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THESIS SUMMARY1 General desription of the thesisThe presented thesis is devoted to the minimization of the probable error in alulatinglinear funtional of the solution of a system of linear algebrai equations (SLAE).Monte Carlo methods are a powerful tool for solving di�erent problems in the �elds ofmathematis, phisis and engineering. It is known that they provide statistial estimationsfor a funtional of the solution using sample of a ertain random variable whose mathemat-ial expetation is equal to the given funtional. These methods are used when not veryaurate solution is needed (in the real-life omputations the required auray is about1-5 %). The MCM is very useful when one is interested in �nding inverse matrix, beausethe problem of estimating the inverse matrix an be present as a problem of solving SLAE(see [5℄).There are several basi advantages of these algorithms. It is well known that MonteCarlo algorithms are parallel algorithms. They have high parallel eÆieny when parallelomputers are used. Monte Carlo algorithms are also very eÆient when the problem underonsideration is too large or too intriate for other treatment. One of the most importantadvantages of these algorithms is that they an be used for evaluating only one omponentof the solution or some linear form of the solution. In this ase it is not neessary toperform the all omputational work whih is needed for obtaining the omplete solution.In general, there are two lasses of Monte Carlo numerial algorithms - diret algorithmsand iterative algorithms. The diret algorithms obtain the approximate solution of aproblem in a �nite number of steps, and ontain only stohasti error. The iterativeMonte Carlo methods use an approximation of the solution obtaining a ertain number ofsigni�ant digits. The iterative Monte Carlo methods have two types of error - stohastiand systemati. The systemati error depends on the number of performed iterations ofthe used iterative method, whereas the stohasti error depends on the probabilisti natureof the method.



It is well known [1℄ that iterative Monte Carlo methods are preferable for solving largesparse systems (suh as those arising from approximations of partial de�erential equa-tions). Suh methods are good for diagonally dominant systems for whih the rate of theonvergene is high.Aim of the master thesis:Researh, modi�ation and numerial testing of known algorithms of type Monte Carlofor alulating linear funtional of the solution of a system of linear algebrai equations.Aording to this aim the main problems of the master thesis are:1. To desribe and study a method with zero variane using information for solution ofthe onjugate problem.2. To study eÆieny of a Monte Carlo algorithm for solving SLAE for two onretehoies of pij (transition probabilities). To propose a modi�ation when the usedinformation is onneted only with the elements of the given system.3. To make numerial tests with the modi�ed Monte Carlo algorithm for solving SLAEwith large general sparse matries (with optimal memory loading).Thesis struture: The thesis onsists of Introdution, four Chapters, and List ofreferenes. The text ontains 60 pages and inludes 5 tables.Chapter 1: A short desription of Monte Carlo (diret and iterative) methods anddisrete Markov hain are given. The onsidered problem is desribed.Chapter 2: The theorem of Ermakov and Mikhailov [6℄ dor solving integral equationsis applied dor solving SLAE. The eÆieny of the onstruted algorithm is studied.Chapter 3: An algorithm, given in [10℄, with transition probabilities proportional tothe elements of the iterative matrix ([8℄) is the base for solving the seond main problem. Amodi�ation of this algorithm with balaning the iterative matrix or the right hand side ofthe system is proposed. In result of this proedure the variane dereases. The balaningis realized using the di�erent relaxation paarmeters.Chapter 4: An algorithm for general sparse matries is desribed. The alulationsare performed only with nonzero elements. This gives solution of the third main problemfor inreasing the omputational eÆieny of the onsidered algorithm.2 Problem statementConsider the following SLAE:Ax = b; A 2 Rm�m; x; b 2 Rm: (1)This system an be presented in the following form (if only aii 6= 0; 8i = 1; : : : ; m) usingthe Jaobi relaxation iterative method with relaxation parameter  2 (0; 1℄:x = Lx + f; (2)



