_PU0_SNOOP_PORT1_UPDATED_CACHE_
LINE

PU0 snoop: Port 1 snoop cache updated
cache line

2 94 BGP_PU0_SNOOP_PORT2_UPDATED_CACHE_
LINE

PU0 snoop: Port 2 snoop cache updated
cache line

2 95 BGP_PU0_SNOOP_PORT3_UPDATED_CACHE_
LINE

PU0 snoop: Port 3 snoop cache updated
cache line

2 96 BGP_PU0_SNOOP_PORT0_FILTERED_BY_
CACHE_AND_REGISTERS

PU0 snoop: Port 0 snoop filtered by both
snoop cache and filter registers

2 97 BGP_PU0_SNOOP_PORT1_FILTERED_BY_
CACHE_AND_REGISTERS

PU0 snoop: Port 1 snoop filtered by both
snoop cache and filter registers

2 98 BGP_PU0_SNOOP_PORT2_FILTERED_BY_
CACHE_AND_REGISTERS

PU0 snoop: Port 2 snoop filtered by both
snoop cache and filter registers

2 99 BGP_PU0_SNOOP_PORT3_FILTERED_BY_
CACHE_AND_REGISTERS

PU0 snoop: Port 3 snoop filtered by both
snoop cache and filter registers

2 100 BGP_PU1_SNOOP_PORT0_CACHE_REJECTED_
REQUEST

PU1 snoop: Port 0 snoop cache rejected
a request

2 101 BGP_PU1_SNOOP_PORT1_CACHE_REJECTED_
REQUEST

PU1 snoop: Port 1 snoop cache rejected
a request

2 102 BGP_PU1_SNOOP_PORT2_CACHE_REJECTED_
REQUEST

PU1 snoop: Port 2 snoop cache rejected
a request

2 103 BGP_PU1_SNOOP_PORT3_CACHE_REJECTED_
REQUEST

PU1 snoop: Port 3 snoop cache rejected
a request

2 104 BGP_PU1_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU1 snoop: Port 0 request hit a stream
register in the active set

2 105 BGP_PU1_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU1 snoop: Port 1 request hit a stream
register in the active set

2 106 BGP_PU1_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU1 snoop: Port 2 request hit a stream
register in the active set

2 107 BGP_PU1_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU1 snoop: Port 3 request hit a stream
register in the active set

2 108 BGP_PU1_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU1 snoop: Port 0 request hit a stream
register in the history set

2 109 BGP_PU1_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU1 snoop: Port 1 request hit a stream
register in the history set

2 110 BGP_PU1_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU1 snoop: Port 2 request hit a stream
register in the history set

2 111 BGP_PU1_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU1 snoop: Port 3 request hit a stream
register in the history set

2 112 BGP_PU1_SNOOP_PORT0_STREAM_REGISTER_
REJECTED_REQUEST

PU1 snoop: Port 0 stream register
rejected a request

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 67

2 113 BGP_PU1_SNOOP_PORT1_STREAM_REGISTER_
REJECTED_REQUEST

PU1 snoop: Port 1 stream register
rejected a request

2 114 BGP_PU1_SNOOP_PORT2_STREAM_REGISTER_
REJECTED_REQUEST

PU1 snoop: Port 2 stream register
rejected a request

2 115 BGP_PU1_SNOOP_PORT3_STREAM_REGISTER_
REJECTED_REQUEST

PU1 snoop: Port 3 stream register
rejected a request

2 116 BGP_PU1_SNOOP_PORT0_RANGE_FILTER_
REJECTED_REQUEST

PU1 snoop: Port 0 range filter rejected a
request

2 117 BGP_PU1_SNOOP_PORT1_RANGE_FILTER_
REJECTED_REQUEST

PU1 snoop: Port 1 range filter rejected a
request

2 118 BGP_PU1_SNOOP_PORT2_RANGE_FILTER_
REJECTED_REQUEST

PU1 snoop: Port 2 range filter rejected a
request

2 119 BGP_PU1_SNOOP_PORT3_RANGE_FILTER_
REJECTED_REQUEST

PU1 snoop: Port 3 range filter rejected a
request

2 120 BGP_PU1_SNOOP_PORT0_UPDATED_CACHE_
LINE

PU1 snoop: Port 0 snoop cache updated
cache line

2 121 BGP_PU1_SNOOP_PORT1_UPDATED_CACHE_
LINE

PU1 snoop: Port 1 snoop cache updated
cache line

2 122 BGP_PU1_SNOOP_PORT2_UPDATED_CACHE_
LINE

PU1 snoop: Port 2 snoop cache updated
cache line

2 123 BGP_PU1_SNOOP_PORT3_UPDATED_CACHE_
LINE

PU1 snoop: Port 3 snoop cache updated
cache line

2 124 BGP_PU1_SNOOP_PORT0_FILTERED_BY_
CACHE_AND_REGISTERS

PU1 snoop: Port 0 snoop filtered by both
snoop cache and filter registers

2 125 BGP_PU1_SNOOP_PORT1_FILTERED_BY_
CACHE_AND_REGISTERS

PU1 snoop: Port 1 snoop filtered by both
snoop cache and filter registers

2 126 BGP_PU1_SNOOP_PORT2_FILTERED_BY_
CACHE_AND_REGISTERS

PU1 snoop: Port 2 snoop filtered by both
snoop cache and filter registers

2 127 BGP_PU1_SNOOP_PORT3_FILTERED_BY_
CACHE_AND_REGISTERS

PU1 snoop: Port 3 snoop filtered by both
snoop cache and filter registers

2 128 BGP_TORUS_XP_TOKEN_ACK_PACKETS Torus: Number of protocol token/ack
packets in xp

2 129 BGP_TORUS_XP_ACKS Torus: Number of protocol ack packets
in xp

2 130 BGP_TORUS_XP_VCD0_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 0

2 131 BGP_TORUS_XP_VCD1_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 1

2 132 BGP_TORUS_XP_VCBN_32BCHUNKS Torus: Number of 32B chunks sent on
bubble vc 2

2 133 BGP_TORUS_XP_VCBP_32BCHUNKS Torus: Number of 32B chunks sent on
priority vc 3

Group Counter Event name Event description
68 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

2 134 BGP_TORUS_XP_NO_TOKENS Torus: xp link avail, no vcd0 vcd1 tokens

2 135 BGP_TORUS_XP_NO_VCD0_TOKENS Torus: xp link avail; no vcd0 vcd; vcbn
tokens

2 136 BGP_TORUS_XP_NO_VCBN_TOKENS Torus: xp link avail; no vcbn tokens

2 137 BGP_TORUS_XP_NO_VCBP_TOKENS Torus: xp link avail; no vcbp tokens

2 138 BGP_TORUS_XM_TOKEN_ACK_PACKETS Torus: Number of protocol token/ack
packets in xm

2 139 BGP_TORUS_XM_ACKS Torus: Number of protocol ack packets
in xm

2 140 BGP_TORUS_XM_VCD0_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 0

2 141 BGP_TORUS_XM_VCD1_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 1

2 142 BGP_TORUS_XM_VCBN_32BCHUNKS Torus: Number of 32B chunks sent on
bubble vc 2

2 143 BGP_TORUS_XM_VCBP_32BCHUNKS Torus: Number of 32B chunks sent on
priority vc 3

2 144 BGP_TORUS_XM_NO_TOKENS Torus: xm link avail; no vcd0 vcd1 tokens

2 145 BGP_TORUS_XM_NO_VCD0_TOKENS Torus: xm link avail; no vcd0 vcd; vcbn
tokens

2 146 BGP_TORUS_XM_NO_VCBN_TOKENS Torus: xm link avail; no vcbn tokens

2 147 BGP_TORUS_XM_NO_VCBP_TOKENS Torus: xm link avail; no vcbp tokens

2 148 BGP_TORUS_YP_TOKEN_ACK_PACKETS Torus: Number of protocol token/ack
packets in yp

2 149 BGP_TORUS_YP_ACKS Torus: Number of protocol ack packets
in yp

2 150 BGP_TORUS_YP_VCD0_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 0

2 151 BGP_TORUS_YP_VCD1_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 1

2 152 BGP_TORUS_YP_VCBN_32BCHUNKS Torus: Number of 32B chunks sent on
bubble vc 2

2 153 BGP_TORUS_YP_VCBP_32BCHUNKS Torus: Number of 32B chunks sent on
priority vc 3

2 154 BGP_TORUS_YP_NO_TOKENS Torus: yp link avail; no vcd0 vcd1tokens

2 155 BGP_TORUS_YP_NO_VCD0_TOKENS Torus: yp link avail; no vcd0 vcd; vcbn
tokens

2 156 BGP_TORUS_YP_NO_VCBN_TOKENS Torus: yp link avail; no vcbn tokens

2 157 BGP_TORUS_YP_NO_VCBP_TOKENS Torus: yp link avail; no vcbp tokens

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 69

2 158 BGP_TORUS_YM_TOKEN_ACK_PACKETS Torus: Number of protocol token/ack
packets in ym

2 159 BGP_TORUS_YM_ACKS Torus: Number of protocol ack packets
in ym

2 160 BGP_TORUS_YM_VCD0_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 0

2 161 BGP_TORUS_YM_VCD1_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 1

2 162 BGP_TORUS_YM_VCBN_32BCHUNKS Torus: Number of 32B chunks sent on
bubble vc 2

2 163 BGP_TORUS_YM_VCBP_32BCHUNKS Torus: Number of 32B chunks sent on
priority vc 3

2 164 BGP_TORUS_YM_NO_TOKENS Torus: ym link avail; no vcd0 vcd1 tokens

2 165 BGP_TORUS_YM_NO_VCD0_TOKENS Torus: ym link avail; no vcd0 vcd; vcbn
tokens

2 166 BGP_TORUS_YM_NO_VCBN_TOKENS Torus: ym link avail; no vcbn tokens

2 167 BGP_TORUS_YM_NO_VCBP_TOKENS Torus: ym link avail; no vcbp tokens

2 168 BGP_TORUS_ZP_TOKEN_ACK_PACKETS Torus: Number of protocol token/ack
packets in zp

2 169 BGP_TORUS_ZP_ACKS Torus: Number of protocol ack packets
in zp

2 170 BGP_TORUS_ZP_VCD0_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 0

2 171 BGP_TORUS_ZP_VCD1_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 1

2 172 BGP_TORUS_ZP_VCBN_32BCHUNKS Torus: Number of 32B chunks sent on
bubble vc 2

2 173 BGP_TORUS_ZP_VCBP_32BCHUNKS Torus: Number of 32B chunks sent on
priority vc 3

2 174 BGP_TORUS_ZP_NO_TOKENS Torus: zp link avail; no vcd0 vcd1 tokens

2 175 BGP_TORUS_ZP_NO_VCD0_TOKENS Torus: zp link avail; no vcd0 vcd; vcbn
tokens

2 176 BGP_TORUS_ZP_NO_VCBN_TOKENS Torus: zp link avail; no vcbn tokens

2 177 BGP_TORUS_ZP_NO_VCBP_TOKENS Torus: zp link avail; no vcbp tokens

2 178 BGP_TORUS_ZM_TOKEN_ACK_PACKETS Torus: Number of protocol token/ack
packets in zm

2 179 BGP_TORUS_ZM_ACKS Torus: Number of protocol ack packets
in zm

2 180 BGP_TORUS_ZM_VCD0_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 0

Group Counter Event name Event description
70 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

2 181 BGP_TORUS_ZM_VCD1_32BCHUNKS Torus: Number of 32B chunks sent on
dynamic vc 1

2 182 BGP_TORUS_ZM_VCBN_32BCHUNKS Torus: Number of 32B chunks sent on
bubble vc 2

2 183 BGP_TORUS_ZM_VCBP_32BCHUNKS Torus: Number of 32B chunks sent on
priority vc 3

