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Abstract. Porous media segmentation is a nontrivial and often quite
inaccurate process, due to the highly irregular structure of the segmen-
tation phases and the huge interaction among them. In this paper we
perform a 2-class segmentation of a gray-scale 3D image under the re-
striction that the number of voxels within the phases are a priori fixed.
Two parallel algorithms, based on the graph 2-Laplacian model [1] are
proposed, implemented, and numerically tested.

1 Introduction

Porous materials are of current interest within a wide range of applications,
where their properties strongly depend on various measurements such as abso-
lute porosity, average pore size, size and shape of individual pores. Therefore,
accurate segmentation of a 3D reconstruction image of the corresponding speci-
men is crucial in practice. Due to the highly irregular structure of the segmenta-
tion phases and the presence of noise in the image, such a task is nontrivial and
sometimes impossible, unless additional information on the data is provided. In
particular, the volume (thus, the cardinality) of the solid phase can be deter-
mined from its density and weight.

We consider a 2-phase segmentation that satisfies an equality solid phase
volume constraint. Graph 2-Laplacian is used for the mathematical model [1–4].
The derived constraint optimization problem is NP-hard [5]. Hence, we propose
two different relaxations of the problem that can be efficiently solved. The paper
is organized as follows. In Section 2, notation is fixed and the 2-Laplacian model
is introduced. The two relaxed modifications of the original optimization prob-
lem, together with algorithms for solving them, are described in Section 3. In
Section 4, three numerical examples are considered and the different algorithms
are compared. Conclusions are drawn in Section 5.

2 Mathematical Formulation of the Problem

Let us first give some preliminary definitions and fix the notation. We consider
3D gray-scale images ū : Ω → [0, ν], where Ω is a discrete box domain of
dimensions n1, n2, and n3, respectively, while ν is the maximal intensity of
the image. For a simpler matrix-vector notation, we assume the image to be
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column-wise reshaped as a vector ū ∈ [0, ν]n, with n = card(Ω) = n1n2n3. We
keep the same notation ū for the vectorized image and it will be clear from the
context which representation we consider. We denote via In := {1, . . . ,n} the
voxel index set. The discrete segment membership vector v ∈ {0, 1}n is used for
image segmentation and for every i ∈ In, it indicates to which class the i-th voxel
belongs to (“air” if v(i) = 0 or “metal” if v(i) = 1). The index set is split into
two disjoint subsets In = L ∪ U of labeled and unlabeled points, respectively.
Without loss of generality (after re-numeration) we consider L = {1, . . . , 2ℓ},
U = {2ℓ+1, . . . ,n}, and we split v = (vL, vU )

T . Furthermore, L = L0∪L1, where
L0 := {i ∈ L|vL(i) = 0} = {1, . . . , ℓ}, L1 := {i ∈ L|vL(i) = 1} = {ℓ+ 1, . . . , 2ℓ}.

The indicator function ιC of a nonempty set C is given by

ιC(x) =

{
0 if x ∈ C,

+∞ otherwise.

Finally, we denote by e the ones vector (1, . . . , 1)T of the appropriate dimension.

2.1 Graph 2-Laplacian Model

Starting with some labeled voxels (L 6= ∅) we want to segment the unlabeled
ones, using their similarities/differences to the former and among themselves.
Following [1], we do so via minimizing

F (v) := 〈△v, v〉 =
1

2

n∑

i,j=1

wi,j

(
v(i)− v(j)

)2
,

with respect to vU , where △ denotes the (graph) 2-Laplacian [6, 7]

(△v)(i) =

n∑

j=1

wi,j (v(i)− v(j)) .

The weights are chosen similar to [1]. Let N geo
i = {j : ‖j − i‖1 = 1} be the

1-neighborhood of i ∈ U . Then, for j ∈ N geo
i we take wgeo

i,j = 1
6 . Our feature

function f is a weighted average of the intensities of the voxel i and its neighbors

f(i) =
1

12

(

6ū(i) +
∑

j∈N geo

i

ū(j)
)

.

We use it as a similarity measure to compute the other two types of weights

wpho
i,j :=

{

aie
−(f(i)−f(j))2 if j ∈ N pho

i ,
0 otherwise,

wlab
i,j :=

{

bie
−(f(i)−f(j))2 if j ∈ L,

0 otherwise.

