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THESIS SUMMARY

1 General description of the thesis

The presented thesis is devoted to the minimization of the probable error in calculating
linear functional of the solution of a system of linear algebraic equations (SLAE).

Monte Carlo methods are a powerful tool for solving different problems in the fields of
mathematics, phisics and engineering. It is known that they provide statistical estimations
for a functional of the solution using sample of a certain random variable whose mathemat-
ical expectation is equal to the given functional. These methods are used when not very
accurate solution is needed (in the real-life computations the required accuracy is about
1-5 %). The MCM is very useful when one is interested in finding inverse matrix, because
the problem of estimating the inverse matrix can be present as a problem of solving SLAE
(see [5]).

There are several basic advantages of these algorithms. It is well known that Monte
Carlo algorithms are parallel algorithms. They have high parallel efficiency when parallel
computers are used. Monte Carlo algorithms are also very efficient when the problem under
consideration is too large or too intricate for other treatment. One of the most important
advantages of these algorithms is that they can be used for evaluating only one component
of the solution or some linear form of the solution. In this case it is not necessary to
perform the all computational work which is needed for obtaining the complete solution.

In general, there are two classes of Monte Carlo numerical algorithms - direct algorithms
and iterative algorithms. The direct algorithms obtain the approximate solution of a
problem in a finite number of steps, and contain only stochastic error. The iterative
Monte Carlo methods use an approximation of the solution obtaining a certain number of
significant digits. The iterative Monte Carlo methods have two types of error - stochastic
and systematic. The systematic error depends on the number of performed iterations of
the used iterative method, whereas the stochastic error depends on the probabilistic nature
of the method.



It is well known [1] that iterative Monte Carlo methods are preferable for solving large
sparse systems (succh as those arising from approximations of partial defferential equa-
tions). Such methods are good for diagonally dominant systems for which the rate of the
convergence is high.

Aim of the master thesis:

Research, modification and numerical testing of known algorithms of type Monte Carlo
for calculating linear functional of the solution of a system of linear algebraic equations.

According to this aim the main problems of the master thesis are:

1. To describe and study a method with zero variance using information for solution of
the conjugate problem.

2. To study efficiency of a Monte Carlo algorithm for solving SLAE for two concrete
choices of p;; (transition probabilities). To propose a modification when the used
information is connected only with the elements of the given system.

3. To make numerical tests with the modified Monte Carlo algorithm for solving SLAE
with large general sparse matrices (with optimal memory loading).

Thesis structure: The thesis consists of Introduction, four Chapters, and List of
references. The text contains 60 pages and includes 5 tables.

Chapter 1: A short description of Monte Carlo (direct and iterative) methods and
discrete Markov chain are given. The considered problem is described.

Chapter 2: The theorem of Ermakov and Mikhailov [6] dor solving integral equations
is applied dor solving SLAE. The efficiency of the constructed algorithm is studied.

Chapter 3: An algorithm, given in [10], with transition probabilities proportional to
the elements of the iterative matrix ([8]) is the base for solving the second main problem. A
modification of this algorithm with balancing the iterative matrix or the right hand side of
the system is proposed. In result of this procedure the variance decreases. The balancing
is realized using the different relaxation paarmeters.

Chapter 4: An algorithm for general sparse matrices is described. The calculations
are performed only with nonzero elements. This gives solution of the third main problem
for increasing the computational efficiency of the considered algorithm.

2 Problem statement

Consider the following SLAE:

Az = b, AeR™™ z,beR™ (1)

This system can be presented in the following form (if only a; # 0,Vi = 1,...,m) using
the Jacobi relaxation iterative method with relaxation parameter v € (0;1]:

x = Lx+ f, (2)
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We are interested in the calculating linear functional of the solution:

(z,h) = i%hi, (3)

where h € R™ is a given vector.

To find one component of the solution, for example the 7o-th component of x, we choose
h = e(iy) = (0,...,0,1,0,...,0)", where the one is in the i;-th place. To calculate the
functional (z, h), an iterative Monte Carlo method is used. We construct a random variable
X, whose mathematical expectation is equal to the linear form (3), using discrete Markov
processes with a finite set of states (finite discrete Markov chains). Then the computational
problem becomes one of calculating repeated realizations of X and of combining them into
an appropriate statistical estimator of (z, h).

The problem of the minimization of the probable error, which is equivalent to the min-
imization of the variance of the constructed random variable is studied.

3 Chapter two. Minimization of the variance using a
priori information about the solution of the conju-
gate problem

In this chapter a theorem for minimization of the variance is proved. The result is
achieved through an appropriate choice of the initial and transition probabilities. This
theorem is analogous to the theorem of Ermakov and Mikhailov [6] for integral operators.

Definition 3.1 Conjugate problem of (2):

o =L"x +h (LT = (l;‘j)m ).

ij=1
Theorem 3.1 Let the matriz A is diagonally dominant and
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Then EX = (x,h) and DX =0, where

X =3 Wih,,.

1=0

The theorem is proved using the following statement:

Lemma 3.1 Let the random variable is given:

k—1
YO — Woh,, Y® =S Wih,, + Wizl , ke N\{0}.
=0
Then
EY® = (z,h) DY® =0, ke N.

The statement, which is proved in Theorem 3.1, has a theoretical meaning, but its
practical application is connected with some obvious disadvantages. The solution x* is
unknown. On the other hand, it necessary to construct an infinite Markov chain to obtain
zero variance. Obviously, this is impossible.

4 Chapter three. Minimization of the variance using
a priori information about the solution of the given
system

4.1 Theoretical background

A theorem, which is given in [4], is the base of considered algorithm.