2 184 BGP_TORUS_ZM_NO_TOKENS Torus: zm link avail; no vcd0 vcd1 tokens

2 185 BGP_TORUS_ZM_NO_VCD0_TOKENS Torus: zm link avail; no vcd0 vcd; vcbn
tokens

2 186 BGP_TORUS_RESERVED_1 Torus: zm link avail; no vcbn tokens

2 187 BGP_TORUS_RESERVED_2 Torus: zm link avail; no vcbp tokens

2 188 BGP_DMA_RESERVED_7 DMA: Reserved

2 189 BGP_DMA_RESERVED_8 DMA: Reserved

2 190 BGP_DMA_RESERVED_9 DMA: Reserved

2 191 BGP_DMA_RESERVED_10 DMA: Reserved

2 192 BGP_DMA_RESERVED_11 DMA: Reserved

2 193 BGP_DMA_RESERVED_12 DMA: Reserved

2 194 BGP_DMA_RESERVED_13 DMA: Reserved

2 195 BGP_DMA_RESERVED_14 DMA: Reserved

2 196 BGP_DMA_RESERVED_15 DMA: Reserved

2 197 BGP_DMA_RESERVED_16 DMA: Reserved

2 198 BGP_DMA_RESERVED_17 DMA: Reserved

2 199 BGP_DMA_RESERVED_18 DMA: Reserved

2 200 BGP_DMA_RESERVED_19 DMA: Reserved

2 201 BGP_DMA_RESERVED_20 DMA: Reserved

2 202 BGP_DMA_RESERVED_21 DMA: Reserved

2 203 BGP_DMA_RESERVED_22 DMA: Reserved

2 204 BGP_COL_AR2_ABORT_UM2 Collective: Arbiter receiver 2 abort

2 205 BGP_COL_AR1_ABORT_UM2 Collective: Arbiter receiver 1 abort

2 206 BGP_COL_AR0_ABORT_UM2 Collective: Arbiter receiver 0 abort

2 207 BGP_COL_A_LOCAL_CLIENT_ABORT Collective: Arbiter local client abort

2 208 BGP_COL_AR0_VC0_FULL Collective: Receiver 0 vc0 full

2 209 BGP_COL_AR0_VC1_FULL Collective: Receiver 0 vc1 full

2 210 BGP_COL_AR1_VC0_FULL Collective: Receiver 1 vc0 full

2 211 BGP_COL_AR1_VC1_FULL Collective: Receiver 1 vc1 full

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 71

2 212 BGP_COL_AR2_VC0_FULL Collective: Receiver 2 vc0 full

2 213 BGP_COL_AR2_VC1_FULL Collective: Receiver 2 vc1 full

2 214 BGP_COL_AS0_VC0_EMPTY Collective: Sender 0 vc0 empty

2 215 BGP_COL_AS0_VC1_EMPTY Collective: Sender 0 vc1 empty

2 216 BGP_COL_AS0_RESENDS Collective: Sender 0 resend attempts

2 217 BGP_COL_AS1_VC0_EMPTY Collective: Sender 1 vc0 empty

2 218 BGP_COL_AS1_VC1_EMPTY Collective: Sender 1 vc1 empty

2 219 BGP_COL_AS1_RESENDS Collective: Sender 1 resend attempts

2 220 BGP_COL_AS2_VC0_EMPTY Collective: Sender 2 vc0 empty

2 221 BGP_COL_AS2_VC1_EMPTY Collective: Sender 2 vc1 empty

2 222 BGP_COL_AS2_RESENDS Collective: Sender 2 resend attempts

2 223 BGP_MISC_RESERVED_4 Misc: Reserved

2 224 BGP_MISC_RESERVED_5 Misc: Reserved

2 225 BGP_MISC_RESERVED_6 Misc: Reserved

2 226 BGP_MISC_RESERVED_7 Misc: Reserved

2 227 BGP_MISC_RESERVED_8 Misc: Reserved

2 228 BGP_MISC_RESERVED_9 Misc: Reserved

2 229 BGP_MISC_RESERVED_10 Misc: Reserved

2 230 BGP_MISC_RESERVED_11 Misc: Reserved

2 231 BGP_MISC_RESERVED_12 Misc: Reserved

2 232 BGP_MISC_RESERVED_13 Misc: Reserved

2 233 BGP_MISC_RESERVED_14 Misc: Reserved

2 234 BGP_MISC_RESERVED_15 Misc: Reserved

2 235 BGP_MISC_RESERVED_16 Misc: Reserved

2 236 BGP_MISC_RESERVED_17 Misc: Reserved

2 237 BGP_MISC_RESERVED_18 Misc: Reserved

2 238 BGP_MISC_RESERVED_19 Misc: Reserved

2 239 BGP_MISC_RESERVED_20 Misc: Reserved

2 240 BGP_MISC_RESERVED_21 Misc: Reserved

2 241 BGP_MISC_RESERVED_22 Misc: Reserved

2 242 BGP_MISC_RESERVED_23 Misc: Reserved

2 243 BGP_MISC_RESERVED_24 Misc: Reserved

2 244 BGP_MISC_RESERVED_25 Misc: Reserved

2 245 BGP_MISC_RESERVED_26 Misc: Reserved

Group Counter Event name Event description
72 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

2 246 BGP_MISC_RESERVED_27 Misc: Reserved

2 247 BGP_MISC_RESERVED_28 Misc: Reserved

2 248 BGP_MISC_RESERVED_29 Misc: Reserved

2 249 BGP_MISC_RESERVED_30 Misc: Reserved

2 250 BGP_MISC_RESERVED_31 Misc: Reserved

2 251 BGP_MISC_RESERVED_32 Misc: Reserved

2 252 BGP_MISC_RESERVED_33 Misc: Reserved

2 253 BGP_MISC_RESERVED_34 Misc: Reserved

2 254 BGP_MISC_RESERVED_35 Misc: Reserved

2 255 BGP_MISC_ELAPSED_TIME_UM2 Misc: Elapsed time

3 0 BGP_PU2_JPIPE_INSTRUCTIONS_UM3 PU2: Number of J-pipe instructions

3 1 BGP_PU2_JPIPE_ADD_SUB_UM3 PU2: PowerPC Add/Sub in J-pipe

3 2 BGP_PU2_JPIPE_LOGICAL_OPS_UM3 PU2: PowerPC logical operations in
J-pipe

3 3 BGP_PU2_JPIPE_SHROTMK_UM3 PU2: Shift, rotate, mask instructions

3 4 BGP_PU2_IPIPE_INSTRUCTIONS_UM3 PU2: Number of I-pipe instructions

3 5 BGP_PU2_IPIPE_MULT_DIV_UM3 PU2: PowerPC Mul/Div in I-pipe

3 6 BGP_PU2_IPIPE_ADD_SUB_UM3 PU2: PowerPC Add/Sub in I-pipe

3 7 BGP_PU2_IPIPE_LOGICAL_OPS_UM3 PU2: PowerPC logical operations in
I-pipe

3 8 BGP_PU2_IPIPE_SHROTMK_UM3 PU2: Shift, rotate, mask instructions

3 9 BGP_PU2_IPIPE_BRANCHES_UM3 PU2: PowerPC branches

3 10 BGP_PU2_IPIPE_TLB_OPS_UM3 PU2: PowerPC TLB operations

3 11 BGP_PU2_IPIPE_PROCESS_CONTROL_UM3 PU2: PowerPC process control

3 12 BGP_PU2_IPIPE_OTHER_UM3 PU2: PowerPC other I-pipe operations

3 13 BGP_PU2_DCACHE_LINEFILLINPROG_UM3 PU2: Number of cycles D-cache
LineFillInProgress

3 14 BGP_PU2_ICACHE_LINEFILLINPROG_UM3 PU2: Number of cycles I-cache
LineFillInProgress

3 15 BGP_PU2_DCACHE_MISS_UM3 PU2: Accesses to D cache that miss in
D Cache

3 16 BGP_PU2_DCACHE_HIT_UM3 PU2: Accesses to D cache that hit in
D Cache

3 17 BGP_PU2_DATA_LOADS_UM3 PU2: PowerPC data loads

3 18 BGP_PU2_DATA_STORES_UM3 PU2: PowerPC data stores

3 19 BGP_PU2_DCACHE_OPS_UM3 PU2: D cache operations

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 73

3 20 BGP_PU2_ICACHE_MISS_UM3 PU2: Accesses to I cache that miss in
I Cache

3 21 BGP_PU2_ICACHE_HIT_UM3 PU2: Accesses to I cache that hit in
I Cache

3 22 BGP_PU2_FPU_ADD_SUB_1_UM3 PU2: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

3 23 BGP_PU2_FPU_MULT_1_UM3 PU2: PowerPC FP Mult (fmul, fmuls)

3 24 BGP_PU2_FPU_FMA_2_UM3 PU2: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

3 25 BGP_PU2_FPU_DIV_1_UM3 PU2: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

3 26 BGP_PU2_FPU_OTHER_NON_STORAGE_
OPS_UM3

PU2: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

3 27 BGP_PU2_FPU_ADD_SUB_2_UM3 PU2: Dual pipe Add/Sub (fpadd, fpsub)

3 28 BGP_PU2_FPU_MULT_2_UM3 PU2: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

3 29 BGP_PU2_FPU_FMA_4_UM3 PU2: Dual pipe FMAs (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
generated per instruction, four flops)

3 30 BGP_PU2_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS_UM3

PU2: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

3 31 BGP_PU2_FPU_QUADWORD_LOADS_UM3 PU2: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

3 32 BGP_PU2_FPU_OTHER_LOADS_UM3 PU2: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

3 33 BGP_PU2_FPU_QUADWORD_STORES_UM3 PU2: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

3 34 BGP_PU2_FPU_OTHER_STORES_UM3 PU2: All other FPU Stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

3 35 BGP_PU3_JPIPE_INSTRUCTIONS_UM3 PU3: Number of J-pipe instructions

Group Counter Event name Event description
74 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3 36 BGP_PU3_JPIPE_ADD_SUB_UM3 PU3: PowerPC Add/Sub in J-pipe

3 37 BGP_PU3_JPIPE_LOGICAL_OPS_UM3 PU3: PowerPC logical operations in
J-pipe

3 38 BGP_PU3_JPIPE_SHROTMK_UM3 PU3: Shift, rotate, mask instructions

3 39 BGP_PU3_IPIPE_INSTRUCTIONS_UM3 PU3: Number of I-pipe instructions

3 40 BGP_PU3_IPIPE_MULT_DIV_UM3 PU3: PowerPC Mul/Div in I-pipe

3 41 BGP_PU3_IPIPE_ADD_SUB_UM3 PU3: PowerPC Add/Sub in I-pipe

3 42 BGP_PU3_IPIPE_LOGICAL_OPS_UM3 PU3: PowerPC logical operations in
I-pipe

3 43 BGP_PU3_IPIPE_SHROTMK_UM3 PU3: Shift, rotate, mask instructions

3 44 BGP_PU3_IPIPE_BRANCHES_UM3 PU3: PowerPC branches

3 45 BGP_PU3_IPIPE_TLB_OPS_UM3 PU3: PowerPC TLB operations

3 46 BGP_PU3_IPIPE_PROCESS_CONTROL_UM3 PU3: PowerPC process control

3 47 BGP_PU3_IPIPE_OTHER_UM3 PU3: PowerPC other I-pipe operations

3 48 BGP_PU3_DCACHE_LINEFILLINPROG_UM3 PU3: Number of cycles D-cache
LineFillInProgress

3 49 BGP_PU3_ICACHE_LINEFILLINPROG_UM3 PU3: Number of cycles I-cache
LineFillInProgress

3 50 BGP_PU3_DCACHE_MISS_UM3 PU3: Accesses to D cache that miss in
D Cache

3 51 BGP_PU3_DCACHE_HIT_UM3 PU3: Accesses to D cache that hit in
D Cache

3 52 BGP_PU3_DATA_LOADS_UM3 PU3: PowerPC data loads

3 53 BGP_PU3_DATA_STORES_UM3 PU3: PowerPC data stores

3 54 BGP_PU3_DCACHE_OPS_UM3 PU3: D cache operations

3 55 BGP_PU3_ICACHE_MISS_UM3 PU3: Accesses to I cache that miss in
I Cache

3 56 BGP_PU3_ICACHE_HIT_UM3 PU3: Accesses to I cache that hit in
I Cache

3 57 BGP_PU3_FPU_ADD_SUB_1_UM3 PU3: PowerPC FP Add/Sub (fadd,
fadds, fsub, fsubs)

3 58 BGP_PU3_FPU_MULT_1_UM3 PU3: PowerPC FP Mult (fmul, fmuls)

3 59 BGP_PU3_FPU_FMA_2_UM3 PU3: PowerPC FP FMA (fmadd,
fmadds, fmsub, fmsubs, fnmadd,
fnmadds, fnmsub, fnmsubs; one result
generated per instruction, two flops)

3 60 BGP_PU3_FPU_DIV_1_UM3 PU3: PowerPC FP Div (fdiv, fdivs; Single
Pipe Divide)

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 75

3 61 BGP_PU3_FPU_OTHER_NON_STORAGE_
OPS_UM3

PU3: PowerPC FP remaining
non-storage instructions (fabs, fnabs,
frsp, fctiw, fctiwz, fres, frsqrte, fsel, fmr,
fneg, fcmpu, fcmpo, mffs, mcrfs, mtfsfi,
mtfsf, mtfsb0, mtfsb1)

3 62 BGP_PU3_FPU_ADD_SUB_2_UM3 PU3: Dual pipe Add/Sub (fpadd, fpsub)

3 63 BGP_PU3_FPU_MULT_2_UM3 PU3: Dual pipe Mult (fpmul, fxmul,
fxpmul, fxsmul)

3 64 BGP_PU3_FPU_FMA_4_UM3 PU3: Dual pipe FMAs (fpmadd,
fpnmadd, fpmsub, fpnmsub, fxmadd,
fxnmadd, fxmsub, fxnmsub, fxcpmadd,
fxcsmadd, fxcpnmadd, fxcsnmadd,
fxcpmsub, fxcsmsub, fxcpnmsub,
fxcsnmsub, fxcpnpma, fxcsnpma,
fxcpnsma, fxcsnsma, fxcxnpma,
fxcxnsma, fxcxma, fxcxnms; two results
generated per instruction, four flops)

3 65 BGP_PU3_FPU_DUAL_PIPE_OTHER_NON_
STORAGE_OPS_UM3

PU3: Dual pipe remaining non-storage
instructions (fpmr, fpneg, fsmr, fsneg,
fxmr, fsmfp, fsmtp, fpabs, fpnabs, fsabs,
fsnabs, fprsp, fpctiw, fpctiwz, fpre,
fprsqrte, fpsel, fscmp)

3 66 BGP_PU3_FPU_QUADWORD_LOADS_UM3 PU3: Quad Word Loads (ffpdx, lfpdux,
lfxdx, lfxdux)