The constants ai, bi normalize the weights, so that they sum up to 1 within each
group. N pho

i consists of the 4 voxels j in the 5 × 5 × 5 cube ‖i − j‖∞ ≤ 2 that

minimize |f(i)− f(j)|. Finally, W = max
{

W̃ , W̃T
}

, where

W ∗ =
1

1 + νpho
W geo+

νpho

1 + νpho
W pho, W̃ = max

{
νlab

1 + νlab
W lab,

1

1 + νlab
W ∗

}

.
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W is non-negative, symmetric. The parameters νpho, νlab are positive. Let

W :=

(
WLL WLU

WUL WUU

)

; D := diag(di)
n

i=1, di :=

n∑

j=1

wi,j , ∀i ∈ In.

Note that WUL = WLU due to symmetry and F (v) = 1
2v

T (D − W )v. WUU

is sparse, and (almost) row-normalized via di ≈ 1, ∀i ∈ U . Since νlab > 0,
∑

j∈L wi,j > 0, ∀i ∈ U , DUU −WUU is strictly diagonally dominant with non-
positive non-diagonal entries, thus an M-matrix, and the problem

argmin
0≤v≤1

F (v) subject to vL(i) =

{
0, i ∈ L0,
1, i ∈ L1,

(1)

admits a unique solution v̄, given by (see [1, Theorem 3.2.] for details)

(DUU −WUU )
︸ ︷︷ ︸

Q

v̄U = WULvL
︸ ︷︷ ︸

q

. (2)

Since Q−1, q ≥ 0, 0 ≤ v̄ ≤ 1. To ensure v̄ ∈ {0, 1}n, hard thresholding with
respect to the middle value 0.5 is typically used.

Such segmentation methods work fine for well-separated, smooth phases, but
their performance is unclear in the presence of big interaction. In (homogeneous)
porous media, the “air” consists of multiple, non-structured, possibly not even
connected pores of various size and shape, that “cut” through the material. Com-
bined with the inevitable noise and blur the input image possesses, segmentation
(2) is often poor and unreliable. In this paper, we assume that the input is a 3D
reconstruction of a given specimen, which volume is a priori known. Thus, the
number of the solid phase voxels N is given and can be used as a constraint in
the mathematical model. We consider the following problem

argmin
v∈{0,1}n

F (v) subject to vL(i) =

{
0, i ∈ L0,
1, i ∈ L1;

‖v‖0 = N. (3)

The ℓ0 pseudo-norm is non-convex and the problem (3) is NP-Hard [5]. In the
binary case, ‖v‖0 = ‖v‖1 = eT v, thus we rewrite the problem accordingly

argmin
v∈{0,1}n

F (v) subject to vL(i) =

{
0, i ∈ L0,
1, i ∈ L1;

eT v = N, (4)

and apply convex optimization techniques to this convex reformulation.

3 Convex Optimization Algorithms

We propose 2 different algorithms for dealing with (4) - one direct, and one
iterative. Both algorithms does not solve (4) itself, but further modifications of
the problem. The algorithms’ results are compared on several different inputs.
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3.1 Equality Constrained Quadratic Optimization

If we forget about v ∈ {0, 1}n, denote by N1 := N − ℓ, and use the notation
from (2), we derive the equality constrained quadratic optimization problem

argmin
vU

1

2
vTUQvU − qT vU subject to eT vU = N1. (5)

Thus, the minimizer v̄U of (5) is the solution of

(
Q e
eT 0

)(
v̄U
λ

)

=

(
q
N1

)

, (6)

where λ is Lagrange multiplier. If s := −eTQ−1e is the Schur complement, then
(6) can be rewritten as

(
Q
eT s

)(
I Q−1e

1

)(
v̄U
λ

)

=

(
q
N1

)

⇒

∣
∣
∣
∣

λ = (N1 − eTQ−1q)/s,
v̄U = Q−1q + λQ−1e.

The matrix Q is sparse and positive definite. We use conjugate gradient (CG)
method [8] for solving the linear systems Qx = q and Qy = e. For the segment
membership vector we take (vL, v̂U )

T , where the N1 largest elements of v̄U are
set to 1 (in case of equality, randomness is applied), while the rest are set to 0.

Since (Qe)(i) =
∑

j∈L wi,j ≈ νlab

1+νlab (the value may slightly differ only for

close neighbors i ∈ U of L), we have that Q−1e ≈ 1+νlab

νlab e. Hence v̄U is basically
a shift of the solution of (1), and the segmentation based on (5) coincides with
the N -segmentation of (2).

