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THESIS SUMMARY1 General des
ription of the thesisThe presented thesis is devoted to the minimization of the probable error in 
al
ulatinglinear fun
tional of the solution of a system of linear algebrai
 equations (SLAE).Monte Carlo methods are a powerful tool for solving di�erent problems in the �elds ofmathemati
s, phisi
s and engineering. It is known that they provide statisti
al estimationsfor a fun
tional of the solution using sample of a 
ertain random variable whose mathemat-i
al expe
tation is equal to the given fun
tional. These methods are used when not verya

urate solution is needed (in the real-life 
omputations the required a

ura
y is about1-5 %). The MCM is very useful when one is interested in �nding inverse matrix, be
ausethe problem of estimating the inverse matrix 
an be present as a problem of solving SLAE(see [5℄).There are several basi
 advantages of these algorithms. It is well known that MonteCarlo algorithms are parallel algorithms. They have high parallel eÆ
ien
y when parallel
omputers are used. Monte Carlo algorithms are also very eÆ
ient when the problem under
onsideration is too large or too intri
ate for other treatment. One of the most importantadvantages of these algorithms is that they 
an be used for evaluating only one 
omponentof the solution or some linear form of the solution. In this 
ase it is not ne
essary toperform the all 
omputational work whi
h is needed for obtaining the 
omplete solution.In general, there are two 
lasses of Monte Carlo numeri
al algorithms - dire
t algorithmsand iterative algorithms. The dire
t algorithms obtain the approximate solution of aproblem in a �nite number of steps, and 
ontain only sto
hasti
 error. The iterativeMonte Carlo methods use an approximation of the solution obtaining a 
ertain number ofsigni�
ant digits. The iterative Monte Carlo methods have two types of error - sto
hasti
and systemati
. The systemati
 error depends on the number of performed iterations ofthe used iterative method, whereas the sto
hasti
 error depends on the probabilisti
 natureof the method.



It is well known [1℄ that iterative Monte Carlo methods are preferable for solving largesparse systems (su

h as those arising from approximations of partial de�erential equa-tions). Su
h methods are good for diagonally dominant systems for whi
h the rate of the
onvergen
e is high.Aim of the master thesis:Resear
h, modi�
ation and numeri
al testing of known algorithms of type Monte Carlofor 
al
ulating linear fun
tional of the solution of a system of linear algebrai
 equations.A

ording to this aim the main problems of the master thesis are:1. To des
ribe and study a method with zero varian
e using information for solution ofthe 
onjugate problem.2. To study eÆ
ien
y of a Monte Carlo algorithm for solving SLAE for two 
on
rete
hoi
es of pij (transition probabilities). To propose a modi�
ation when the usedinformation is 
onne
ted only with the elements of the given system.3. To make numeri
al tests with the modi�ed Monte Carlo algorithm for solving SLAEwith large general sparse matri
es (with optimal memory loading).Thesis stru
ture: The thesis 
onsists of Introdu
tion, four Chapters, and List ofreferen
es. The text 
ontains 60 pages and in
ludes 5 tables.Chapter 1: A short des
ription of Monte Carlo (dire
t and iterative) methods anddis
rete Markov 
hain are given. The 
onsidered problem is des
ribed.Chapter 2: The theorem of Ermakov and Mikhailov [6℄ dor solving integral equationsis applied dor solving SLAE. The eÆ
ien
y of the 
onstru
ted algorithm is studied.Chapter 3: An algorithm, given in [10℄, with transition probabilities proportional tothe elements of the iterative matrix ([8℄) is the base for solving the se
ond main problem. Amodi�
ation of this algorithm with balan
ing the iterative matrix or the right hand side ofthe system is proposed. In result of this pro
edure the varian
e de
reases. The balan
ingis realized using the di�erent relaxation paarmeters.Chapter 4: An algorithm for general sparse matri
es is des
ribed. The 
al
ulationsare performed only with nonzero elements. This gives solution of the third main problemfor in
reasing the 
omputational eÆ
ien
y of the 
onsidered algorithm.2 Problem statementConsider the following SLAE:Ax = b; A 2 Rm�m; x; b 2 Rm: (1)This system 
an be presented in the following form (if only aii 6= 0; 8i = 1; : : : ; m) usingthe Ja
obi relaxation iterative method with relaxation parameter 
 2 (0; 1℄:x = Lx + f; (2)