3 67 BGP_PU3_FPU_OTHER_LOADS_UM3 PU3: All other Loads (lfs, lfsx, lfsu, lfsux,
lfpsx, fpsux, lfsdx, lfsdux, lfssx, lfssux,
lfd, lfdx, lfdu, lfdux, lfxsx, lfxsux)

3 68 BGP_PU3_FPU_QUADWORD_STORES_UM3 PU3: Quad Word Stores (stfpdx,
stfpdux, stfxdx, stfxdux)

3 69 BGP_PU3_FPU_OTHER_STORES_UM3 PU3: All other FPU Stores (stfs, stfsx,
stfsu, stfsux, stfd, stfdx, stfdu, stfdux,
stfiwx, stfpsx, stfpsux, stfpiwx, stfsdx,
stfsdux, stfssx,stfssux, stfxsx, stfxsux)

3 70 BGP_PU2_L1_INVALIDATION_UM3 PU2 L1: Invalidation requested

3 71 BGP_PU3_L1_INVALIDATION_UM3 PU3 L1: Invalidation requested

3 72 BGP_COL_A_CH2_VC0_HAVE Collective: Arbiter ch2_vc0_have

3 73 BGP_COL_A_CH1_VC0_HAVE Collective: Arbiter ch1_vc0_have

3 74 BGP_COL_A_CH0_VC0_HAVE Collective: Arbiter ch0_vc0_have

3 75 BGP_COL_A_INJECT_VC0_HAVE Collective: Arbiter inj_vc0_have

3 76 BGP_COL_A_CH2_VC1_HAVE Collective: Arbiter ch2_vc1_have

3 77 BGP_COL_A_CH1_VC1_HAVE Collective: Arbiter ch1_vc1_have

3 78 BGP_COL_A_CH0_VC1_HAVE Collective: Arbiter ch0_vc1_have

3 79 BGP_COL_A_INJECT_VC1_HAVE Collective: Arbiter inj_vc1_have

3 80 BGP_COL_AC_GREEDY_MODE Collective: arbiter_core greedy_mode

Group Counter Event name Event description
76 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3 81 BGP_COL_AC_PENDING_REQUESTS_UM3 Collective: arbiter_core requests
pending

3 82 BGP_COL_AC_WAITING_REQUESTS_UM3 Collective: arbiter_core requests waiting
(ready to go)

3 83 BGP_COL_ACLS0_WINS Collective: Arbiter class 0 wins

3 84 BGP_COL_ACLS1_WINS Collective: Arbiter class 1 wins

3 85 BGP_COL_ACLS2_WINS Collective: Arbiter class 2 wins

3 86 BGP_COL_ACLS3_WINS Collective: Arbiter class 3 wins

3 87 BGP_COL_ACLS4_WINS Collective: Arbiter class 4 wins

3 88 BGP_COL_ACLS5_WINS Collective: Arbiter class 5 wins

3 89 BGP_COL_ACLS6_WINS Collective: Arbiter class 6 wins

3 90 BGP_COL_ACLS7_WINS Collective: Arbiter class 7 wins

3 91 BGP_COL_ACLS8_WINS Collective: Arbiter class 8 wins

3 92 BGP_COL_ACLS9_WINS Collective: Arbiter class 9 wins

3 93 BGP_COL_ACLS10_WINS Collective: Arbiter class 10 wins

3 94 BGP_COL_ACLS11_WINS Collective: Arbiter class 11 wins

3 95 BGP_COL_ACLS12_WINS Collective: Arbiter class 12 wins

3 96 BGP_COL_ACLS13_WINS Collective: Arbiter class 13 wins

3 97 BGP_COL_ACLS14_WINS Collective: Arbiter class 14 wins

3 98 BGP_COL_ACLS15_WINS Collective: Arbiter class 15 wins

3 99 BGP_COL_AS2_BUSY Collective: Arbiter sender 2 busy

3 100 BGP_COL_AS1_BUSY Collective: Arbiter sender 1 busy

3 101 BGP_COL_AS1_BUSY_RECEPTION Collective: Arbiter sender 0 busy

3 102 BGP_COL_ALC_BUSY Collective: Arbiter local client busy
(reception)

3 103 BGP_COL_AR2_BUSY Collective: Arbiter receiver 2 busy

3 104 BGP_COL_AR1_BUSY Collective: Arbiter receiver 1 busy

3 105 BGP_COL_AR0_BUSY Collective: Arbiter receiver 0 busy

3 106 BGP_COL_ALC_BUSY_INJECT Collective: Arbiter local client busy
(injection)

3 107 BGP_COL_ALU_BUSY Collective: Arbiter ALU busy

3 108 BGP_COL_AR2_ABORT_UM3 Collective: Arbiter receiver 2 abort

3 109 BGP_COL_AR1_ABORT_UM3 Collective: Arbiter receiver 1 abort

3 110 BGP_COL_AR0_ABORT_UM3 Collective: Arbiter receiver 0 abort

3 111 BGP_COL_ALC_ABORT Collective: Arbiter local client abort

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 77

3 112 BGP_COL_AR2_PACKET_TAKEN_UM3 Collective: Arbiter receiver 2 packet
taken

3 113 BGP_COL_AR1_PACKET_TAKEN_UM3 Collective: Arbiter receiver 1 packet
taken

3 114 BGP_COL_AR0_PACKET_TAKEN_UM3 Collective: Arbiter receiver 0 packet
taken

3 115 BGP_COL_ALC_PACKET_TAKEN_UM3 Collective: Arbiter local client packet
taken

3 116 BGP_COL_AR0_VC0_DATA_PACKET_RECEIVED Collective: Receiver 0 vc0 data packet
received

3 117 BGP_COL_AR0_VC1_DATA_PACKET_RECEIVED Collective: Receiver 0 vc1 data packet
received

3 118 BGP_COL_AR0_VC1_FULL_UM3 Collective: Receiver 0 vc1 full

3 119 BGP_COL_AR0_HEADER_PARITY_ERROR_UM3 Collective: Receiver 0 header parity
error

3 120 BGP_COL_AR1_VC0_DATA_PACKET_RECEIVED Collective: Receiver 1 vc0 data packet
received

3 121 BGP_COL_AR1_VC1_DATA_PACKET_RECEIVED Collective: Receiver 1 vc1 data packet
received

3 122 BGP_COL_AR1_VC0_FULL_UM3 Collective: Receiver 1 vc0 full

3 123 BGP_COL_AR1_VC1_FULL_UM3 Collective: Receiver 1 vc1 full

3 124 BGP_COL_AR2_VC0_DATA_PACKET_RECEIVED Collective: Receiver 2 vc0 data packet
received

3 125 BGP_COL_AR2_VC1_DATA_PACKET_RECEIVED Collective: Receiver 2 vc1 data packet
received

3 126 BGP_COL_AR2_VC0_FULL_UM3 Collective: Receiver 2 vc0 full

3 127 BGP_COL_AR2_VC1_FULL_UM3 Collective: Receiver 2 vc1 full

3 128 BGP_COL_AS0_VC0_EMPTY_UM3 Collective: Sender 0 vc0 empty

3 129 BGP_COL_AS0_VC1_EMPTY_UM3 Collective: Sender 0 vc1 empty

3 130 BGP_COL_AS0_VC0_DATA_PACKETS_SENT_UM3 Collective: Sender 0 vc0 DATA packets
sent

3 131 BGP_COL_AS0_VC1_DATA_PACKETS_SENT_UM3 Collective: Sender 0 vc1 DATA packets
sent

3 132 BGP_COL_AS0_RESENDS_UM3 Collective: Sender 0 resend attempts

3 133 BGP_COL_AS1_VC0_EMPTY_UM3 Collective: Sender 1 vc0 empty

3 134 BGP_COL_AS1_VC1_EMPTY_UM3 Collective: Sender 1 vc1 empty

3 135 BGP_COL_AS1_VC0_DATA_PACKETS_SENT_UM3 Collective: Sender 1 vc0 DATA packets
sent

3 136 BGP_COL_AS1_VC1_DATA_PACKETS_SENT_UM3 Collective: Sender 1 vc1 DATA packets
sent

Group Counter Event name Event description
78 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3 137 BGP_COL_AS1_RESENDS_UM3 Collective: Sender 1 resend attempts

3 138 BGP_COL_AS2_VC0_EMPTY_UM3 Collective: Sender 2 vc0 empty

3 139 BGP_COL_AS2_VC1_EMPTY_UM3 Collective: Sender 2 vc1 empty

3 140 BGP_COL_AS2_VC0_DATA_PACKETS_SENT_UM3 Collective: Sender 2 vc0 DATA packets
sent

3 141 BGP_COL_AS2_VC1_DATA_PACKETS_SENT_UM3 Collective: Sender 2 vc1 DATA packets
sent

3 142 BGP_COL_AS2_RESENDS_UM3 Collective: Sender 2 resend attempts

3 143 BGP_COL_INJECT_VC0_HEADER_ADDED Collective: Injection vc0 header added

3 144 BGP_COL_INJECT_VC1_HEADER_ADDED Collective: Injection vc1 header added

3 145 BGP_COL_RECEPTION_VC0_PACKED_ADDED Collective: Reception vc0 packet added

3 146 BGP_COL_RECEPTION_VC1_PACKED_ADDED Collective: Reception vc1 packet added

3 147 BGP_PU2_SNOOP_PORT0_CACHE_REJECTED_
REQUEST

PU2 snoop: Port 0 snoop cache rejected
a request

3 148 BGP_PU2_SNOOP_PORT1_CACHE_REJECTED_
REQUEST

PU2 snoop: Port 1 snoop cache rejected
a request

3 149 BGP_PU2_SNOOP_PORT2_CACHE_REJECTED_
REQUEST

PU2 snoop: Port 2 snoop cache rejected
a request

3 150 BGP_PU2_SNOOP_PORT3_CACHE_REJECTED_
REQUEST

PU2 snoop: Port 3 snoop cache rejected
a request

3 151 BGP_PU2_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU2 snoop: Port 0 request hit a stream
register in the active set

3 152 BGP_PU2_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU2 snoop: Port 1 request hit a stream
register in the active set

3 153 BGP_PU2_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU2 snoop: Port 2 request hit a stream
register in the active set

3 154 BGP_PU2_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU2 snoop: Port 3 request hit a stream
register in the active set

3 155 BGP_PU2_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU2 snoop: Port 0 request hit a stream
register in the history set

3 156 BGP_PU2_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU2 snoop: Port 1 request hit a stream
register in the history set

3 157 BGP_PU2_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU2 snoop: Port 2 request hit a stream
register in the history set

3 158 BGP_PU2_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU2 snoop: Port 3 request hit a stream
register in the history set

3 159 BGP_PU2_SNOOP_PORT0_STREAM_REGISTER_
REJECTED_REQUEST

PU2 snoop: Port 0 stream register
rejected a request

3 160 BGP_PU2_SNOOP_PORT1_STREAM_REGISTER_
REJECTED_REQUEST

PU2 snoop: Port 1 stream register
rejected a request

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 79

3 161 BGP_PU2_SNOOP_PORT2_STREAM_REGISTER_
REJECTED_REQUEST

PU2 snoop: Port 2 stream register
rejected a request

3 162 BGP_PU2_SNOOP_PORT3_STREAM_REGISTER_
REJECTED_REQUEST

PU2 snoop: Port 3 stream register
rejected a request

3 163 BGP_PU2_SNOOP_PORT0_RANGE_FILTER_
REJECTED_REQUEST

PU2 snoop: Port 0 range filter rejected a
request

3 164 BGP_PU2_SNOOP_PORT1_RANGE_FILTER_
REJECTED_REQUEST

PU2 snoop: Port 1 range filter rejected a
request

3 165 BGP_PU2_SNOOP_PORT2_RANGE_FILTER_
REJECTED_REQUEST

PU2 snoop: Port 2 range filter rejected a
request

3 166 BGP_PU2_SNOOP_PORT3_RANGE_FILTER_
REJECTED_REQUEST

PU2 snoop: Port 3 range filter rejected a
request

3 167 BGP_PU2_SNOOP_PORT0_UPDATED_CACHE_
LINE

PU2 snoop: Port 0 snoop cache updated
cache line

3 168 BGP_PU2_SNOOP_PORT1_UPDATED_CACHE_
LINE

PU2 snoop: Port 1 snoop cache updated
cache line

3 169 BGP_PU2_SNOOP_PORT2_UPDATED_CACHE_
LINE

PU2 snoop: Port 2 snoop cache updated
cache line

3 170 BGP_PU2_SNOOP_PORT3_UPDATED_CACHE_
LINE

PU2 snoop: Port 3 snoop cache updated
cache line

3 171 BGP_PU2_SNOOP_PORT0_FILTERED_BY_
CACHE_AND_REGISTERS

PU2 snoop: Port 0 snoop filtered by both
snoop cache and filter registers

3 172 BGP_PU2_SNOOP_PORT1_FILTERED_BY_
CACHE_AND_REGISTERS

PU2 snoop: Port 1 snoop filtered by both
snoop cache and filter registers

3 173 BGP_PU2_SNOOP_PORT2_FILTERED_BY_
CACHE_AND_REGISTERS

PU2 snoop: Port 2 snoop filtered by both
snoop cache and filter registers

3 174 BGP_PU2_SNOOP_PORT3_FILTERED_BY_
CACHE_AND_REGISTERS

PU2 snoop: Port 3 snoop filtered by both
snoop cache and filter registers

3 175 BGP_PU3_SNOOP_PORT0_CACHE_REJECTED_
REQUEST

PU3 snoop: Port 0 snoop cache rejected
a request

3 176 BGP_PU3_SNOOP_PORT1_CACHE_REJECTED_
REQUEST

PU3 snoop: Port 1 snoop cache rejected
a request

3 177 BGP_PU3_SNOOP_PORT2_CACHE_REJECTED_
REQUEST

PU3 snoop: Port 2 snoop cache rejected
a request

3 178 BGP_PU3_SNOOP_PORT3_CACHE_REJECTED_
REQUEST

PU3 snoop: Port 3 snoop cache rejected
a request

3 179 BGP_PU3_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU3 snoop: Port 0 request hit a stream
register in the active set