We also consider a slight generalization of (6)

(
Q− 2µI e

eT 0

)(
v̄U
λ

)

=

(
q
N1

)

, (7)

that corresponds to the penalized version

argmin
vU ,λ

1

2
vTUQvU − qT vU + λ(eT vU −N1)− µ(vTUvU −N1)

of the Lagrange formulation of (5). The penalizer µ > 0 aims at sparsifying the
solution v̄U , because 0 ≤ vU ≤ 1, together with eT vU ≤ N1 and vTUvU ≥ N1,
guarantee v ∈ {0, 1}n, eT v = N . In our experiments, we take µ = νpho/(3(1 +
νpho)) = 1

3 mini∈U

∑

j∈L wi,j to assure that Q − 2µI remains an M-matrix and
CG solver for (7) still converges (fast).

3.2 Fully Constrained Convex ℓ2-norm Minimization

Let n1 = n− 2ℓ. As in (5), we start by projecting (4) onto U

argmin
vU∈{0,1}n1

1

2
vTUQvU − qT vU subject to eT vU = N1.
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For segment membership vectors v2U = vU , and the problem is equivalent to

argmin
vU∈{0,1}n1

〈

(Q− 2 diag(q))
︸ ︷︷ ︸

Q̄

vU , vU

〉

subject to eT vU = N1. (8)

Here diag(q) is the diagonal matrix, generated by q. Since

qi =
∑

j∈L

wi,juL(j) =
∑

j∈L1

wi,j =⇒ Q̄ = D̄UU −WUU .

D̄UU = diag(d̄), d̄(i) =
∑

j∈L

(−1)uL(j)wi,j +
∑

j∈U

wi,j , ∀i ∈ U.

We consider the following constrained ℓ2-norm optimization problem:

argmin
vU∈{0,1}n1

‖Q̄vU‖
2
2 subject to eT vU = N1. (9)

The relation between (8) and (9) is given by the Cauchy-Schwarz inequality.

〈Q̄vU , vU 〉 ≤ ‖Q̄vU‖2‖vU‖2 =
√

N1 ‖Q̄vU‖2.

For the equality, we used that if vU ∈ {0, 1}n1 , (vU − e)T vU = 0. Next, we relax
both the constraints in (9) so that the problem becomes convex

argmin
0≤vU≤1

‖Q̄vU‖
2
2 subject to eT vU ≥ N1. (10)

If the halfspace H := {x ∈ R
n1 | eTx ≥ N1} does not contain any zeroes of Q̄,

the minimizer v̄U lies on its border and satisfies eT v̄U = N1. Similar conclusion
cannot be drawn for the box constraint, and once again we take the N1 largest
entries of v̄U to be “metal”, while the rest we set as “air”.

Following [10], we rewrite (10) into its equivalent form

argmin
vU∈Rn1 ,x∈R3n1

{
〈0, vU 〉+ ιH(x1) + ‖x2‖

2
2 + ι[0,1]n1 (x3)

}
s.t.





I
Q̄
I



 vU =





x1

x2

x3



 ,

and apply the alternating direction methods of multipliers (ADMM)

Algorithm (ADMM): Initialization: q
(0)
1,2,3 = 0, x

(0)
1,3 = e, x

(0)
2 = Q̄e, γ ∈ (0, 1).

For k = 0, 1, . . . repeat until a stopping criterion is reached

1. v
(k+1)
U = (Q̄T

Q̄+ 2I)−1
(

(

x
(k)
1 − q

(k)
1

)

+ Q̄
T
(

x
(k)
2 − q

(k)
2

)

+
(

x
(k)
3 − q

(k)
3

)

)

2. x
(k+1)
1 =







q
(k)
1 + v

(k+1)
U ,

(

q
(k)
1 + v

(k+1)
U

)

∈ H,

q
(k)
1 + v

(k+1)
U +

N1−eT (q
(k)
1 +v

(k+1)
U

)

n
2
1

e, otherwise.

3. x
(k+1)
2 = γ

(

q
(k)
2 + Q̄v

(k+1)
U

)

4. x
(k+1)
3 = min

(

1,max
(

0, q
(k)
3 + v

(k+1)
U

)

)

5. q
(k+1)
i = q

(k)
i + v

(k+1)
U − x

(k+1)
i , i = 1, 3, q

(k+1)
2 = q

(k)
2 + Q̄v

(k+1)
U − x

(k+1)
2 .
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Fig. 1. From left to right: Segmented bone part (binary image), noisy and blurry input
image ū, direct N -segmentation, segmentation based on (10).

Step 1 is solved (implicitly) via parallelized CG, since Q̄T Q̄+ 2I is sparse and
positive definite. Steps 3-5 are all componentwise, thus are parallelized, too. The
complete splitting of the constraints, due to the introduction of 〈0, vU 〉 in the
cost function, leads to fast convergence rate of the algorithm.