where L = (lij)mi;j=1 2 Rm�m; f = (f1; : : : ; fm)Tand lij = 8<: 1� ; i = j�aijaii ; i 6= j i; j = 1; : : : ; mfi =  biaii ; i = 1; : : : ; m:We are interested in the alulating linear funtional of the solution:(x; h) = mXi=1 xihi; (3)where h 2 Rm is a given vetor.To �nd one omponent of the solution, for example the i0-th omponent of x, we hooseh = e(i0) = (0; : : : ; 0; 1; 0; : : : ; 0)T , where the one is in the i0-th plae. To alulate thefuntional (x; h), an iterative Monte Carlo method is used. We onstrut a random variableX, whose mathematial expetation is equal to the linear form (3), using disrete Markovproesses with a �nite set of states (�nite disrete Markov hains). Then the omputationalproblem beomes one of alulating repeated realizations of X and of ombining them intoan appropriate statistial estimator of (x; h).The problem of the minimization of the probable error, whih is equivalent to the min-imization of the variane of the onstruted random variable is studied.3 Chapter two. Minimization of the variane using apriori information about the solution of the onju-gate problemIn this hapter a theorem for minimization of the variane is proved. The result isahieved through an appropriate hoie of the initial and transition probabilities. Thistheorem is analogous to the theorem of Ermakov and Mikhailov [6℄ for integral operators.De�nition 3.1 Conjugate problem of (2):x� = LTx� + h (LT = (l�ij)mi;j=1):Theorem 3.1 Let the matrix A is diagonally dominant and�i = fix�i(f; x�) ; pij = l�ijx�j(LTx�)i ; 8i; j = 1; : : : ; m:



Then EX = (x; h) and DX = 0, whereX = 1Xi=0Wihsi:The theorem is proved using the following statement:Lemma 3.1 Let the random variable is given:Y (0) = W0hs0 Y (k) = k�1Xi=0 Wihsi +Wkx�sk ; k 2 Nnf0g:Then EY (k) = (x; h) DY (k) = 0; k 2 N:The statement, whih is proved in Theorem 3.1, has a theoretial meaning, but itspratial appliation is onneted with some obvious disadvantages. The solution x� isunknown. On the other hand, it neessary to onstrut an in�nite Markov hain to obtainzero variane. Obviously, this is impossible.4 Chapter three. Minimization of the variane usinga priori information about the solution of the givensystem4.1 Theoretial bakgroundA theorem, whih is given in [4℄, is the base of onsidered algorithm.Theorem 4.1 Let the matrix A is diagonally dominant. Then EX = (x; h), whereX = hs0�s0 1Xi=0Wifsi W0 = 1; Wi = Wi�1 lsi�1sipsi�1si ; i � 1! :Obviously, if A is a diagonally dominant matrix, then the elements of the matrix L mustsatisfy the following ondition: mXj=1 jlijj < 1; 8i = 1; : : : ; m: (4)



It is well known that property (4) is a suÆient ondition for onvergene of the Neumannseries, i.e. x = limk!1x(k); x(k) = k�1Xi=0 Lif + Lkx(0); k > 0:It is lear that every iterative algorithm uses a �nite number of iterations k. In thealgorithm, following �nite sumX(k) := hs0�s0 kXi=0Wifsi; (k 2 N); EX(k) = (x(k); h)is omputed, where x(k) is the k-th iterative approxiamtion of the solution x (using x(0) :=f). The truation parameter k is obtained from the ondition that the di�erene betweenthe stohasti approximation of two suessive approximations is smaller than a givensuÆiently small parameter ".4.2 Advantages and disadvantages of the algorithm with respetto the two hoies of the transition probabilitiesThe transition probabilities are hosen to minimize the variane of the random variable.The two ideas are:1. pij = 1ni ; i; j = 1; : : : ; m;where ni is the number of nonzero elements in the i-th row of L;2. pij = jlijjPmj=1 jlijj i = 1; : : : ; m: (5)The algorithm with transition probabilities whih are proportional to the jlijj is alledMonte Carlo almost optimal algorithm (see [3℄ and [8℄). Let us note that the seondalgorithm has the following imporatant property:lijpij = onst(i) for all i = 1; : : : ; m;whih solves the problem with minimization of the variane to some extent. This algorithman beome optimal when additional onditions for the system are given.The following statement is valid:Statement 4.1 The system (1) (orresponding system (2)) is given. Let the matrix A isdiagonally dominant, the element of L have the same sign, and transition probabilities aregiven with the formula (5). Suppose that