3 180 BGP_PU3_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU3 snoop: Port 1 request hit a stream
register in the active set

3 181 BGP_PU3_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU3 snoop: Port 2 request hit a stream
register in the active set

Group Counter Event name Event description
80 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3 182 BGP_PU3_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_ACTIVE_SET

PU3 snoop: Port 3 request hit a stream
register in the active set

3 183 BGP_PU3_SNOOP_PORT0_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU3 snoop: Port 0 request hit a stream
register in the history set

3 184 BGP_PU3_SNOOP_PORT1_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU3 snoop: Port 1 request hit a stream
register in the history set

3 185 BGP_PU3_SNOOP_PORT2_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU3 snoop: Port 2 request hit a stream
register in the history set

3 186 BGP_PU3_SNOOP_PORT3_HIT_STREAM_
REGISTER_IN_HISTORY_SET

PU3 snoop: Port 3 request hit a stream
register in the history set

3 187 BGP_PU3_SNOOP_PORT0_STREAM_REGISTER_
REJECTED_REQUEST

PU3 snoop: Port 0 stream register
rejected a request

3 188 BGP_PU3_SNOOP_PORT1_STREAM_REGISTER_
REJECTED_REQUEST

PU3 snoop: Port 1 stream register
rejected a request

3 189 BGP_PU3_SNOOP_PORT2_STREAM_REGISTER_
REJECTED_REQUEST

PU3 snoop: Port 2 stream register
rejected a request

3 190 BGP_PU3_SNOOP_PORT3_STREAM_REGISTER_
REJECTED_REQUEST

PU3 snoop: Port 3 stream register
rejected a request

3 191 BGP_PU3_SNOOP_PORT0_RANGE_FILTER_
REJECTED_REQUEST

PU3 snoop: Port 0 range filter rejected a
request

3 192 BGP_PU3_SNOOP_PORT1_RANGE_FILTER_
REJECTED_REQUEST

PU3 snoop: Port 1 range filter rejected a
request

3 193 BGP_PU3_SNOOP_PORT2_RANGE_FILTER_
REJECTED_REQUEST

PU3 snoop: Port 2 range filter rejected a
request

3 194 BGP_PU3_SNOOP_PORT3_RANGE_FILTER_
REJECTED_REQUEST

PU3 snoop: Port 3 range filter rejected a
request

3 195 BGP_PU3_SNOOP_PORT0_UPDATED_CACHE_
LINE

PU3 snoop: Port 0 snoop cache updated
cache line

3 196 BGP_PU3_SNOOP_PORT1_UPDATED_CACHE_
LINE

PU3 snoop: Port 1 snoop cache updated
cache line

3 197 BGP_PU3_SNOOP_PORT2_UPDATED_CACHE_
LINE

PU3 snoop: Port 2 snoop cache updated
cache line

3 198 BGP_PU3_SNOOP_PORT3_UPDATED_CACHE_
LINE

PU3 snoop: Port 3 snoop cache updated
cache line

3 199 BGP_PU3_SNOOP_PORT0_FILTERED_BY_
CACHE_AND_REGISTERS

PU3 snoop: Port 0 snoop filtered by both
snoop cache and filter registers

3 200 BGP_PU3_SNOOP_PORT1_FILTERED_BY_
CACHE_AND_REGISTERS

PU3 snoop: Port 1 snoop filtered by both
snoop cache and filter registers

3 201 BGP_PU3_SNOOP_PORT2_FILTERED_BY_
CACHE_AND_REGISTERS

PU3 snoop: Port 2 snoop filtered by both
snoop cache and filter registers

3 202 BGP_PU3_SNOOP_PORT3_FILTERED_BY_
CACHE_AND_REGISTERS

PU3 snoop: Port 3 snoop filtered by both
snoop cache and filter registers

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 81

3 203 BGP_MISC_RESERVED_36 Misc: Reserved

3 204 BGP_MISC_RESERVED_37 Misc: Reserved

3 205 BGP_MISC_RESERVED_38 Misc: Reserved

3 206 BGP_MISC_RESERVED_39 Misc: Reserved

3 207 BGP_MISC_RESERVED_40 Misc: Reserved

3 208 BGP_MISC_RESERVED_41 Misc: Reserved

3 209 BGP_MISC_RESERVED_42 Misc: Reserved

3 210 BGP_MISC_RESERVED_43 Misc: Reserved

3 211 BGP_MISC_RESERVED_44 Misc: Reserved

3 212 BGP_MISC_RESERVED_45 Misc: Reserved

3 213 BGP_MISC_RESERVED_46 Misc: Reserved

3 214 BGP_MISC_RESERVED_47 Misc: Reserved

3 215 BGP_MISC_RESERVED_48 Misc: Reserved

3 216 BGP_MISC_RESERVED_49 Misc: Reserved

3 217 BGP_MISC_RESERVED_50 Misc: Reserved

3 218 BGP_MISC_RESERVED_51 Misc: Reserved

3 219 BGP_MISC_RESERVED_52 Misc: Reserved

3 220 BGP_MISC_RESERVED_53 Misc: Reserved

3 221 BGP_MISC_RESERVED_54 Misc: Reserved

3 222 BGP_MISC_RESERVED_55 Misc: Reserved

3 223 BGP_MISC_RESERVED_56 Misc: Reserved

3 224 BGP_MISC_RESERVED_57 Misc: Reserved

3 225 BGP_MISC_RESERVED_58 Misc: Reserved

3 226 BGP_MISC_RESERVED_59 Misc: Reserved

3 227 BGP_MISC_RESERVED_60 Misc: Reserved

3 228 BGP_MISC_RESERVED_61 Misc: Reserved

3 229 BGP_MISC_RESERVED_62 Misc: Reserved

3 230 BGP_MISC_RESERVED_63 Misc: Reserved

3 231 BGP_MISC_RESERVED_64 Misc: Reserved

3 232 BGP_MISC_RESERVED_65 Misc: Reserved

3 233 BGP_MISC_RESERVED_66 Misc: Reserved

3 234 BGP_MISC_RESERVED_67 Misc: Reserved

3 235 BGP_MISC_RESERVED_68 Misc: Reserved

3 236 BGP_MISC_RESERVED_69 Misc: Reserved

Group Counter Event name Event description
82 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3.3 Derived metrics

Some events are difficult to interpret. Sometimes a combination of events provide better
information. In the sequel, such a recombination of basic events is called a derived metric.

Since each derived metric has its own set of ingredients, not all derived metrics are printed for
each group. HPM automatically finds those derived metrics that are computable and prints
them. As a convenience to the user, both the value of the derived metric and its definition are
printed, if the environment variable HPM_PRINT_FORMULA is set.

3.4 Inheritance

Counter virtualization and the group (that is, the set of events) that is monitored are inherited
from the process to any of the group’s children, in particular threads that are spawned via
OpenMP. However, there are differences among the various operating systems:

� On AIX, all counter values of a process group can be collected.

� On Linux and Blue Gene systems, counter values are available only to the parent, when
the child has finished.

3 237 BGP_MISC_RESERVED_70 Misc: Reserved

3 238 BGP_MISC_RESERVED_71 Misc: Reserved

3 239 BGP_MISC_RESERVED_72 Misc: Reserved

3 240 BGP_MISC_RESERVED_73 Misc: Reserved

3 241 BGP_MISC_RESERVED_74 Misc: Reserved

3 242 BGP_MISC_RESERVED_75 Misc: Reserved

3 243 BGP_MISC_RESERVED_76 Misc: Reserved

3 244 BGP_MISC_RESERVED_77 Misc: Reserved

3 245 BGP_MISC_RESERVED_78 Misc: Reserved

3 246 BGP_MISC_RESERVED_79 Misc: Reserved

3 247 BGP_MISC_RESERVED_80 Misc: Reserved

3 248 BGP_MISC_RESERVED_81 Misc: Reserved

3 249 BGP_MISC_RESERVED_82 Misc: Reserved

3 250 BGP_MISC_RESERVED_83 Misc: Reserved

3 251 BGP_MISC_RESERVED_84 Misc: Reserved

3 252 BGP_MISC_RESERVED_85 Misc: Reserved

3 253 BGP_MISC_RESERVED_86 Misc: Reserved

3 254 BGP_MISC_RESERVED_87 Misc: Reserved

3 255 BGP_MISC_ELAPSED_TIME_UM3 Misc: Elapsed time

Group Counter Event name Event description
Chapter 3. Hardware Performance Monitoring 83

To use that concept, libhpm provides two types of start and stop functions:

� hpmStart and hpmStop start and stop counting on all processes and threads of a process
group.

� hpmTstart and hpmTstop start and stop counting only for the thread from which they are
called.

On Linux and Blue Gene systems, the hpmStart and hpmStop start and stop routines cannot
be properly implemented, because the parent has no access to the counting environment of
the child before this child has ended. Therefore the functionality of hpmStart and hpmStop is
disabled on Linux and Blue Gene systems. The calls to hpmStart and hpmStop are folded into
calls to hpmTstart and hpmTstop. As a result, they are identical and can be freely mixed on
Linux and Blue Gene systems. However, we do not recommend mixing the routines because
instrumentation like this would not port to AIX.

3.5 Inclusive and exclusive values

For a motivating example of the term exclusive values, refer to Example 3-1 on page 40. This
program snippet provides an example of two properly nested instrumentation sections. For
section 1, we can consider the exclusive time and exclusive counter values. By that, we mean
the difference of the values for section 1 and section 2. The original values for section 1 are
called inclusive values for matter of distinction. The terms inclusive and exclusive for the
embracing instrumentation section are chosen to indicate whether counter values and times
for the contained sections are included or excluded.

Of course the extra computation of exclusive values generates overhead, which is not always
wanted. Therefore the computation of exclusive values is carried out only if the environment
variable HPM_EXCLUSIVE_VALUES is set to 'Y[...]', 'y[...]', or '1'.

The exact definition of exclusive is based on parent-child relations among the instrumented
sections. Roughly spoken, the exclusive value for the parent is derived from the inclusive
value of the parent reduced by the inclusive value of all children.

Instrumented sections are not required to be properly nested, but can overlap in arbitrary
fashion. Unfortunately, this overlapping destroys (or at least obscures) the natural parent-child
relations among instrumented sections and complicates the definition of exclusive values.

3.5.1 Parent-child relations

The simplest way to establish parent child relations is to request the user to state them
explicitly. New calls in the HPM API have been introduced to enable the user to establish the
relations of choice. These functions are hpmStartx and hpmTstartx and their Fortran
equivalents. The additional “x” in the function name can be interpreted as “extended” or
“explicit”. The first two parameters of this function are the instrumented section ID and the ID
of the parent instrumented section. The latter must exist. Otherwise HPM exits with an error
message such as in the following example:

hpmcount ERROR - Illegal instance id specified

Not every user wants to undergo the hassle of explicitly building an ancestry tree among
instrumented sections. Therefore HPM provides an automatic search for parents, which is
supposed to closely mimic the behavior of properly nested instrumented sections. This
automatic search is triggered by either specifying the value HPM_AUTO_PARENT to the
second parameter of hpmStartx and hpmTstartx, or by using the classical start routines
84 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

hpmStart and hpmTstart. These two alternatives are equivalent. Indeed the second is
implemented through the first alternative.

3.5.2 Handling overlap issues

Because the user can establish arbitrary parent child relations, the definition of the explicit
duration or explicit counter values is far from obvious. Each instrumented section occupies a
subset of the time line during program execution. This subset is a finite union of intervals with
the left or lower boundaries marked by calls to hpmStart[x] or hpmTstart[x]. The right or
upper boundaries are marked by calls to hpmStop or hpmTstop. The duration is the
accumulated length of this union of intervals. The counter values are the number of those
events that occur within this subset of time.

The main step in defining the meaning of exclusive values is to define the subset of the time
line to which they are associated:

1. Represent the parent and every child by the corresponding subset of the time line (called
the parent set and child sets).

2. Take the union of the child sets.

3. Reduce the parent set by the portion that is overlapping with this union.

4. Using set theoretic terms, take the difference of the parent set with the union of the child
sets.

The exclusive duration is the accumulated length of the resulting union of intervals. The
exclusive counter values are the number of those events that occur within this subset of time.

3.5.3 Computation of exclusive values for derived metrics

The task of computing exclusive values for derived metrics might sound complicated at first. It
is simple, given the work done already in the previous subsections. The basic observation is
that we are given a subset of the time line that is associated to the notion of exclusive values.
How this set was constructed is not important. We assume that the interval boundaries are
marked by calls to hpmStart and hpmStop for a new virtual instrumented section. In this case,
it is obvious how to compute the derived metrics, which is to apply the usual definitions.