4 Numerical Examples

In this section, we demonstrate by numerical examples the performance of our
algorithms, implemented in C++. The code is parallelized using OpenMP [11].
The assembly of the matrix, matrix-vector, and vector operations is distributed
among the available threads. We have tested artificially polluted bone part,
based on [9]; a real 3D reconstruction of an Aluminum (AlSi10Mg) metal foam,
obtained via industrial CT scan; and a binary image of a sphere inside a unit
cube. We take ℓ = 3, where L0 (L1) consists of the indices of the three voxels that
minimize (maximize) f . When computing the weights, we use mirror boundary
conditions. For the ADMM algorithm, we set γ = 0.3. In all the examples, the CG
method converges fast, so no preconditioning is needed/used. Different segment
vectors v1,2 ∈ {0, 1}n are compared via both their voxel difference ‖v1 − v2‖1
and their 2-sided Hausdorf distance, based on the 3D sup-norm ‖ · ‖∞.

The bone part image has size 64 × 64 × 64. 50604 of its voxels are bone
material (porosity 80.7%). The image was convoluted with a Gaussian kernel
(σ = 2). Then, 10% white (Gaussian) noise was added to derive the input image
ū from Fig. 1. For the weight matrix W we used νpho = 10, νlab = 0.1.

As shown on Fig. 1 and in Table 1, simply taking the 50604 voxels of ū
highest intensity as the solid phase leads to poor segmentation, both visually and
quantitatively. Our algorithms perfectly denoise ū, but are not able to completely

Table 1. Comparison among the original bone, its direct segmentation, and our algo-
rithms. Above the diagonal: voxel difference, below: 2-sided Hausdorff distance.

hausd \ #voxels original direct λ-QP (6) µλ-QP (7) ℓ2-CP (10)
original ∗ 21 796 16 048 16 156 15 524
direct 25 547 ∗ 10 476 10 412 11 346

λ-QP (6) 19 417 14 218 ∗ 278 1 486
µλ-QP (7) 19 601 14 182 289 ∗ 1 722
ℓ2-CP (10) 18 857 15 140 1 509 1 764 ∗
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Fig. 2. 3 slices of the Aluminum foam reconstruction (left) and its segmentation via
(10) (right).

Table 2. Comparison among different segmentations of the Aluminum metal foam.
Above the diagonal: voxel difference, below: 2-sided Hausdorff distance.

hausd \ #voxels direct λ-QP (6) µλ-QP (7) ℓ2-CP (10)
direct ∗ 2 789 328 2 850 756 2 659 200

λ-QP (6) 2 847 631 ∗ 128 492 378 686
µλ-QP (7) 2 917 305 130 926 ∗ 493 402
ℓ2-CP (10) 2 702 613 384 633 503 522 ∗

overcome its blur. This results in thickening parts of the bone structure at the
expense of loosing structure information elsewhere. Unlike the original image,
the segmented one is not connected.

The AlSi10Mg foam reconstruction has size 680 × 680 × 680 with sam-
pling distance (voxel size) 0.0272mm. The specimen has cylindrical shape with
diam=14.94mm and height=16.55mm (see Fig. 2). Its weight is 2.7070g and
ρ(AlSi10Mg) = 2.6687g/cm3. Porosity is computed to be 83.97%, thus N =
50405948. Different segmentations are compared in Table 2. The ADMM algo-
rithm converges fast (less than 70 iterations as shown on Fig. 3) as well as the
CG solver within each step (less than 15 iterations per time).

With our last example (Fig. 4) we want to stress that our segmentation
algorithms may still produce meaningful results when N differs from the real
porosity. The input image is 64×64×64 big, and the centered sphere takes 28%
of its volume. We execute our algorithms with N = 131072 (half the volume).
All the outputs are simply connected and visually resemble the original object.

5 Conclusions

Based on the 2-Lagrangian model in [1], we proposed two different relaxations for
2-phase image segmentation of a porous media of known porosity. The algorithms
are implemented in a parallel way, allowing us to work with large 3D images
of high resolution. The conducted numerical experiments showed significantly
improved results, compared to non-supervised N -constrained segmentation. The
outputs, based on (6), (7), and (10) are quite similar and there are no visible
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Fig. 3. Relation between (8) and (9): The graphs of

√

〈Q̄v
(k)
U , v

(k)
U 〉 and ‖Q̄v

(k)
U ‖2 from

the ADMM algorithm as functions of k. Left: Bone part. Right: Aluminum foam.

Fig. 4. From left to right: Original, segmented sphere inside a cube (volume = 28%).
The output of (7), (6), (10), respectively, for volume = 50% of the cube’s.

differences among them. Assuring connectivity of the solid phase is not achieved
at this moment, and remains a task for future work.
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