where L = (lij)mi;j=1 2 Rm�m; f = (f1; : : : ; fm)Tand lij = 8<: 1� 
; i = j�
aijaii ; i 6= j i; j = 1; : : : ; mfi = 
 biaii ; i = 1; : : : ; m:We are interested in the 
al
ulating linear fun
tional of the solution:(x; h) = mXi=1 xihi; (3)where h 2 Rm is a given ve
tor.To �nd one 
omponent of the solution, for example the i0-th 
omponent of x, we 
hooseh = e(i0) = (0; : : : ; 0; 1; 0; : : : ; 0)T , where the one is in the i0-th pla
e. To 
al
ulate thefun
tional (x; h), an iterative Monte Carlo method is used. We 
onstru
t a random variableX, whose mathemati
al expe
tation is equal to the linear form (3), using dis
rete Markovpro
esses with a �nite set of states (�nite dis
rete Markov 
hains). Then the 
omputationalproblem be
omes one of 
al
ulating repeated realizations of X and of 
ombining them intoan appropriate statisti
al estimator of (x; h).The problem of the minimization of the probable error, whi
h is equivalent to the min-imization of the varian
e of the 
onstru
ted random variable is studied.3 Chapter two. Minimization of the varian
e using apriori information about the solution of the 
onju-gate problemIn this 
hapter a theorem for minimization of the varian
e is proved. The result isa
hieved through an appropriate 
hoi
e of the initial and transition probabilities. Thistheorem is analogous to the theorem of Ermakov and Mikhailov [6℄ for integral operators.De�nition 3.1 Conjugate problem of (2):x� = LTx� + h (LT = (l�ij)mi;j=1):Theorem 3.1 Let the matrix A is diagonally dominant and�i = fix�i(f; x�) ; pij = l�ijx�j(LTx�)i ; 8i; j = 1; : : : ; m:



Then EX = (x; h) and DX = 0, whereX = 1Xi=0Wihsi:The theorem is proved using the following statement:Lemma 3.1 Let the random variable is given:Y (0) = W0hs0 Y (k) = k�1Xi=0 Wihsi +Wkx�sk ; k 2 Nnf0g:Then EY (k) = (x; h) DY (k) = 0; k 2 N:The statement, whi
h is proved in Theorem 3.1, has a theoreti
al meaning, but itspra
ti
al appli
ation is 
onne
ted with some obvious disadvantages. The solution x� isunknown. On the other hand, it ne
essary to 
onstru
t an in�nite Markov 
hain to obtainzero varian
e. Obviously, this is impossible.4 Chapter three. Minimization of the varian
e usinga priori information about the solution of the givensystem4.1 Theoreti
al ba
kgroundA theorem, whi
h is given in [4℄, is the base of 
onsidered algorithm.Theorem 4.1 Let the matrix A is diagonally dominant. Then EX = (x; h), whereX = hs0�s0 1Xi=0Wifsi W0 = 1; Wi = Wi�1 lsi�1sipsi�1si ; i � 1! :Obviously, if A is a diagonally dominant matrix, then the elements of the matrix L mustsatisfy the following 
ondition: mXj=1 jlijj < 1; 8i = 1; : : : ; m: (4)