3.6 Function reference

The following instrumentation functions are provided:

� hpmInit(taskID, progName)
f_hpminit(taskID, progName)

– taskID is an integer value that indicates the node ID. It is now depreciated. In an earlier
version, this value indicated the node ID. It is no longer used and can be set to any
value.

– progName is a string with the program name. If the environment variable
HPM_OUTPUT_NAME is not set, this string is used as a default value for the output name.
Chapter 3. Hardware Performance Monitoring 85

� hpmStart(instID, label)
f_hpmstart(instID, label)

– instID is the instrumented section ID. It should be > 0 and <= 1000.

– To run a program with more than 1000 instrumented sections, the user should set the
environment variable HPM_NUM_INST_PTS. In this case, instID should be less than the
value set for HPM_NUM_INST_PTS.

– Label is a string containing a label, which is displayed by PeekPerf.

� hpmStartx(instID, par_ID, label)
f_hpmstartx(instID, par_ID, label)

– instID is the instrumented section ID. It should be > 0 and <= 1000.

– To run a program with more than 1000 instrumented sections, the user should set the
environment variable HPM_NUM_INST_PTS. In this case, instID should be less than the
value set for HPM_NUM_INST_PTS.

– par_ID is the instrumentation ID of the parent section. See 3.5, “Inclusive and exclusive
values” on page 84.

– Label is a string that contains a label, which is displayed by PeekPerf.

� hpmStop(instID)
f_hpmstop(instID)

– For each call to hpmStart, there should be a corresponding call to hpmStop with a
matching instID.

– If not provided explicitly, an implicit call to hpmStop is made at hpmTerminate.

� hpmTstart(instID, label)
f_hpmtstart(instID, label)
hpmTstartx(instID, par_ID, label)
f_hpmtstartx(instID, par_ID, label)
hpmTstop(instID)
f_hpmtstop(instID)

In order to instrument threaded applications, use the pair hpmTstart and hpmTstop to start
and stop the counters independently on each thread. Notice that two distinct threads using
the same instID generate an error. See 3.10, “Multithreaded program instrumentation
issues” on page 89, for examples.

� hpmGetTimeAndCounters(numCounters, time, values)
f_GetTimeAndCounters (numCounters, time, values)
hpmGetCounters(values)
f_hpmGetCounters (values)

These functions have been temporarily disabled in this release. They will be reintroduced
in the next release.

� hpmTerminate(taskID)
f_hpmterminate(taskID)

– All active instrumented code sections receive an hpmStop.

– This function generates the output.

– If the program exits without calling hpmTerminate, no performance information is
generated.
86 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3.7 Measurement overhead

As in previous versions of HPM, the instrumentation overhead is caught by calls to the wall
clock timer at entry and exit of calls to hpmStart[x], hpmStop, hpmTstart[x], and hpmTstop.
The previous version tried to eliminate (or hide) the overhead from the measured results. The
current version prints the timing of the accumulated overhead (separate for every
instrumented section) in the ASCII output (*.hpm file), so that the user can decide what to do
with this information:

� If the overhead is several orders of magnitude smaller than the total duration of the
instrumented section, you can safely ignore the overhead timing.

� If the overhead is in the same order as the total duration of the instrumented section, you
should be suspicious of the results.

� If the overhead is within 20% of the measured wall clock time, a warning is printed to the
ASCII output file.

3.8 Output

If no environment variable is specified, libhpm writes two files. These files contain (roughly)
the same information, but use different formats:

� The file name can be specified via environment variable HPM_OUTPUT_NAME=<name>.

� If HPM_OUTPUT_NAME is not set, the string “progName” as specified in the second parameter to
hpmInit is taken as the default. See 3.6, “Function reference” on page 85.

� The name <name> is expanded into three different file names:

– <name>.hpm is the file name for ASCII output, which is a one-to-one copy of the
screen output.

– <name>.viz is the file name for XML output.

– <name>.csv is the file name for output as a comma separated value (CSV) file. This is
not implemented in the current release.

� Which of these output files is generated is governed by three additional environment
variables. If none of the variables are set, the ASCII and the XML output is generated. If at
least one variable is set, the following rules apply:

– HPM_ASC_OUTPUT if set to 'Y[...]', 'y[...]' or '1' triggers the ASCII output.

– HPM_VIZ_OUTPUT if set to 'Y[...]', 'y[...]' or '1' triggers the XML output.

– HPM_CSV_OUTPUT if set to 'Y[...]', 'y[...]' or '1' triggers the CSV output. This is not
implemented in the current release.

� The file name can be made unique by setting the environment variable HPM_UNIQUE
FILE_NAME=1. This triggers the following changes:

– The following string is inserted before the last dot (.) in the file name:

<hostname><process_id>_<date>_<time>

– If the file name has no dot, the string is appended to the file name.

– If the only occurrence of dot is the first character of the file name, the string is
prepended, but the leading dash (_) is skipped.

– If the host name contains a dot (long form), only the portion preceding the first dot is
taken. If a batch queuing system is used, the host name is taken from the execution
host, not the submitting host.
Chapter 3. Hardware Performance Monitoring 87

– Similarly for MPI parallel programs, the host name is taken from the node where the
MPI task is running. The addition of the process ID enforces different file names for
MPI tasks running on the same node.

– If used for an MPI parallel program, hpmcount tries to extract the MPI task ID (or MPI
rank with respect to MPI_COMM_WORLD) from the MPI environment. If successful, the
process ID is replaced with the MPI task ID.

– The date is given as dd.mm.yyyy, and the time is given by hh.mm.ss in a 24-hour
format using the local time zone.

3.9 Examples of libhpm for C and C++

Example 3-2 shows the syntax for C and C++, which are the same. The libhpm routines are
declared as having external C linkage in C++.

Example 3-2 C and C++ example

declaration:
 #include "libhpm.h"
 use:
 hpmInit(tasked, "my program");
 hpmStart(1, "outer call");
 do_work();
 hpmStart(2, "computing meaning of life");
 do_more_work();
 hpmStop(2);
 hpmStop(1);
 hpmTerminate(taskID);

Fortran programs (shown in Example 3-3) should call the functions with the prefix f_. Also, in
Example 3-3, notice that the declaration is required on all source files that have
instrumentation calls.

Example 3-3 Fortran example

declaration:
 #include "f_hpm.h"
 use:
 call f_hpminit(taskID, "my program")
 call f_hpmstart(1, "Do Loop")
 do …
 call do_work()
 call f_hpmstart(5, "computing meaning of life");
 call do_more_work();
 call f_hpmstop(5);
 end do
 call f_hpmstop(1)
 call f_hpmterminate(taskID)
88 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

3.10 Multithreaded program instrumentation issues

When placing instrumentation inside of parallel regions, use different ID numbers for each
thread, as shown in Example 3-4 for Fortran.

Example 3-4 Multithreaded program

!$OMP PARALLEL
!$OMP&PRIVATE (instID)
 instID = 30+omp_get_thread_num()
 call f_hpmtstart(instID, "computing meaning of life")
!$OMP DO
 do ...
 do_work()
 end do
 call f_hpmtstop(instID)
!$OMP END PARALLEL

If two threads use the same ID numbers for call to hpmTstart or hpmTstop, libhpm exits with
the following error message:

hpmcount ERROR - Instance ID on wrong thread

3.11 Considerations for MPI parallel programs

Libhpm is inherently sequential, looking only at the hardware performance counters of a
single process (and its children, as explained in 3.4, “Inheritance” on page 83). When started
with poe or mpirun, each MPI task does its own hardware performance counting and these
instances are completely ignorant of each other, unless additional action is taken as
described in the following sections. Consequently, each instance writes its own output. If the
environment variable HPM_OUTPUT_NAME is used, each instance uses the same file name, which
results in writing into the same file, if a parallel file system is used. Of course, this can be (and
should be) prevented by making the file names unique through the HPM_UNIQUE_FILE_NAME
environment variable. Still it might be an unwanted side effect to have that many output files.

For this reason, the environment variable HPM_AGGREGATE does aggregation before (possibly)
restricting the output to a subset of MPI tasks. This formulation is deliberately vague, because
there can be many ways to aggregate hardware performance counter information across MPI
tasks. One way is to take averages, but maximum or minimum values can also be considered.
The situation is further complicated by running different groups on different MPI tasks. Take
averages and maximum and minimum values only on groups that are alike.

Therefore, the environment variable HPM_AGGREGATE takes a value, which is the name of a
plug-in that defines the aggregation strategy. Each plug-in is a shared object file that contain
two functions called distributor and aggregator.

On the Blue Gene/L system, there are no shared objects. Therefore the plug-ins are simple
object files. The HPM_AGGREGATE environment variable is not used on the Blue Gene/L system,
but the plug-ins are statically linked with the library. On the Blue Gene/P system, you can
choose to do it either way.
Chapter 3. Hardware Performance Monitoring 89

3.11.1 Distributors

The motivating example for the distributor function allows a different hardware counter group
on each MPI task. Therefore, the distributor is a subroutine that determines the MPI task ID
(or MPI rank with respect to MPI_COMM_WORLD) from the MPI environment for the current
process, and sets or resets environment variables depending on this information. The
environment variable can be any environment variable, not just HPM_EVENT_SET, which
motivated this function.

Consequently, the distributor is called before any environment variable is evaluated by HPM.
Even if an environment variable is evaluated prior to the call of the distributor, it is
re-evaluated afterwards.

The aggregator must adapt to the HPM group settings done by the distributor. This is why
distributors and aggregators always come in pairs. Each plug-in contains one such pair.

3.11.2 Aggregators

The motivating example for the aggregator function is the aggregation of the hardware
counter data across the MPI tasks. In the simplest case, this can be an average of the
corresponding values. Hence this function is called at the following times:

� After the hardware counter data is gathered
� Before the data is printed
� Before the derived metrics are computed

In a generalized view, the aggregator takes the raw results and rearranges them for output.
Also, depending on the information of the MPI task ID (or MPI rank with respect to
MPI_COMM_WORLD) the aggregator sets, or does not set, a flag to mark the current MPI task for
HPM printing.

3.11.3 Plug-ins shipped with HPCT

The following plug-ins are shipped with the toolkit. You can find them in $(IHPCT_BASE)/lib or
$(IHPCT_BASE)/lib64.
� mirror.so is the plug-in that is called when no plug-in is requested. The aggregator mirrors

the raw hardware counter data in a one-to-one fashion into the output function, hence the
name. It also flags each MPI task as a printing task. The corresponding distributor is a void
function.

� loc merge.so does a local merge on each MPI task separately. It is identical to the
mirror.so plug-in except for those MPI tasks that change the hardware counter groups in
the course of the measurement.

The different counter data, which is collected for only part of the measuring interval, is
proportionally extended to the whole interval and joined into one big group that enters
derived metrics computation. This way, more derived metrics can be determined at the risk
of computing garbage. The user is responsible for using this plug-in only when it makes
sense to use it. It also flags each MPI task as a printing task. The corresponding
distributor is a void function.

� single.so does the same as mirror.so, but only on MPI task 0. The output on all other tasks
is discarded.

� average.so is a plug-in for taking averages across MPI tasks. The distributor is reading the
environment variable HPM_EVENT_DISTR, which is supposed to be a comma separated list of
group numbers, and distributes these group numbers in a round-robin fashion to the MPI
90 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

tasks. The aggregator first builds an MPI communicator of all tasks with an equal
hardware performance counting scenario. The communicator groups might be different
from the original round-robin distribution, because the scenarios are considered
incomparable:

– If the counting group has been changed during execution.
– If the corresponding timing differs by more than 2 seconds from the average.

Next the aggregator takes the average across the subgroups formed by this
communicator. Finally it flags the MPI rank 0 in each group as a printing host.

3.11.4 User-defined plug-ins

This set of plug-ins is only a starter kit and many more might be desirable. Rather than taking
the average, you can think of taking a maximum or minimum. There is also the possibility of
taking a history_merge.so by blending in results from previous measurements. Chances are
that however big the list of shipped plug-ins might be, the one that is needed is missing from
the set (“Murphy’s law of HPM plug-ins”). The only viable solution comes with disclosing the
interface between a plug-in and tool and allowing for user defined plug-ins.

The easiest way to enable users to write their own plug-ins is by providing examples. Hence
the plug-ins described previously are provided in source code together with the makefile that
was used to generate the shared objects files. These files can be found in the
$(IHPCT_BASE)/examples/plugins directory.

3.11.5 Detailed interface description

Each distributor and aggregator is a function that returns an integer that is 0 on success and
! = 0 on error. In most cases, the errors occur when calling a system call such as malloc(),
which sets the errno variable. If the distributor or aggregator returns the value of errno as a
return code, the calling HPM tool sees an expansion of this errno code into a readable error
message. If returning the errno is not viable, the function returns a negative value.

The function prototypes are defined in the $(IHPCT_BASE)/include/hpm_agg.h file. This is a
short file with the following contents:

#include "hpm_data.h"
int distributor(void);
int aggregator(int num_in, hpm_event_vector in,
int *num_out, hpm_event_vector *out,
int *is_print_task);

The distributor has no parameters and is required to set or reset environment variables, via
setenv().

