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Abstract. Numerical homogenization is used for upscaling of the linear
elasticity tensor of strongly heterogeneous microstructures. The imple-
mented 3D algorithm is described in terms of six auxiliary elastic prob-
lems for the reference volume element (RVE). Rotated trilinear Rannacher-
Turek finite elements are used for discretization of the involved subprob-
lems. A parallel PCG method is implemented for efficient solution of the
arising large-scale systems with sparse, symmetric, and positive semidef-
inite matrices. The implemented preconditioner is based on modified
incomplete Cholesky factorization MIC(0).

The numerical homogenization scheme is derived on the assumption
of periodic microstructure. This implies periodic boundary conditions
(PBCs) on the RVE. From algorithmic point of view, an important part
of this study concerns the incorporation of PBCs in the parallel MIC(0)
solver.

Numerical upscaling results are shown. The test problem represents a
trabecular bone tissue, taking into account the elastic response of the
solid phase. The voxel microstructure of the bone is extracted from a high
resolution computer tomography image. The presented results evidently
demonstrate that the bone tissues could be substantially anisotropic.

The computations are performed on IBM Blue Gene/P machine at the
Bulgarian Supercomputing Center.

1 Introduction

The Preconditioned Conjugate Gradient (PCG) method is known to be the best
solution tool for large systems of linear equations with symmetric and positive
definite sparse matrices [2]. The used preconditioning technique is crucial for the
PCG performance. It is also know that the PCG method converges for semidef-
inite matrices in the orthogonal to the kernel subspace.

This paper is organized as follows. The applied numerical homogenization
scheme is given in section 2. In section 3 the parallel MIC(0) preconditioner is
described. Some results from numerical experiments are presented in the last
section.



2 Homogenization Scheme

Let Ω be a hexahedral domain representing our RVE and u = (u1, u2, u3) be the
displacements in Ω. The components of the small strain tensor are:

εij (u (x)) =
1

2

(

∂ui(x)

∂xj
+

∂uj(x)

∂xi

)

(1)

We assume that the Hooke’s law holds:

σij(x) = cijkl(x)εkl(x) (2)

Here, the Einstein summation convention is assumed. The tensor c is called
stiffness tensor and σ is the stress tensor. We can rewrite (2) in matrix notation
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The symmetric 6 × 6 matrix C is called stiffness matrix. For an isotropic ma-
terials C has only 2 independent degrees of freedom. For orthotropic materials
(there are three orthogonal planes of symmetry in this case), the matrix C has
9 independent degrees of freedom — 3 Young’s moduli E1, E2, E3, 3 Poisson’s
ratios ν23, ν31, ν12 and 3 shear moduli µ23, µ31, µ12.
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where ∆ =
1 − ν12ν21 − ν13ν31 − ν23ν32 − 2ν12ν23ν31

E1E2E3
,

ν12

E1
=

ν21

E2
,

ν23

E2
=

ν32

E3
,

ν31

E3
=

ν13

E1
.

We follow the numerical upscaling method from [4], see also [5]. The homog-
enization scheme requires to find the functions ξkl = (ξkl

1 , ξkl
2 , ξkl

3 ), k, l = 1, 2, 3,
satisfying the following problem in a week formulation:

∫

Ω

(

cijpq(x)
∂ξkl

p

∂xq

)

∂φi

∂xj
dΩ =

∫

Ω

cijkl(x)
∂φi

∂xj
dΩ, ∀φ ∈ H

1
P (Ω), (5)



where φ = {φi}
3
i=1 and H

1
P (Ω) = {φ ∈ H

1 : φi are Ω − periodic}. After com-

puting the characteristic displacements ξkl, we find the homogenized elasticity
tensor c

H using the explicit formula:

cH
ijkl =

1

|Ω|

∫

Ω

(

cijkl(x) − cijpq(x)
∂ξkl

p

∂xq

)

dΩ. (6)

Due to the symmetry of the stiffness tensor c, the following relations ξkl = ξlk

hold. Therefore, it is enough to solve six problems (5) to get the homogenized
elasticity tensor.

Rotated trilinear (Rannacher-Turek) finite elements [11] are used for numer-
ical solution of (5). This choice is motivated by the additional stability of the
nonconforming FEM discretization in the case of strongly heterogeneous mate-
rials [1]. The construction of robust non-conforming FEM methods are generally
based on application of mixed formulation leading to a saddle-point system. By
the choice of non continuous finite elements for the dual (pressure) variable, it
can be eliminated at the (macro)element level, and we get a symmetric positive
(semi-)definite FEM system in primal (displacements) variables. We use this
approach which is referred as reduced and selective integration (RSI) [8].

3 Parallel MIC(0) Preconditioning

Our preconditioning algorithm is based on a preexisting parallel MIC(0) elas-
ticity solver [10], based on a parallel MIC(0) solver for symmetric and positive
definite scalar elliptic problems [9]. The preconditioner uses the isotropic variant
of the displacement decomposition (DD) method (see, e.g., [12]). We write the
DD auxiliary matrix in the form

CDD =





A
A

A



 (7)

where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =

∫

Ω

E(x)

(

3
∑

i=1

∂u

∂xi

∂v

∂xi

)

dx, (8)

where u and v are Ω-periodic functions. The DD splitting is motivated by the
second Korn’s inequality, which holds for the RSI FEM discretization under
consideration.