It is well known that property (4) is a suÆ
ient 
ondition for 
onvergen
e of the Neumannseries, i.e. x = limk!1x(k); x(k) = k�1Xi=0 Lif + Lkx(0); k > 0:It is 
lear that every iterative algorithm uses a �nite number of iterations k. In thealgorithm, following �nite sumX(k) := hs0�s0 kXi=0Wifsi; (k 2 N); EX(k) = (x(k); h)is 
omputed, where x(k) is the k-th iterative approxiamtion of the solution x (using x(0) :=f). The tru
ation parameter k is obtained from the 
ondition that the di�eren
e betweenthe sto
hasti
 approximation of two su

essive approximations is smaller than a givensuÆ
iently small parameter ".4.2 Advantages and disadvantages of the algorithm with respe
tto the two 
hoi
es of the transition probabilitiesThe transition probabilities are 
hosen to minimize the varian
e of the random variable.The two ideas are:1. pij = 1ni ; i; j = 1; : : : ; m;where ni is the number of nonzero elements in the i-th row of L;2. pij = jlijjPmj=1 jlijj i = 1; : : : ; m: (5)The algorithm with transition probabilities whi
h are proportional to the jlijj is 
alledMonte Carlo almost optimal algorithm (see [3℄ and [8℄). Let us note that the se
ondalgorithm has the following imporatant property:lijpij = 
onst(i) for all i = 1; : : : ; m;whi
h solves the problem with minimization of the varian
e to some extent. This algorithm
an be
ome optimal when additional 
onditions for the system are given.The following statement is valid:Statement 4.1 The system (1) (
orresponding system (2)) is given. Let the matrix A isdiagonally dominant, the element of L have the same sign, and transition probabilities aregiven with the formula (5). Suppose that



l := li = ljf := fi = fj 8i 6= j; i; j 2 f1; : : : ; mg;where li = mXj=1 jlijj; i = 1; : : : ; m:Then DX = 0; X = hs0�s0 1Xi=0Wifsi :Remark 4.1 It is true that DX(k) = 0; 8k 2 N besides DX = 0. It is very importantthat the 
onditions of the statement (4.1) guarantee a zero varian
e without realization ofa boundary transition (di�eren
e with Theorem 3.1).For every row of matrix A (if jaiij 6= 0) a parameter ki is de�ned:ki := mXj=1;j 6=i jaijjjaiij ; i = 1; : : : ; m:The proved statement gives the 
onditions for obtaining a zero varian
e - the rowbalan
ing the iterative matrix and balan
ing the right hand side of the system.4.3 Using di�erent relaxation parameters� Balan
ing the iterative matrix:We use the notation: kimax := max1�i�m ki:
imax := 1 for row with number imax.The relaxation paarmeters for other rows are obtained by the formula:
i = 1� kimax1� "ikimax  "i = kikimax! :� Balan
ing the right hand side:We use the notation: biminaiminimin := min1�i�m biaii :
�imin := 1 for row with number imin.The relaxation parameters for other rows is obtained by the formula:
�i = 1"�i  biaii = "�i biminaiminimin ; i = 1; : : : ; m! :



Table 1: Algorithm without balan
ing (
 = 1)N " average k t in se
: DX rN j(x; h)�XN j10 000 3e-06 11 7.09 12.871 0.024 0.01950 000 3e-06 11 34.84 12.832 0.011 0.016115 000 3e-06 11 79.83 12.602 0.007 0.007Table 2: Algorithm with balan
ing the iterative matrixN " k t in se
: DX rN j(x; h)�XN j600 3e-01 67332 2153.09 11.084 0.092 0.074700 3e-01 67332 2497.92 10.668 0.083 0.023800 3e-01 67332 2848.84 10.971 0.079 0.020But in pra
ti
e the simultnaneous balan
ing is very diÆ
ult, be
ause balan
ing oneof the 
omponents puts very strong restri
tions about 
hoi
e for the elments of another
omponent.4.4 Balan
ing L or fBalan
ing only L or f is done with respe
t to the parameters of the given problem.The algorithm with balan
ing is 
ompared with the algorithm without balan
ing for 
 = 1.This valuse of the relaxation parameter is 
hosen, be
ause then the rate if 
onvergen
e is thehighest. The algorithm with ablan
ing has lower eÆ
ien
y, be
ause it gives an inessentialredu
tion of the varian
e as the length of the Markov 
hains in
reases 
onsiderably. Thisdisadvantage 
an be over
ome if the value of " is 
omparatively large. But then thesystemati
 error in
reases. These are the reasons why the algorithm with balan
ing is notof great pra
ti
al importan
e.4.5 Numeri
al experimentsThe algorithms are realized on FORTRAN 77 and the 
omputational experimentsare made with a real nonsymmetri
 general sparse square matrix of order 1107 whi
his diagonally dominant. The elements of the right hand side are random numbers inthe interval (0; 1), obtained with the generator URAND. The numeri
al experiments areobtained on work station HEWLETT PACKARD.