The aggregator takes the current hpm values on each task as an input vector in and returns
the aggregated values on the output vector out on selected or all MPI tasks. For utmost
flexibility, the aggregator is responsible for allocating the memory that is needed to hold the
output vector out. The definition of the data types used for in and out are provided in the
$(IHPCT_BASE)/include/hpm_data.h file.

Finally the aggregator is supposed to set (or unset) a flag to mark the current MPI task for
HPM printing.

From the previous definitions, it is apparent that the interface is defined in the C language.
While in principle it possible to use another language for programming plug-ins, the user is
Chapter 3. Hardware Performance Monitoring 91

responsible for using the same memory layout for the input and output variables. No explicit
Fortran interface is provided.

The hpm_event_vector in is a vector or list of num_in entries of type hpm_data_item. The latter
is a struct that contains members that describe the definition and the results of a single
hardware performance counting task.

Example 3-5 describes the types of parameters that are used in a call to a function
aggregator.

Example 3-5 Definition of hpm_event_vector

#define HPM_NTIM 7
#define HPM_TIME_WALLCLOCK 0
#define HPM_TIME_CYCLE 1
#define HPM_TIME_USER 2
#define HPM_TIME_SYSTEM 3
#define HPM_TIME_START 4
#define HPM_TIME_STOP 5
#define HPM_TIME_OVERHEAD 6

typedef struct {
int num_data;
hpm_event_info *data;
double times[HPM_NTIM];
int is_mplex_cont;
int is_rusage;
int mpi_task_id;
int instr_id;
int is_exclusive;
char *description;
char *xml_descr;

} hpm_data_item;

typedef hpm_data_item *hpm_event_vector;

Counting the events from a certain HPM group on one MPI task is represented by a single
element of type hpm data item.

If several instrumented sections are used, each instrumented code section uses separate
elements of type hpm data item to record the results. Each of element has the member
instr_id set with the first argument of hpmStart, and the logical member is exclusive set to
TRUE_ or FALSE_ depending on whether the element holds inclusive or exclusive counter
results. See 3.5, “Inclusive and exclusive values” on page 84, for details. Then all of these
different elements are concatenated into a single vector.

Finally, the data from a call to getrusage() is prepended to this vector. The rusage data forms
the vector element with index 0. This vector element is the only element with struct member
is_rusage set to TRUE_ to distinguish it from ordinary hardware performance counter data.

The output vector is of the same format. Each vector element enters the derived metrics
computation separately (unless is rusage == TRUE_). Then all vector elements (and the
corresponding derived metrics) are printed in the order given by the vector out. The output of
each vector element is preceded by the string given in a member description, which can
include line feeds as appropriate. The XML output is marked with the text given in xml_descr.
This way, the input vector in provides a complete picture of what was measured on each MPI
92 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

task. The output vector out allows complete control of what is printed on which MPI task in
what order.

3.11.6 Getting the plug-ins to work

The plug-ins have been compiled with the following makefile:

$(IHPCT_BASE)/examples/plugins/Makefile

This compilation occurs by using the following command:

<g>make ARCH=<appropriate_archtitecture>

The include files for the various architectures are provided in the make subdirectory. Note the
following subtleties:

� The makefile distinguishes “sequential” (specified in PLUGIN_SRC) and “parallel” plug-ins
(specified in PLUGIN_PAR_SRC). The latter plug-ins are compiled and linked with the MPI
wrapper script for the compiler or linker. Unlike a static library, generation of a shared
object requires linking, not just compilation.

� On the Blue Gene/L system, there are no shared objects. Therefore, ordinary object files
are generated. On the Blue Gene/L and Blue Gene/P systems, everything is parallel.

� Restrictions are observed when writing plug-in code. The MPI standard document
disallows calling MPI_Init() twice on the same process. It appears that this is not
supported on the majority of MPI software stacks, not even if an MPI_Finalize() is called
between the two invocations of MPI_Init().

� The distributor is called by hpmInit(). If it contains MPI calls, this enforces the distributor
to have MPI_Init() prior to hpmInit(). To lift this restriction, the distributor must not call
any MPI function. The MPI task ID should be extracted by inspecting environment
variables that have been set by the MPI software stack.

� The aggregator usually cannot avoid calling MPI functions. Before calling MPI_Init(), it
must check whether the instrumented application has already done so. If the instrumented
application is an MPI application, it cannot be called after MPI_Finalize(). The aggregator
is called by hpmTerminate(). Therefore, hpmTerminate() must be called between the calls
to MPI_Init() and MPI_Finalize().

� libhpm uses a call to dlopen() to access the plug-in and uses its functions. There is no
dlopen() on the Blue Gene/L system. Plug-ins are statically linked to the application. On
the Blue Gene/P system, both ways to access the plug-ins can be used.
Chapter 3. Hardware Performance Monitoring 93

94 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Chapter 4. High Performance Computing
Toolkit GUI

The High Performance Computing Toolkit (HPCT) graphical user interface (GUI) is the visual
control center of HPCT. With this GUI, you can control instrumentation, execute the
application, and visualize and analyze the collected performance data within the same user
interface. The following dimensions of performance data are provided in our current
framework:

� CPU (Hardware Performance Monitoring (HPM))
� Message Passing Interface (MPI)
� Threads (OpenMP)
� Memory
� I/O

The collected performance data is mapped to the source code, so that you can more easily
find bottlenecks and points for optimizations. The HPCT GUI provides filtering and sorting
capabilities to help you analyze the data.

4

© Copyright IBM Corp. 2007. All rights reserved. 95

4.1 Starting the HPCT GUI

You start the HPCT GUI from a command line by using either of the following commands:

peekperf
peekperf <-num max_src_files> <vizfiles>

You can specify more than one .viz file. The HPCT GUI opens all the .viz files and combines
the data from all of them. The HPCT GUI also tries to open the source files if the source files
are available. In some applications, there might be hundreds of source files. By default, the
HPCT GUI opens up to fifteen source files. If there are more than fifteen source files, the
HPCT GUI prompts you for input to select a list of the files to be opened. You can reset the
default value by using the -num option.

The following syntax is for binary instrumentation:

peekperf <-num max_src_files> <binary> <vizfiles>

The HPCT GUI invokes the binary instrumentation engine and obtains information about the
binary. Then from the GUI, you can control the instrumentation.

4.2 HPCT GUI Main window (Visualization)

As mentioned previously, the HPCT GUI tries to find your source files. If it fails to locate the
files, a window prompts you to select the top-level directory for your source code. If the HPCT
GUI finds more than one file with the same name, you are prompted to select the correct file.
You can also open the files manually by selecting File → Open Sources. The .viz files can be
opened by selecting File → Open Performance Data.
96 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Figure 4-1 shows the performance data visualization interface of the HPCT GUI. In this mode,
two windows are open. The Data Visualization Window, on the left, contains the collected
performance data. The Source Code Window, on the right, displays the source file.

Figure 4-1 HPCT GUI

In the Data Visualization Window, the data is presented in a hierarchical tree format. Clicking
the plus sign (+) expands that specific section of the tree. Clicking the minus sign (-) collapses
the section of the tree.
Chapter 4. High Performance Computing Toolkit GUI 97

After you expand any of the sections, you can click one of the leaf nodes and the
corresponding line of source code is highlighted in the Source Code Window (right pane). If
you right-click a leaf node, a window opens (Figure 4-2) that contains all of the performance
data collected in more detail.

Figure 4-2 All performance data for specified node

If you right-click a non-leaf node or other empty space, a context menu opens as shown in
Figure 4-3 (also shown in Figure 4-1 on page 97). You can collapse or expand the tree by
selecting Collapse the Tree or Expand the Tree. You can filter the performance data by
selecting Set Filter. If you want to go back to the original state, you can select No Filter. In
addition to the tree view of performance data, you can also display the performance data as a
tabular form by selecting the Show as Table. If the collected performance data is MPI, you see
View Tracer in the context menu. By selecting View Tracer, the Trace Viewer opens. However,
if the collected performance data is I/O, the View Tracer option opens a different viewer for the
I/O trace data.

Figure 4-3 Context menu

Leaf node: The term leaf node refers to the lowest level of the tree. For MPI, the leaf node
is an MPI function. An HPM leaf node refers to a function or a user-defined region.
98 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Show as Table
Figure 4-4 shows the tabular form of performance data that is returned when you select Show
as Table in the context menu. You can sort each column by clicking the header of each
column. Right-click to open a context menu that has options with which you can hide the
column or save the data into a plain text file. If you want to move a column, press the Ctrl key,
click the column header, and drag the column to the new location. You can also map the data
to the source code by clicking the row number on the left.

Figure 4-4 Show as Table window
Chapter 4. High Performance Computing Toolkit GUI 99

View Tracer
The MPI Trace Viewer window (Figure 4-5) shows the tasks at the y axis and the time at the x
axis. For every task, you can see the timeline. Every MPI call is highlighted with another color.
The MPI traces can be viewed with a black or a bright background. When using the bright
background, every event is surrounded by a black rectangle that makes it easier to identify
short events.

Figure 4-5 MPI Trace Viewer
100 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Figure 4-6 shows the same trace with a different zoom level.

Figure 4-6 Trace Viewer with a new zoom level

Figure 4-7 shows the Identifier window, which is shown beside the Trace Viewer. You use the
legend to easily map from the timeline to an event within the timeline. Additionally you can
suppress some types of events from being displayed by clicking the event type in the Identifier
window and deselecting the event.

Figure 4-7 Trace Viewer Identifier window
Chapter 4. High Performance Computing Toolkit GUI 101

You can click an event in the Trace Viewer window to highlight the corresponding line of
source in the Main Window of the HPCT GUI. If you hold down the left mouse button and
move the mouse pointer to another point, you see two lines. The first line is shown at the
origin (where you clicked the mouse button). The second line is shown at the current position
of the mouse. If you release the mouse button, the timeline zooms automatically into this
selected timeframe.

When you right-click an event in the Trace Viewer window, a box opens as shown in
Figure 4-8. This window represents a summary of the collected data for the selected event.

Figure 4-8 Summary of data collected

You can navigate around the Trace Viewer by using the toolbar at the top of the viewer
(Figure 4-9). This toolbar can be undocked from the window. You can zoom in and out
vertically and horizontally.

Figure 4-9 Navigation toolbar

You can also use your keyboard to navigate through the trace. Table 4-1 provides a list of keys
and their corresponding action.

Table 4-1 Navigation keys

Transfer rate: Whenever an event transmits bytes, we try to calculate a transfer rate by
dividing the number of transferred bytes by the elapsed time. In case of non-blocking calls,
for example MPI_Irecv(), this data does not show the associated physical transfer rate.

Key Action

Left arrow Move trace to the left

Right arrow Move trace to the right

Up arrow Scroll up through tasks

Down arrow Scroll down through tasks

Page up Scroll trace faster to the left

Page down Scroll trace faster to the right

z or y Zoom time in

x Zoom time out

a Zoom tasks in

s Zoom tasks out
102 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

If you are displaying an I/O trace, a window similar to the one shown in Figure 4-10 opens.
The I/O Trace Viewer is the window in the right side of the figure.

Figure 4-10 I/O Trace Viewer
Chapter 4. High Performance Computing Toolkit GUI 103

4.3 HPCT GUI Main Window with instrumentation

When the binary is given to the HPCT GUI, the Data Collection Window (Figure 4-11) opens.
In this window, you are able to control the instrumentation. The binary can be given via the
command line or by selecting File → Open Binary.

The tree in each panel presents the program structure and can be created based on the type
of performance data. For example, click the HPM tab. The tree in the HPM panel contains two
subtrees. The Func. Entry/Exit subtree shows all the functions. The call site of the functions
is in another Func. Call Site subtree.

Figure 4-11 Main window With instrumentation

The context menu of Data Collection Window provides searching capabilities in the tree.
Right-click a blank portion of the panel and select the Search option. Then enter a keyword.
The HPCT GUI searches the entire tree and gives information related to the keyword. For
example, Figure 4-12 shows the results of the keyword calc1.

Figure 4-12 Search results
104 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

The instrumentation is selected by clicking the nodes in the tree. For example, when you click
the shalow node, all the children in the shalow node are selected and highlighted (see
Figure 4-11). If you want to deselect it, click the selected node again. All the children including
this node are then deselected. If you want to clear all your currently selected instrumentation,
select Tool → Clear Instrumentation.

At this point, the instrumented application is not generated yet. You are only selecting the
places to put the instrumentation. After you browse each panel and decide which
instrumentation to use, you select Automatic → Generate an Instrumented Application.
When the application is done, a window opens that indicates if the instrumentation is
completed. It also indicated the name of the instrumented application.

After the instrumented application is generated, you can run the instrumented application if
the application can be run in the same machine. You can do this by selecting Automatic →
Run an Instrumented Application. Figure 4-13 shows an example after the instrumented
application has run. The HPM and MPI data are collected in a single run.

Figure 4-13 Instrumented application
Chapter 4. High Performance Computing Toolkit GUI 105

For MPI, the tree is displayed in two different ways. One way is to group by MPI function
classes (see Figure 4-14).

Figure 4-14 Grouped by MPI functions
106 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

The other way is to group by File and Function (see Figure 4-15). The display for MPI can be
switched by the option in the context menu of the MPI panel.

