S. Stoykov, S. Margenov, Comparative analysis of finite elements
for shear locking problems of Mindlin's plate, Proceedings of the
International Conference on Numerical Methods for Scientific
Computations and Advanced Applications (2016), ISBN: 978-619-7223-18-7,
pp. 65-68.
S. Stoykov, S. Margenov, Scalability of Shooting Method for Nonlinear Dynamical Systems,
In: I. Lirkov, S. Margenov, J. Waśniewski (Еds.), Proceedings of 10th
International Conference on Large-Scale Scientific Computations, Lecture
Notes in Computer Science Vol. 9374, Springer (2015), ISBN:
978-3-319-26519-3, pp. 401-408.
S. Stoykov, P. Ribeiro, Frequency response of cylindrical variable
stiffness composite laminated shells, In: H. Ecker, A. Steindl, S.
Jakubek (Eds.), Proceedings of 8th European Nonlinear Dynamics
Conference (2014), ISBN: 978-3-200-03433-4, Paper Id: 363, 6 pages.
S. Stoykov, The influence of geometrical nonlinearity on the
dynamics of elastic structures, Proceedings of the International
Conference on Numerical Methods for Scientific Computations and Advanced
Applications (2014), ISBN: 978-954-91700-7-8, pp. 103-106.
S. Margenov, S. Stoykov, Y. Vutov, Numerical Homogenization of Heterogeneous Anisotropic Linear Elastic Materials,
In: I. Lirkov, S. Margenov, J. Waśniewski (Еds.), Proceedings of 9th
International Conference on Large-Scale Scientific Computations, Lecture
Notes in Computer Science Vol. 8353, Springer (2014), ISBN:
978-3-662-43880-0, pp. 347-354.
S. Stoykov, S. Margenov, Nonlinear free vibrations of 3D composite
beams, In: Z. Dimitrovová, J. Almeida, R. Gonçalves (Еds.), Proceedings
of the 11th International Conference on Vibration Problems (2013),
ISBN: 978-989-96264-4-7, Paper Id: 164, 10 pages.
S. Stoykov, S. Margenov, Nonlinear vibrations of rotating 3D tapered beams with arbitrary cross sections,
In: M. Papadrakakis, V. Papadopoulos, V. Plevris (Еds.), Proceedings of
the 4th ECCOMAS Thematic Conference on Computational Methods in
Structural Dynamics and Earthquake Engineering (2013), ISBN:
978-960-99994-2-7, pp. 1883-1897.
S. Stoykov, P. Ribeiro, Internal Resonances and Modal Interactions
of Nonlinear Free and Forced Vibrations of 3D Rotating Beams, 7th EAWE
PhD Seminar on Wind Energy in Europe (2011), Delft University of
Technology, Delft, The Netherlands, pp 49-52.
S. Stoykov, P. Ribeiro, On the influence of warping, shear and
longitudinal displacements on the nonlinear vibrations of beams, In: M.
Papadrakakis, N. Lagaros, M. Fragiadakis (Eds.), Proceedings of the 2nd
ECCOMAS Thematic Conference on Computational Methods in Structural
Dynamics and Earthquake Engineering (2009), ISBN 978-960-254-682-6,
Paper Id: 258, 12 pages.
S. Varbanov, S. Stoykov, B. Bontchev, Software Agents in a Serious
Business Game - the PRIME Project Case, In: M. Taisch, J. Cassina
(Eds.), Learning with Games (2007), ISBN 978-88-901168-0-3, pp. 301-306.
S. Stoykov, P. Ribeiro, Geometrically non-linear free vibrations
of circular plates using hierarchic basis functions, In: P. Ribeiro, M.
Amabili (Eds.), Proceedings of the Euromech Colloquium 483,
Geometrically Non-linear Vibrations of Structures (2007), ISBN
978-989-95208-2-0, pp. 93-96.
S. Stoykov, P. Ribeiro, Comparative Analysis of Direct Integration
Methods of Differential Non-linear Equations of Motion, In: P. Ribeiro,
M. Amabili (Eds.), Proceedings of the Euromech Colloquium 483,
Geometrically Non-linear Vibrations of Structures (2007), ISBN
978-989-95208-2-0, pp. 97-100.
Reports from workshops
P. Iliev, S. Stoykov, B. Markovic, M. Datcheva, L. Yovkov, K.
Liolios, C. Menseidov, N. Muthing, T. Barciaga, Rigorous and
Approximated Solutions of the Consolidation Problem for a Soil Layer
with Finite Thickness under Cyclic Mechanical Loading, The 113th
European Study Group with Industry (2015) pp. 74-84, ISBN
978-619-72-23-12-5.
H. Ockendon, S. Stoykov, T. Zorawik, S. Dimova, I. Georgiev, N.
Kolkovska, M. Todorov, D. Vasileva, Prediction of sanding in
subsurface hydrocarbon reservoirs, The 95th European Study Group with
Industry (2013) pp. 87-95, ISBN 978-954-9526-84-4.
TOBECS computes numerically the cross sectional properties of given 2D
section which represents the cross section of a beam. These coefficients
are used at the PDE which describes the equation of motion of beams
with arbitrary cross sections.