5 Chapter four. Monte Carlo algorithm for generalsparse matri
esThe main idea is that the elements of the matrix are stored in one dimensional array.The a

ess to the elements is provided through the following arrays:NI one dimensional array of order m, where NI(i) is the number of nonzero elements ini-th row, i = 1; : : : ; m;A one dimensional array of order n = mXi=1NI(i), whi
h 
ontains all nonzero elements byrows;J one dimensional array of order n, where J(i) is the 
olumn index of ai 2 A.When the presentation is used some diÆ
ulties appear. For example, the diagonal elementsof the given system are ne
essary, but their indi
es in A are unknown. They 
an be obtainedby the formula:diagi = fk : J(k) = i; k = IPS(i) + 1; : : : ; IPS(i) + ig; i = 1; : : : ; m:where IPS is one dimensional array of order m whi
h 
ontains partial sums of NI(i):IPS(1) = 0IPS(i) = IPS(i� 1) +NI(i� 1) i = 2; : : : ; m:Referen
es[1℄ J.H.Curtiss, "Monte Carlo methods for the iteration of linear operators", J. MathPhys., vol. 32, pp. 209-232, 1954.[2℄ B.Dimitrov, "Markov 
hains", Nauka and Art, So�a, 1974.[3℄ I. T.Dimov, "Minimization of the probable error for some Monte Carlo methods",Pro
. International Conferen
e on Mathemati
al Modelling and S
ienti�
 Computa-tion, Varna, 1991.[4℄ I. T.Dimov, T.T.Dimov, T.V.Gurov, "A new iterative Monte Carlo approa
hfor inverse matrix problem", Journal of Computational and Applied Mathemati
s, vol.92, No 4, pp. 15-35, 1998.[5℄ T.T.Dimov, "EÆ
ient Monte Carlo Algorithms for Inverting Matri
es Arising inMixed Finite Element Approximation", Pro
eedings of the Fourth International Con-feren
e on Numeri
al Methods and Appli
ations, So�a, August 1998, World S
ienti�
,Singapore, New Jersey, London, Hong Kong, pp. 248-256.



[6℄ SM.Ermakov, G.A.Mikhailov, "Statisti
al modelling", Nauka, Moskow, 1982.[7℄ G.H.Golub, Ch. F.Van Loan, "Matrix Computations", The Johns Hopkins Uni-versity Press, Baltimore and London.[8℄ G.Megson, V.Aleksandrov, I. Dimov, "Systoli
 matrix inversion using a MonteCarlo method", Journal of Parallel Algorithms and Appli
ations, vol. 3, No 3/4, pp.311-330, 1994.[9℄ N.Metropolis, S.M.Ulam, "The Monte Carlo method", Journal of Ameri
anStatisti
al Asso
iation, vol. 44, No 247, pp. 335-341, 1949.[10℄ I.M. Sobo�l, "Monte Carlo numeri
al methods", Nauka, Moskow, 1973.[11℄ R.W.Wolff, "Sto
hasti
 modelling and the theory of queues", Prenti
e-Hall Inter-national.