Figure 4-15 Grouped by file or function
Chapter 4. High Performance Computing Toolkit GUI 107

You can set up environment variables by selecting Automatic → Set the Environment
Variable. For HPM, if you want to change the event group, you can open the context menu in
the HPM panel. Right-click in an open area of the HPM Counter Groups and select the Set
the Counter Group option.

In the window that opens (Figure 4-16), you can change the event group. You can view the
counter group information by clicking the Help button, which shows the counter information in
the current platform.

Figure 4-16 Setting the HPM_EVENT_SET
108 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

4.4 HPCT GUI simple IDE

In the Source Code Window, you can right-click and either open and edit the file using the vi
editor. After the file is changes and saved, you can reload it back to the Source Code Window.
The HPCT GUI detects whether the change occurred and prompts you if you want to reload it.
You can also edit any file by selecting Manual → Edit. If you want to compile your application
without switching to another terminal, you can do so by selecting Manual → Compile. A
window opens in which you can supply a command. You can run any executable by selecting
Manual → Run.

Figure 4-17 Editing the source code
Chapter 4. High Performance Computing Toolkit GUI 109

110 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Chapter 5. I/O performance

The Modular I/O (MIO) library was developed by the Advanced Computing Technology Center
(ACTC) of the IBM Thomas J. Watson Research Center to address the need for an
applications-level method for optimizing I/O. Applications frequently have little logic built into
them to provide users the opportunity to optimize the I/O performance of the application. The
absence of application-level I/O tuning leaves the user at the mercy of the operating system to
provide the tuning mechanisms for I/O performance. Typically, multiple applications are run on
a given system that have conflicting needs for high performance I/O, resulting at best a set of
tuning parameters that provide moderate performance for the application mix.

The MIO library allows users to analyze the I/O of their application and then tune the I/O at
the application level for a more optimal performance for the configuration of the current
operating system.

A common I/O pattern exhibited is the sequential reading of large files (tens of gigabytes).
Applications that exhibit this I/O pattern tend to benefit minimally from operating system buffer
caches. Large operating system buffer pools are ineffective since there is little, if any, data
reuse, and system buffer pools typically do not provide prefetching of user data.

However, the MIO library can be used to address this issue by invoking the pf module that
detects the sequential access pattern and asynchronously preloads a much smaller cache
space with data that is needed. The pf cache needs only to be large enough to contain
enough pages to maintain sufficient read ahead (prefetching). The pf module can optionally
use direct I/O, which avoids an extra memory copy to the system buffer pool and frees the
system buffers from the one-time access of the I/O traffic, allowing the system buffers to be
used more productively.

5

© Copyright IBM Corp. 2007. All rights reserved. 111

5.1 Design summary

The MIO library consists of four I/O modules that may be invoked at runtime on a per-file
basis. The following modules are currently available:

mio The interface to the user program
pf A data prefetching module
trace A statistics gathering module
aix The MIO interface to the operating system

For each file that is opened with MIO, a minimum of two modules is invoked:

� The mio module that converts the user MIO calls (MIO_open64, MIO_read, MIO_write, ...)
into the internal calling sequence of MIO

� The aix module that converts the internal calling sequence of MIO into the appropriate
system calls (open64, read, write,...)

Between the mio and aix module invocations, the user can specify the invocation of the other
modules, pf and trace. Aside from the requirement that the mio module be at the top of the
module stack and that the aix module be at the bottom of the stack, it does not matter to the
MIO modules what other modules are placed in the stack for a given file.

5.2 Runtime control of MIO

MIO is controlled via four environment variables:

� MIO_STATS
� MIO_FILES
� MIO_DEFAULTS
� MIO_DEBUG

5.2.1 MIO_STATS

MIO_STATS is used to indicate a file that will be used as a repository for diagnostic messages
and for output requested from the MIO modules. It is interpreted as a file name with two
special cases. If the file is either stderr or stdout, the output is directed toward the appropriate
file stream. If the first character of MIO_STATS is a plus sign (+), the file name to be used is
the string that follows the + sign and the file is opened for appending. Without the preceding +
sign, the file is overwritten.

5.2.2 MIO_FILES

MIO_FILES is the key to determining which modules are to be invoked for a given file when
MIO_open64 is called. MIO_FILES has the following format:

first_name_list [module list] second_name_list [module list] ...

When MIO_open64 is called, MIO checks for the existence of MIO_FILES and parses it as
follows:

� MIO_FILES is parsed left to right. All characters up to the next occurrence of the left
bracket ([) are taken as a file_name_list. A file_name_list is a colon (:) separated list of
file_name_templates.
112 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

File_name_templates are used to match the name of the file that is being opened by MIO
and might use the following wildcard characters:

– An asterisk (*) matches zero or more characters of a directory or file name.
– A question mark (?) matches one character of a directory or file name.
– Double asterisks (**) match all remaining characters of a full path name.

� If the file_name_template does not contain a forward slash (/), then all directory
information in the file name passed to the MIO_open64 subroutine is ignored and
matching is applied only to the leaf name of the file that is being opened.

Here are a two examples of wildcards in action:

� If the name of the file that is being opened is matched by one of the file_name_templates
in the file_name_list, then the module list to be invoked is taken as the string between the
following brakets ([]). If the name of the file does not match any of the
file_name_templates in the file_name_list, the parser moves on to the next file_name_list
and attempts to match there. If the name of the file that is being opened does not match
any of the file_name_templates in any of the file_name_lists, then the file is opened with a
default invocation of the aix module.

� If a match has occurred, the modules to be invoked are taken from the associated module
list in MIO_FILES. The modules are invoked in left to right order, with the leftmost module
that is closest to the user program and the rightmost module that is closest to the
operating system. If the module list does not start with the mio module, a default
invocation of the mio module is prepended. If the aix module is not specified, a default
invocation of the aix module is appended.

The following example shows the handling of MIO_FILES. Let us assume that the
MIO_FILES is set as follows:

MIO_FILES= *.dat:*.scr [trace] *.f01:*.f02:*.f03 [trace | pf | trace]

If the test.dat file were opened by MIO_open64, the file name test.dat would match *.dat,
resulting in the following modules being invoked:

mio | trace | aix

If the test.f02 file were opened by MIO_open64, the file name test.f02 would match the
second file_name_template in the second file_name_list resulting in the following modules
being invoked:

mio | trace | pf | trace | aix

Each module has its own hardcoded defaults options for a default invocation. The user might
override the defaults options by specifying them in MIO_FILES. The following example turns
on stats for the trace module and requests that the output be directed to the my.stats file:

MIO_FILES= *.dat : *.scr [trace/stats=my.stats]

The options for a module are delimited with a forward slash (/). Some options require an
associated integer value and others may require a string value. For those requiring a string
value, if the string includes a forward slash (/), enclose the string in braces ({}).

For those options that require an integer value, the user might append the integer value with a
k, m, g, or t to represent kilo (1024), mega (1024**2), giga (1024**3), or tera (1024**4).
Integer values can also be input in base 10, 8, or 16. If the integer value is prepended with a
0x, the integer is interpreted as base 16. If the integer value is prepended with a 0, the integer
is interpreted as base 8. Failing the previous two tests, the integer is interpreted as base 10.
Chapter 5. I/O performance 113

5.2.3 MIO_DEFAULTS

MIO_DEFAULTS is intended as a tool to keep MIO_FILES more readable. If the user
specifies several modules for multiple file_name_list/module_list pairs, then MIO_FILES
might become quite long. If the user repeatedly overrides the hardcoded defaults, it might be
easier to specify new defaults for a module by specifying them in MIO_DEFAULTS.
MIO_DEFAULTS is a comma separated list of modules with their new defaults. For example,
let us assume that MIO_DEFAULTS is set as follows:

MIO_DEFAULTS = trace/events=prob.events , aix/debug

Now any default invocation of the trace module has binary event tracing enabled and directed
toward the prob.events file, and any default invocation of the aix module has debug enabled.

5.2.4 MIO_DEBUG

MIO_DEBUG is intended as an aid in debugging the usage of MIO. MIO searches
MIO_DEFAULTS for keywords and provides debugging output for the option. The following
keywords are available:

ALL Turns on all the MIO_DEBUG keywords
ENV Outputs environment variable matching requests
OPEN Outputs open request made to MIO_open64
MODULES Outputs modules invoked for each call to MIO_open64
TIMESTAMP Places a timestamp preceding each entry into a stats file
DEF Outputs the definition table of each module

5.3 Module descriptions and options

In this section, we describe the different modules and the options that control their runtime
behavior. As described previously, these options can be specified in MIO_FILES.

� mio

The mio module is the interface to the user program:

code_defaults=/set_oflags=0/clear_oflags=0/nomode

This module has the following options:

mode=(0,0,0) Override the default mode
nomode Do not override the mode
direct Set the O_DIRECT bit
nodirect Clear the O_DIRECT bit

� pf

Pf is the data prefetch module:

code_defaults=/nodirect/stats=mioout/bytes/cache_size=64k/page_size=4k/prefetch
=1/asynchronous/global/release/nopffw/memcpy/stride=1/nolistio/tag={ }/notag

This module has the following options:

norelease Do not free the global cache pages when the global cache file
usage count goes to zero

release Free the global cache pages when the global cache file usage
count goes to zero

private Use a private cache
114 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

global=(0,255,0) Use a global cache (0 to 255)

asynchronous Use asynchronous calls to the child module

synchronous Use synchronous calls to the child module

noasynchronous Alias for synchronous

direct Use DIRECT I/O

nodirect Do not use DIRECT I/O

bytes Stats output in units of bytes

kbytes Stats output in units of KB

mbytes Stats output in units of MB

gbytes Stats output in units of GB

tbytes Stats output in units of TB

cache_size=(16384,1073741824,64k)

The total size of the cache (in bytes)

page_size=(4096,1073741824,4k)

The size of each cache page (in bytes)

prefetch=(1,100,1) The number of pages to prefetch

stride=(1,1073741824,1)

Stride factor, in pages, default is 1

stats=mioout Output prefetch usage statistics

nostats Do not output prefetch usage statistics

inter Output intermediate prefetch usage statistics on kill -30

nointer Do not output intermediate prefetch usage statistics

retain Retain file data after close for subsequent reopen

noretain Do not retain file data after close for subsequent reopen

listio Use the listio mechanism

nolistio Do not use the listio mechanism

tag= String to prefix stats flow

notag Do not use prefix stats flow

� trace

Trace is a statistics gathering module:

code_defaults=/stats=mioout/events=trace.events/noevents/sample=1/
inter=30/nointer

This module has the following options:

stats=mioout Output statistics on close

nostats Do not output statistics on close

events=trace.events Generate a binary events file

noevents Do not generate a binary events file

bytes Output statistics in units of bytes

kbytes Output statistics in units of kilobytes
Chapter 5. I/O performance 115

mbytes Output statistics in units of megabytes

gbytes Output statistics in units of gigabytes

tbytes Output statistics in units of terabytes

inter=(30,30,30) Output intermediate trace statistics on kill -30

nointer Do not output intermediate statistics

� aix

The aix module is the MIO interface to the operating system:

code_defaults=/nodebug

This module has the following options:

debug Print debug statements for open and close

nodebug Do not print debug statements for open and close

5.4 Library implementation

The interface to the MIO library was designed to be simple to implement. For applications that
use the POSIX standard open64, read, write, lseek64, fsync, ftruncate64, fstat64, ffinfo, fcntl,
and close I/O calls, the application programmer must only introduce #defines to redirect the
I/O calls to use the MIO library. The #defines for a simple code are as follows:

� #define open64(a,b,c) MIO_open64(a,b,c,0)
� #define close MIO_close
� #define lseek64 MIO_lseek64
� #define read MIO_read
� #define write MIO_write
� #define ftruncate64 MIO_ftruncate64
� #define fstat64 MIO_fstat64
� #define fcntl MIO_fcntl
� #define ffinfo MIO_ffinfo
� #define fsync MIO_fsync

The only MIO call with arguments that differ from the corresponding standard POSIX system
call is MIO_open64, with MIO_open64 requiring a fourth argument that is a pointer to an
MIO_extra structure. The simplest implementation is to pass a zero pointer as the fourth
argument to MIO_open64.

Defines: The defines are for open64, lseek64, ftruncate64 and fstat64. It is assumed that
the application has defined _LARGE_FILES to allow for file offsets greater than 2 GB. With
the define of _LARGE_FILES, the use of open, lseek, ftruncate, and fstat in the application
is redefined to open64, lseek64, ftruncate64, and fstat64 by the MACROS in
/usr/include/fcntl.h.
116 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

5.5 Sample implementation

The following simple example demonstrates that the implementation of MIO consists of five
files:

� A simple C program named example.c
� A makefile to compile example.c
� A script to run the program example.c
� The MIO header file MIO_user.h
� The resulting MIO_STATS file example.stats

The example.csh file compiles and runs the example program. The argument to example is
the file that is to be created, written to, and read forward and backward.

Example.c (Example 5-1) issues 100 writes of 16 KB, seeks to the beginning of the file,
issues 100 reads of 16 KB, and then seeks backward through the file reading 16 KB records.
At the end, the file is truncated to 0 bytes in length.