Theorem 4.1 Let the matriz A is diagonally dominant. Then EX = (z,h), where

S0 =0
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Obviously, if A is a diagonally dominant matrix, then the elements of the matrix L must

satisfy the following condition:

Z|l”|<1, Vz:l,,m (4)

i=1



It is well known that property (4) is a sufficient condition for convergence of the Neumann
series, i.e.

k-1
z = lim z®, ) = Z L'f+ L2 k> 0.
i=0

k—o0

It is clear that every iterative algorithm uses a finite number of iterations k. In the
algorithm, following finite sum

k
X0 = Bos ye keN), EX® = o))

50 =0

is computed, where 2(*) is the k-th iterative approxiamtion of the solution = (using #(*) =
f). The trucation parameter k is obtained from the condition that the difference between
the stochastic approximation of two successive approximations is smaller than a given
sufficiently small parameter e.

4.2 Advantages and disadvantages of the algorithm with respect
to the two choices of the transition probabilities

The transition probabilities are chosen to minimize the variance of the random variable.
The two ideas are:

1.
1 .
Pij = —, Za]:]-a"'ama
n;

where n; is the number of nonzero elements in the i-th row of L;

lij .
pij:n[iﬂ i=1,...,m. (5)
j:1|lij|

The algorithm with transition probabilities which are proportional to the |/;;] is called

Monte Carlo almost optimal algorithm (see [3] and [8]). Let us note that the second
algorithm has the following imporatant property:

h

= const(i) forall i=1,... m,
Dij

which solves the problem with minimization of the variance to some extent. This algorithm
can become optimal when additional conditions for the system are given.
The following statement is valid:

Statement 4.1 The system (1) (corresponding system (2)) is given. Let the matriz A is
diagonally dominant, the element of L have the same sign, and transition probabilities are
given with the formula (5). Suppose that



L=h=1 Vi, 0,5 €{l,...,m},
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Remark 4.1 It is true that DX®) = 0,Vk € N besides DX = 0. It is very important
that the conditions of the statement (4.1) guarantee a zero variance without realization of
a boundary transition (difference with Theorem 3.1).

For every row of matrix A (if |a;| # 0) a parameter k; is defined:

m
> al

=2 =1, m.
|

The proved statement gives the conditions for obtaining a zero variance - the row
balancing the iterative matrix and balancing the right hand side of the system.

4.3 Using different relaxation parameters

e Balancing the iterative matrix:

We use the notation:
k

; = max k;.
tmaz Ty i

Yirae = 1 for row with number i,,,;.

The relaxation paarmeters for other rows are obtained by the formula:

1—Fk; .. k;
= mar g = i
1 —¢ikia, Kimae

e Balancing the right hand side:

Yi

We use the notation:

;.. = 1 for row with number i,
The relaxation parameters for other rows is obtained by the formula:

,Yi:_* ;:6i77 Z:]_,...,m .

tminlmin



Table 1: Algorithm without balancing (y = 1)

| N | e Javeragek|tinsec.| DX | ry |[(z,h) = Xn|]|
10 000 | 3e-06 11 7.09 12.871 | 0.024 0.019
50 000 | 3e-06 11 34.84 | 12.832 | 0.011 0.016
115 000 | 3e-06 11 79.83 | 12.602 | 0.007 0.007
Table 2: Algorithm with balancing the iterative matrix
| N| ¢ | k Jtinsee.| DX | ry |[(z,h) = Xy||
600 | 3e-01 | 67332 | 2153.09 | 11.084 | 0.092 0.074
700 | 3e-01 | 67332 | 2497.92 | 10.668 | 0.083 0.023
800 | 3e-01 | 67332 | 2848.84 | 10.971 | 0.079 0.020

But in practice the simultnaneous balancing is very difficult, because balancing one
of the components puts very strong restrictions about choice for the elments of another
component.

4.4 Balancing L or f

Balancing only L or f is done with respect to the parameters of the given problem.
The algorithm with balancing is compared with the algorithm without balancing for v = 1.
This valuse of the relaxation parameter is chosen, because then the rate if convergence is the
highest. The algorithm with ablancing has lower efficiency, because it gives an inessential
reduction of the variance as the length of the Markov chains increases considerably. This
disadvantage can be overcome if the value of ¢ is comparatively large. But then the
systematic error increases. These are the reasons why the algorithm with balancing is not
of great practical importance.

4.5 Numerical experiments

The algorithms are realized on FORTRAN 77 and the computational experiments
are made with a real nonsymmetric general sparse square matrix of order 1107 which
is diagonally dominant. The elements of the right hand side are random numbers in
the interval (0;1), obtained with the generator URAND. The numerical experiments are
obtained on work station HEWLETT PACKARD.



5 Chapter four. Monte Carlo algorithm for general
sparse matrices

The main idea is that the elements of the matrix are stored in one dimensional array.
The access to the elements is provided through the following arrays:

NT one dimensional array of order m, where NI(i) is the number of nonzero elements in
i-th row, ¢+ =1,...,m;

A one dimensional array of order n = > NI(i), which contains all nonzero elements by

i=1
rOwWsS;

J one dimensional array of order n, where J(i) is the column index of a; € A.

When the presentation is used some difficulties appear. For example, the diagonal elements
of the given system are necessary, but their indices in A are unknown. They can be obtained
by the formula:

diag; = {k : J(k) =i,k = IPS(i)+1,...,IPS(i) +i}, i=1,....,m.

where IPS is one dimensional array of order m which contains partial sums of N1(i):

IPS(1) =0
IPS(i) =1IPS(i—1)+ NI(i—1) i=2,....m.
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