l := li = ljf := fi = fj 8i 6= j; i; j 2 f1; : : : ; mg;where li = mXj=1 jlijj; i = 1; : : : ; m:Then DX = 0; X = hs0�s0 1Xi=0Wifsi :Remark 4.1 It is true that DX(k) = 0; 8k 2 N besides DX = 0. It is very importantthat the onditions of the statement (4.1) guarantee a zero variane without realization ofa boundary transition (di�erene with Theorem 3.1).For every row of matrix A (if jaiij 6= 0) a parameter ki is de�ned:ki := mXj=1;j 6=i jaijjjaiij ; i = 1; : : : ; m:The proved statement gives the onditions for obtaining a zero variane - the rowbalaning the iterative matrix and balaning the right hand side of the system.4.3 Using di�erent relaxation parameters� Balaning the iterative matrix:We use the notation: kimax := max1�i�m ki:imax := 1 for row with number imax.The relaxation paarmeters for other rows are obtained by the formula:i = 1� kimax1� "ikimax  "i = kikimax! :� Balaning the right hand side:We use the notation: biminaiminimin := min1�i�m biaii :�imin := 1 for row with number imin.The relaxation parameters for other rows is obtained by the formula:�i = 1"�i  biaii = "�i biminaiminimin ; i = 1; : : : ; m! :



Table 1: Algorithm without balaning ( = 1)N " average k t in se: DX rN j(x; h)�XN j10 000 3e-06 11 7.09 12.871 0.024 0.01950 000 3e-06 11 34.84 12.832 0.011 0.016115 000 3e-06 11 79.83 12.602 0.007 0.007Table 2: Algorithm with balaning the iterative matrixN " k t in se: DX rN j(x; h)�XN j600 3e-01 67332 2153.09 11.084 0.092 0.074700 3e-01 67332 2497.92 10.668 0.083 0.023800 3e-01 67332 2848.84 10.971 0.079 0.020But in pratie the simultnaneous balaning is very diÆult, beause balaning oneof the omponents puts very strong restritions about hoie for the elments of anotheromponent.4.4 Balaning L or fBalaning only L or f is done with respet to the parameters of the given problem.The algorithm with balaning is ompared with the algorithm without balaning for  = 1.This valuse of the relaxation parameter is hosen, beause then the rate if onvergene is thehighest. The algorithm with ablaning has lower eÆieny, beause it gives an inessentialredution of the variane as the length of the Markov hains inreases onsiderably. Thisdisadvantage an be overome if the value of " is omparatively large. But then thesystemati error inreases. These are the reasons why the algorithm with balaning is notof great pratial importane.4.5 Numerial experimentsThe algorithms are realized on FORTRAN 77 and the omputational experimentsare made with a real nonsymmetri general sparse square matrix of order 1107 whihis diagonally dominant. The elements of the right hand side are random numbers inthe interval (0; 1), obtained with the generator URAND. The numerial experiments areobtained on work station HEWLETT PACKARD.



5 Chapter four. Monte Carlo algorithm for generalsparse matriesThe main idea is that the elements of the matrix are stored in one dimensional array.The aess to the elements is provided through the following arrays:NI one dimensional array of order m, where NI(i) is the number of nonzero elements ini-th row, i = 1; : : : ; m;A one dimensional array of order n = mXi=1NI(i), whih ontains all nonzero elements byrows;J one dimensional array of order n, where J(i) is the olumn index of ai 2 A.When the presentation is used some diÆulties appear. For example, the diagonal elementsof the given system are neessary, but their indies in A are unknown. They an be obtainedby the formula:diagi = fk : J(k) = i; k = IPS(i) + 1; : : : ; IPS(i) + ig; i = 1; : : : ; m:where IPS is one dimensional array of order m whih ontains partial sums of NI(i):IPS(1) = 0IPS(i) = IPS(i� 1) +NI(i� 1) i = 2; : : : ; m:Referenes[1℄ J.H.Curtiss, "Monte Carlo methods for the iteration of linear operators", J. MathPhys., vol. 32, pp. 209-232, 1954.[2℄ B.Dimitrov, "Markov hains", Nauka and Art, So�a, 1974.[3℄ I. T.Dimov, "Minimization of the probable error for some Monte Carlo methods",Pro. International Conferene on Mathematial Modelling and Sienti� Computa-tion, Varna, 1991.[4℄ I. T.Dimov, T.T.Dimov, T.V.Gurov, "A new iterative Monte Carlo approahfor inverse matrix problem", Journal of Computational and Applied Mathematis, vol.92, No 4, pp. 15-35, 1998.[5℄ T.T.Dimov, "EÆient Monte Carlo Algorithms for Inverting Matries Arising inMixed Finite Element Approximation", Proeedings of the Fourth International Con-ferene on Numerial Methods and Appliations, So�a, August 1998, World Sienti�,Singapore, New Jersey, London, Hong Kong, pp. 248-256.
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