Example 5-1 The example.c file

Example.c
#define _LARGE_FILES
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

#include "MIO_user.h"

/* Note that we define open64, lseek64, ftruncate64, and not the
 * open, lseek, and ftruncate that are used in the code. This is
 * because MIO_user.h defines _LARGE_FILES which forces <fcntl.h> to
 * redefine open, lseek, and ftruncate as open64, lseek64, and
 * ftruncate64
 */

#define open64(a,b,c) MIO_open64(a,b,c,0)
#define close MIO_close
#define lseek64 MIO_lseek64
#define write MIO_write
#define read MIO_read
#define ftruncate64 MIO_ftruncate64

#define RECSIZE 16384
#define NREC 100

main(int argc, char **argv)
{
int i, fd, status ;
char *name ;
char *buffer ;
int64 ret64 ;

 if(argc < 2){
 fprintf(stderr,"Usage : example file_name\n");
 exit(-1);
 }
Chapter 5. I/O performance 117

 name = argv[1] ;

 buffer = (char *)malloc(RECSIZE);
 memset(buffer, 0, RECSIZE) ;

 fd = open(name, O_RDWR|O_TRUNC|O_CREAT, 0640) ;
 if(fd < 0){
 fprintf(stderr,"Unable to open file %s errno=%d\n",name,errno);
 exit(-1);
 }

/* write the file */
 for(i=0;i<NREC;i++){
 status = write(fd, buffer, RECSIZE) ;
 }

/* read the file forwards */
 ret64 = lseek(fd, 0, SEEK_SET) ;
 for(i=0;i<NREC;i++){
 status = read(fd, buffer, RECSIZE) ;
 }

/* read the file backwards */
 for(i=0;i<NREC;i++){
 ret64 = lseek(fd, (NREC-i-1)*RECSIZE, SEEK_SET) ;
 status = read(fd, buffer, RECSIZE) ;
 }

/* truncate the file back to 0 bytes*/
 status = ftruncate(fd, 0) ;

/* close the file */
 status = close(fd);
}

Example 5-2 shows the makefile.bgp file.

Example 5-2 The makefile.bgp file

CC=/bgusr/walkup/bin/mpxlc
INC=-I$(IHPCT_BASE)/src/mio

MIO_LIB = -L$(IHPCT_BASE)/lib -lmio
for 64-bit applications
#MB=64
#MIO_LIB=$(IHPCT_BASE)/lib64

for 32-bit applications
$MB=32
MIO_LIB=$(IHPCT_BASE)/lib

.c.o:
 $(CC) -c -DBGP -DBGL -DMIO_LARGE_FILES $(INC) \
 -DpLinux \
 -DOS_TYPE=\"pLinux\" \
 -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE \
118 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

 -D_FILE_OFFSET_BITS=64 -D_GNU_SOURCE \
 $<

all: example

example: example.o
 $(CC) $(CFLAGS) $(INC) -o example example.o -L$(MIO_LIB) -lmio

clean:
 rm -f *.o example *.evt *.stats *.pbm

realclean: clean

For Example 5-3, we ran the program using mpirun on partition N11_32_1.

Example 5-3 Run script

mpirun -verbose 1 -partition N11_32_1 \
-cwd /bgusr/sseelam/simple-example -np 1 \
-env "MIO_STATS=xml.stats" \
-env "MIO_DEFAULTS=trace" -env "MIO_FILES=*[trace/events=example.evt|pf]" \
-env "MIO_DEBUG=all" \
-exe /bgusr/sseelam/simple-example/example \
-args "hello"

Example 5-4 contains the sample MIO header file.

Example 5-4 MIO header file

#if !defined(_MIO_USER_H)
#define _MIO_USER_H

#if !defined(_LARGE_FILES)
#define _LARGE_FILES
#endif

#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <aio.h>

#define MIO_EXTRA_SKIP_MIO_FILES_FLAG 0x2
#define MIO_EXTRA_SKIP_MIO_DEFAULTS_FLAG 0x4
#define MIO_EXTRA_OPEN_FOR_UNLINK 0x8

#define MIO_EXTRA_COOKIE_OLD 0x7a78746b
#define MIO_EXTRA_COOKIE 0x7a78746c
struct mio_extra_old {
 int cookie ;
 int taskid ;
 int64 bufsiz ;
 char *modules ;
 char *logical_name ;
} ;
struct mio_extra {
 int cookie ;
Chapter 5. I/O performance 119

 int taskid ;
 int64 bufsiz ;
 char *modules ;
 char *logical_name ;
 int flags ;
 int extra_errno ;
 int reserved[8] ;
} ;

#define MIO_EXTRA_FLAG_SCRATCH 0x80000000

#if !defined(MIO_STRUCT_AIOCB)
#define MIO_STRUCT_AIOCB struct aiocb64
#define MIO_STRUCT_LIOCB struct liocb64
#endif

extern int MIO_open64(char *, int, int, struct mio_extra *);
extern int MIO_fstat64(int, struct stat64 *);
extern int64 MIO_lseek64(int, int64, int);
extern int MIO_ftruncate64(int, int64);
extern int MIO_read(int, void *, int);
extern int MIO_write(int, void *, int);
extern int MIO_close(int);
extern int MIO_fcntl(int, int, int *);
extern int MIO_ffinfo(int, int, struct diocapbuf *, int);
extern int MIO_fsync(int);
extern int64 MIO_str_to_long(char *);
extern int MIO_str_to_long_vector(char *, int64*, int);
extern int MIO_aio_read64(int , MIO_STRUCT_AIOCB *) ;
extern int MIO_aio_write64(int , MIO_STRUCT_AIOCB *) ;
extern int MIO_aio_suspend64(int , MIO_STRUCT_AIOCB **) ;
extern int MIO_aio_nwait64(int , int , MIO_STRUCT_AIOCB **) ;
extern int MIO_aio_cancel64(int , MIO_STRUCT_AIOCB *) ;
extern int MIO_lio_listio64(int , MIO_STRUCT_LIOCB **, int , void *) ;

#if defined(USE_MIO_DEFINES)
#define open64(a,b,c) MIO_open64(a,b,c,0)
#define close(a) MIO_close(a)
#define read(a,b,c) MIO_read(a,b,c)
#define write(a,b,c) MIO_write(a,b,c)
#define lseek64(a,b,c) MIO_lseek64(a,b,c)
#define ftruncate64(a,b) MIO_ftruncate64(a,b)
#define fsync(a) MIO_fsync(a)
#define fstat64(a,b) MIO_fstat64(a,b)
#define ffinfo(a,b,c,d) MIO_ffinfo(a,b,c,d)
#define fcntl(a,b,c) MIO_fcntl(a,b,c)
#define aio_read64(a,b) MIO_aio_read64(a,b)
#define aio_write64(a,b) MIO_aio_write64(a,b)
#define aio_suspend64(a,b) MIO_aio_suspend64(a,b)
#define aio_nwait(a,b,c) MIO_aio_nwait64(a,b,c)
120 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

#define aio_cancel64(a,b) MIO_aio_cancel64(a,b)
#define lio_listio64(a,b,c,d) MIO_lio_listio64(a,b,c,d)
#endif

#endif /* _MIO_USER_H */

The results can be displayed as simple statistics or in a figure. Example 5-5 shows how to
return the summary results as statistics.

Example 5-5 Program to display statistics

MIO statistics file : Thu Jan 1 00:04:37 1970
hostname=172.24.101.122 : without aio available
Program=(null) pid=100 (not threaded)
MIO library libmio.a 3.0.3.046 BGL 32 bit addressing built Nov 12 2007 16:11:58
MIO_INCLUDE_PATH=(null)
MIO_STATS =xml.stats
MIO_DEBUG =all
MIO_FILES =*[trace/events=example.evt|pf]
MIO_DEFAULTS =trace

Example 5-6 provides an example of returning the results in a figure.

Example 5-6 Program to create a figure

Trace close : program <-> pf : hello : (4915200/0.49)=9991380.00 bytes/s
 demand rate=8722271.00 bytes/s=4915200/(0.59-0.03))
 open_size=0, current_size=0 max_size=1638400
 mode =0640 FileSystemType=NFS sector size=4096
 oflags =0x242=RDWR CREAT TRUNC
 open 1 0.00
 write 100 0.20 1638400 == 1638400 16384 16384
 read 200 0.30 3276800 == 3276800 16384 16384
 seek 101 0.00
 101 backward seeks average=48503
 fcntl 1 0.00
 trunc 1 0.04
 close 1 0.00
Chapter 5. I/O performance 121

Figure 5-1 shows the I/O access pattern of the application. The blue line on the left indicates
writing activity and the red lines on the right indicates reading. Forward and backward seeks
are respectively indicated by the positive and negative slopes of the lines.

Figure 5-1 I/O access pattern

In the following figures, we show examples of MIO tracing of the I/O access pattern that is
present in the IOR and BTIO benchmarks. Figure 5-2 shows the POSIX I/O profiling for the
IOR application.

Figure 5-2 POSIX
122 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Figure 5-3 is the Fortran I/O for the BTIO application.

Figure 5-3 Fortran

Figure 5-4 shows EPIO mode for the BTIO application.

Figure 5-4 EPIO
Chapter 5. I/O performance 123

124 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 125. Note that some of the documents referenced here may be available in softcopy
only.

� Blue Gene Safety Considerations, REDP-4257

� Evolution of the IBM System Blue Gene Solution, REDP-4247

� IBM System Blue Gene Solution: Blue Gene/P Application Development, SG24-7287

� IBM System Blue Gene Solution: Blue Gene/P System Administration, SG24-7417

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2007. All rights reserved. 125

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

126 IBM System Blue Gene Solution: High Performance Computing Toolkit for Blue Gene/P

®

REDP-4256-00

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper

IBM System Blue Gene Solution:
High Performance Computing
Toolkit for Blue Gene/P

Tools to visualize and
analyze your
performance data

Instructions for the
Xprofiler and High
Performance
Computing Toolkit
GUIs

Tips to optimize your
application’s
performance

This IBM Redpaper publication is one in a series of IBM documents
written specifically for the IBM System Blue Gene/P Solution. The
Blue Gene/P system is the second generation of a massively parallel
supercomputer from IBM in the IBM System Blue Gene Solution
series. This paper provides an overview of the IBM High Performance
Computing Toolkit for the Blue Gene/P system.

We begin by describing the Message Passing Interface (MPI) Profiler
and Tracer tool, which collects profiling and tracing data for MPI
programs. We explain the system requirements as well as
configuration, compiling, linking, environment variables, and output.

Next we discuss how to use Xprofiler for CPU profiling. We then move
on to discuss Hardware Performance Monitoring (HPM), including the
use and behavior of the libhpm library. Afterward, we describe the
GUI of the High Performance Computing Toolkit (HPCT). This single
interface provides a means to execute the application and visualize
and analyze the collected performance data.

Finally we address I/O performance. Specifically, we discuss the
features of the Modular I/O (MIO) library that was developed to assist
in optimizing an application’s I/O.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this paper
	Become a published author
	Comments welcome

	Chapter 1. MPI Profiler and Tracer
	1.1 System and software requirements
	1.2 Compiling and linking
	1.3 Environment variables
	1.3.1 TRACE_ALL_EVENTS
	1.3.2 TRACE_ALL_TASKS
	1.3.3 TRACE_MAX_RANK
	1.3.4 TRACEBACK_LEVEL
	1.3.5 SWAP_BYTES
	1.3.6 TRACE_SEND_PATTERN (Blue Gene/L and Blue Gene/P only)

	1.4 Output
	1.4.1 Plain text file
	1.4.2 The VIZ file
	1.4.3 Trace file

	1.5 Configuration
	1.5.1 Configuration functions
	1.5.2 Data structure
	1.5.3 Utility functions

	1.6 Related issues
	1.6.1 Overhead
	1.6.2 Multithreading

	Chapter 2. CPU profiling using Xprofiler
	2.1 Starting Xprofiler
	2.2 Understanding the Xprofiler display
	2.2.1 Xprofiler main menus
	2.2.2 Elements of the function call tree
	2.2.3 Manipulating the Xprofiler display

	2.3 Getting performance data for your application

	Chapter 3. Hardware Performance Monitoring
	3.1 HPM
	3.2 Events and groups
	3.3 Derived metrics
	3.4 Inheritance
	3.5 Inclusive and exclusive values
	3.5.1 Parent-child relations
	3.5.2 Handling overlap issues
	3.5.3 Computation of exclusive values for derived metrics

	3.6 Function reference
	3.7 Measurement overhead
	3.8 Output
	3.9 Examples of libhpm for C and C++
	3.10 Multithreaded program instrumentation issues
	3.11 Considerations for MPI parallel programs
	3.11.1 Distributors
	3.11.2 Aggregators
	3.11.3 Plug-ins shipped with HPCT
	3.11.4 User-defined plug-ins
	3.11.5 Detailed interface description
	3.11.6 Getting the plug-ins to work

	Chapter 4. High Performance Computing Toolkit GUI
	4.1 Starting the HPCT GUI
	4.2 HPCT GUI Main window (Visualization)
	4.3 HPCT GUI Main Window with instrumentation
	4.4 HPCT GUI simple IDE

	Chapter 5. I/O performance
	5.1 Design summary
	5.2 Runtime control of MIO
	5.2.1 MIO_STATS
	5.2.2 MIO_FILES
	5.2.3 MIO_DEFAULTS
	5.2.4 MIO_DEBUG

	5.3 Module descriptions and options
	5.4 Library implementation
	5.5 Sample implementation

	Related publications
	IBM Redbooks
	How to get IBM Redbooks
	Help from IBM

	Back cover