A brief introduction to the modified incomplete factorization [13] is given
below. Let us rewrite the real N × N matrix A = (aij) in the form

A = D − L − LT



where D is the diagonal and (−L) is the strictly lower triangular part of A. Then
we consider the approximate factorization of A which has the form:

CMIC(0) = (X − L)X−1(X − L)T (9)

with X = diag(x1, · · · , xN ) being the diagonal matrix determined by the con-
dition of equal rowsums. We are interested in the case when X > 0 and thus
CMIC(0) is positive definite for the purpose of preconditioning. If this holds, we
speak about stable MIC(0) factorization. Concerning the stability of MIC(0), the
following theorem holds.

Theorem 1. Let A = (aij) be a symmetric real N × N matrix and let A =
D − L − LT be the splitting of A. Let us assume that

L ≥ 0,
Ae ≥ 0,

Ae + LT
e > 0, e = (1, · · · , 1)T ∈ RN ,

(10)

i.e. that A is a weakly diagonally dominant with nonpositive offdiagonal entries
and that A + LT = D − L is strictly diagonally dominant. Then the relation

xi = aii −
i−1
∑

k=1

aik

xk

N
∑

j=k+1

akj > 0

holds and the diagonal matrix X = diag(x1, · · · , xN ) defines stable MIC(0) fac-
torization of A.

The perturbed version of MIC(0) algorithm is used in our study. This means
that the incomplete factorization is applied to the matrix Ã = A + D̃. The
diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . d̃N ) is defined as follows:

d̃i =

{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi

where 0 < ξ < 1 is a properly chosen parameter, and wi =
∑

j>i −aij . In
particular, this allows us to satisfy the stability conditions (10) in the case of
PBCs.

The idea of our parallel algorithm is to apply the MIC(0) factorization on
an auxiliary matrix B, which approximates A. The matrix B has a special block
structure, which allows a scalable parallel implementation. Following the stan-
dard FEM assembling procedure we write A in the form A =

∑

e∈ωh
LT

e AeLe,
where Ae is the element stiffness matrix, Le stands for the restriction mapping
of the global vector of unknowns to the local one, corresponding to the current
element e. Let us consider the following approximation Be of Ae:

Ae =
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a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66
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b11 a12 a13 a14 a15 a16

a21 b22 a23 a24 a25 a26

a31 a32 b33 0 0 0
a41 a42 0 b44 0 0
a51 a52 0 0 b55 0
a61 a62 0 0 0 b66

















.



The local numbering follows the pairs of the opposite nodes of the reference
element. The diagonal entries of Be are modified to hold the rowsum crite-
ria. Assembling the locally defined matrices Be we get the global matrix B =
∑

e∈ωh
LT

e BeLe. The condition number estimate κ(B−1A) ≤ 3 holds uniformly
with respect to mesh parameter and possible coefficient jumps (see for the related
analysis in [9]). The modified matrix B has diagonal blocks, corresponding to
the (x, y) cross sections. This allows to perform in parallel the solution of linear
systems with matrix (9) [9]. It is important no note that the PBCs do not change
the diagonal blocks of the stiffness matrix A as well as of the auxiliary matrix B.
However, there are changes in the structure of the offdiagonal blocks, which re-
quire some principal modifications in the parallel code. Finally, the implemented
parallel preconditioner for the considered linear elasticity nonconforming FEM
systems has the form:

CDD MIC(0) =





CMIC(0)(B)
CMIC(0)(B)

CMIC(0)(B)



 .

4 Numerical Experiments

The analyzed test specimen is a part of trabecular bone tissue extracted from
a high resolution computer tomography image [6]. The trabecular bone has a
strongly expressed heterogeneous microstructure composed of solid and fluid
phases. To get a periodic RVE, the specimen is mirrored three times, see Fig. 1. In

Fig. 1. Structure of the solid phase: 128× 128× 128 voxels.

this article, our goal is to obtain the homogenized elasticity tensor of the trabec-
ular bone tissue, taking into account the elastic response of the solid phase only.



To this purpose, numerical experiments with exponentially decreasing Young
modulus for the voxels corresponding to the fluid phase are performed. In other
words, the empty (fluid) voxels are interpreted as fictitious domain. Homoge-
nized properties of different RVEs with varying size of 32× 32× 32, 64× 64× 64
and 128×128×128 voxels are studied. The Young modulus and the Poisson ratio
of the solid phase are taken from [3] as follows: Es = 14.7GPa and νs = 0.325.
We set also νf = νs which practically doesn’t influence the numerical upscaling
results. In what follows, the fictitious domain Young modulus Ef is given in
Pascals (see, e.g., the values in the parentheses bellow).

CH [1.47×107] =

















4.86×108 7.49×107 6.74×107

7.49×107 3.03×108 9.45×107

6.74×107 9.45×107 7.43×108

8.45×107
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3.37×107

















CH [1.47×106] =

















4.35×108 5.65×107 5.03×107

5.65×107 2.38×108 7.69×107

5.03×107 7.69×107 7.06×108

6.66×107

4.89×107

1.40×107

















CH [1.47×105] =

















4.29×108 5.46×107 4.86×107

5.46×107 2.30×108 7.49×107

4.86×107 7.49×107 7.01×108

6.44×107

4.74×107

1.18×107

















Here we have vanished the entries of CH which tend to zero with the increase of
the PCG accuracy. The structure of CH corresponds to the case of orthotropic
materials which is due to the enforced triple mirroring procedure. Following (4),
the Young moduli Ei in each of the coordinate directions and the Poisson ratios
νij = −εj/εi are computed explicitly by the formulas

Ei = 1/sii νij = −Eisji

where sij stand for the elements of the matrix S = (CH)−1, see [7].
Tables 1, 2 and 3 contain the computed homogenized Young moduli and Pois-

son ratios varying the fictitious domain Young modulus Ef for the considered
three different specimens. A stable behaviour of the implemented numerical
homogenization scheme is observed in all cases. From practical point of view, a
good accuracy of the computed homogenized Young moduli and Poisson ratios
is achieved if the fictitious domain modulus Ef = δEs for δ ∈

{

10−3, 10−4
}

.
The next observation is that in all three cases (RVEs composed of 323, 643 and



Table 1. Homogenized linear elasticity coefficients: n=32

Ef E1 E2 E3 ν12 ν23 ν31 µ23 µ31 µ12

1.47×109 4.52×109 6.23×109 6.24×109 0.208 0.300 0.286 2.29×109 1.39×109 1.35×109

1.47×108 2.03×109 4.72×109 4.67×109 0.095 0.271 0.229 1.73×109 4.81×108 3.80×108

1.47×107 1.67×109 4.48×109 4.45×109 0.074 0.264 0.212 1.66×109 3.56×108 2.42×108

1.47×106 1.63×109 4.46×109 4.42×109 0.072 0.263 0.210 1.65×109 3.42×108 2.26×108

1.47×105 1.62×109 4.45×109 4.42×109 0.071 0.262 0.210 1.65×109 3.40×108 2.24×108

Table 2. Homogenized linear elasticity coefficients: n=64

Ef E1 E2 E3 ν12 ν23 ν31 µ23 µ31 µ12

1.47×109 2.86×109 3.11×109 3.55×109 0.288 0.270 0.281 1.19×109 9.07×108 9.50×108

1.47×108 8.73×108 1.12×109 1.94×109 0.191 0.164 0.185 4.94×108 1.62×108 1.71×108

1.47×107 5.69×108 8.02×108 1.73×109 0.127 0.124 0.117 3.90×108 5.22×107 5.22×107

1.47×106 5.33×108 7.62×108 1.71×109 0.117 0.119 0.102 3.77×108 3.88×107 3.77×107

1.47×105 5.29×108 7.58×108 1.71×109 0.116 0.118 0.101 3.76×108 3.74×107 3.62×107

1283 voxels) the orthotropy ratio is more than 3. This evidently confirms that
the hypothesis that the trabecular bone structure could be interpreted (approx-
imated) as isotropic is not realistic. The last table illustrates the convergence

Table 3. Homogenized linear elasticity coefficients: n=128

Ef E1 E2 E3 ν12 ν23 ν31 µ23 µ31 µ12

1.47×109 2.66×109 2.47×109 2.67×109 0.315 0.284 0.278 8.76×108 8.78×108 8.87×108

1.47×108 7.90×108 5.97×108 9.51×108 0.282 0.180 0.171 1.93×108 1.68×108 1.64×108

1.47×107 4.65×108 2.81×108 7.10×108 0.228 0.114 0.094 8.46×107 6.22×107 3.37×107

1.47×106 4.20×108 2.24×108 6.78×108 0.222 0.100 0.076 6.66×107 4.89×107 1.40×107

1.47×105 4.15×108 2.16×108 6.75×108 0.222 0.098 0.073 6.44×107 4.75×107 1.18×107

rate of the implemented DD MIC(0) preconditioner. The available theoretical
estimates concern some more model problems for homogeneous materials. In
such cases, the number of iterations is nit = O(n1/2) = O(N1/6). Here the num-
ber of iterations has very similar behaviour for coefficient jumps of the range
{10 − 102}. The good news here is that even for very large jumps of up to 105,
the convergence is only slightly deteriorating.

Based on the reported results we can conclude that the developed numerical
homogenization algorithmis and software tools provide a reliable tool for com-
puter simulation of strongly heterogeneous anisotropic voxel microstructure. As
a next important step we plan to incorporate in the upscaling scheme the contri-
bution of the fluid phase of the bone tissues. The implementation of additionally



Table 4. Number of iterations

Ef [Pa] 1.47×109 1.47×108 1.47×107 1.47×106 1.47×105

n N

32 2 359 296 222 363 575 711 734
64 18 874 368 343 577 848 1 236 1 436
128 150 994 944 481 840 1 505 2 311 2 482

stabilized solvers for PBC FEM problems as well as the incorporation of scalable
AMG preconditioners in the composed algorithm are also under development.
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